Skip to main content

Lentil Gene Pool for Breeding

  • Chapter
  • First Online:
Cash Crops

Abstract

Lentil is an ancient legume crop cultivated thousands of years for its nutritious seeds, its ability to improve soil colonized by nitrogen fixing symbiotic bacteria, and providing income to local farmers at semiarid areas. During the centuries, numerous landraces and traditional varieties have been developed, providing a wealth of genetic material for lentil cultivation and use by local communities worldwide. However, current improved lentil varieties suffer from many biotic and abiotic challenges, and breeding new cultivars should exploit the breadth of genetic potential reserved within the Lens gene pool. Landraces and wild relatives are more tolerant to adverse environmental conditions and can provide valuable genes to develop improved varieties in modern agriculture, adapted to environmental abiotic and biotic stresses, suitable as well for other industrial non-food uses, such as biomass production and use as energy crop. Molecular tools to assist breeding efforts in lentil are less well developed in comparison with other crops, although progress has been made in germplasm characterization using molecular markers. Genomic research is delayed by the large (4.3 GB) lentil genome size, and progress towards the release of the complete lentil genome sequence is expected to accelerate breeding efforts. In this chapter we review current knowledge on lentil domestication and landrace distribution, cultivar improvement and breeding, efforts to characterize abiotic and biotic stress tolerance, the research strategies and major advancements made by modern molecular technologies for identification and utilization of important markers/QTLs in lentil breeding, and future prospects for this important legume crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A (1995) Variation in some cultural and physiological characters and host/pathogen interaction of Fusarium oxysporum f. sp. lentis and inheritance of resistance to lentil wilt in Syria. PhD Thesis, Faculty of Agriculture, University of Aleppo, Aleppo, Syria

    Google Scholar 

  • Abu-Shakara S, Tannous RI (1981) Nutritional value and quality of lentils. In Webb C, Hawtin G (Eds) Lentils. Commonwealth Agricultural Bureaux, Slough, UK, pp 191–202

    Google Scholar 

  • Ahmad M, McNeil DL, Fautrier AG (1997) Phylogenetic relationships in Lens species and parentage determination of their interspecific hybrids using RAPD markers. Euphytica 94:101–110

    Article  Google Scholar 

  • Alghamdi SS, Khan AM, Ammar MH et al (2014) Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (Lens culinaris Medik.) genotypes grown in Saudi Arabia. Int J Mol Sci 15:277–295

    Article  CAS  Google Scholar 

  • Alonso R, Aguirre A, Marzo F (2000) Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem 68(2):159–165. https://doi.org/10.1016/S0308-8146(99)00169-7

    Article  CAS  Google Scholar 

  • Al-Quraan NA, Al-Smadi ML, Swaleh AF (2015) GABA metabolism and ROS induction in lentil (Lens culinaris medik) plants by synthetic 1,2,3thiadiazole compounds. J Plant Interact 10(1):185–194. https://doi.org/10.1080/17429145.2015.1056262

    Article  CAS  Google Scholar 

  • Alvarez MT, García P, Pérez de la Vega M (1997) RAPD polymorphism in Spanish lentil landraces and cultivars. J Genet Breed 51:91–96

    CAS  Google Scholar 

  • Amin R, Laskar RA, Khan S (2015) Assessment of genetic response and character association for yield and yield component in lentil (Lens culinaris L.) population development through chemical mutagenesis. Cogent Food Agric 1:1–15

    Google Scholar 

  • Arjenaki FG, Dehaghi MA, Jabbari R (2011) Effects of priming on seed germination of marigold (Calendula officinalis). Adv Environ Biol 5(2 spec. issue):276–280

    Google Scholar 

  • Babayeva S, Akparov Z, Damania A et al (2014) Genetic diversity for drought tolerance in lentils from Central Asia and the Caucasus: CACLentil. Albanian J Agric Sci 13:1–8. https://doi.org/10.31046/proceedings.2018.47

    Article  Google Scholar 

  • Bakr MA, Ahmed F (1992) Development of stemphylium blight of lentil and its chemical control. Bangladesh J Plant Pathol 8:39–40

    Google Scholar 

  • Baloch FS, Derya M, Andeden EE et al (2015) Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species. Biochem Syst Ecol 58:162–168

    Article  CAS  Google Scholar 

  • Bandeoǧlu E, Eyidoǧan F, Yücel M et al (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77. https://doi.org/10.1023/B:GROW.0000014891.35427.7b

    Article  Google Scholar 

  • Barrios A, Caminero C, García P et al (2017) Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC Plant Biol 17:1–15. https://doi.org/10.1186/s12870-017-1057-8

    Article  CAS  Google Scholar 

  • Barton JE, Klyne A, Tennakoon D et al (1997) Development of a system for gene transfer to lentils. In: International Food Legume Research Conference III B Program and Posters. Adelaide, Australia (Abstract), p 85

    Google Scholar 

  • Barulina H (1930) Lentil of the U.S.S.R. and of other countries. Bull Appl Bot Genet Plant Breed 40:265–304

    Google Scholar 

  • Basheer-Salimia R, Camilli B, Scacchi S et al (2015) Assessment of genetic diversity in lentils (Lens culinaris Medik.) based on SNPs. Genet Mol Res 14(2):5870–5878. https://doi.org/10.4238/2015.June.1.4

    Article  CAS  PubMed  Google Scholar 

  • Bayaa B, Erskine W, Singh A (1997) Screening lentil for resistance to fusarium wilt: methodology and sources of resistance. Euphytica 98:69–74

    Article  Google Scholar 

  • Belitz H-D, Grosch W, Schieberle P (2005) Food chemistry. Springer, Berlin; Heidelberg; New York, NY, pp 1209–1218. ISBN: 3-540-40817-7

    Google Scholar 

  • Benaragama D, Rossnagel BG, Shirtliffe SJ (2014) Breeding for competitive and high-yielding crop cultivars. Crop Sci 54:1015–1025. https://doi.org/10.2135/cropsci2013.04.0223

    Article  Google Scholar 

  • Benlioğlu B, Adak MS (2019) Importance of crop wild relatives and landraces genetic resources in plant breeding programmes. J Exp Agric Int 37(3):1–8

    Google Scholar 

  • Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41:1–4

    Article  CAS  Google Scholar 

  • Bett K et al (2016) OP06: the lentil genome – from the sequencer to the field. In: PAG XXIV: Plant and Animal Genomics Conference, San Diego, California. https://mel.cgiar.org/reporting/download/hash/gJFbVXUc

    Google Scholar 

  • Bhadauria V, Bett KE, Zhou T et al (2013) Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genet 14:31. https://doi.org/10.1186/1471-2156-14-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadauria V, Ramsay L, Bett KE et al (2017) QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci Rep 7:3231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhandari K et al (2016) Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv 30(2):118–151. https://doi.org/10.1080/15427528.2015.1134744

    Article  CAS  Google Scholar 

  • Bhat RS, Upadhyaya NM, Chaudhury A (2007) Chemical and irradiation-induced mutants and tilling. In: Upadhyaya NM (ed) Rice functional genomics: challenges, progress and prospects. Springer, New York, NY, pp 148–180

    Chapter  Google Scholar 

  • Bolibok-Brągoszewska H, Rakoczy-Trojanowska M (2015) Molecular marker based assessment of genetic diversity in rye. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants. Springer, New York, NY, p 110

    Google Scholar 

  • Bosmali I, Ganopoulos I, Madesis P et al (2012) Microsatellite and DNA-barcode regions typing combined with High Resolution Melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int 46(1):141–147. https://doi.org/10.1016/j.foodres.2011.12.013

    Article  CAS  Google Scholar 

  • Bouhssini EI, Sarker M, Eriskine W et al (2008) First sources of resistance to Sitona weevil (Sitona crinitus Herbst) in wild Lens species. Genet Resour Crop Evol 55:1–4

    Article  Google Scholar 

  • Buchwaldt L, Anderson KL, Morrall RAA et al (2004) Identification of lentil germ plasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94:236–243

    Article  CAS  PubMed  Google Scholar 

  • Buchwaldt L, Shaikh R, Adam J et al (2013) Recessive and dominant genes confer resistance to Colletotrichum truncatum in cultivated lentil. Can J Plant Pathol 35(2):222–231. https://doi.org/10.1080/07060661.2013.768296

    Article  CAS  Google Scholar 

  • Buchwaldt L, Dzananovic E, Durkin J (2018) Lentil anthracnose: epidemiology, fungicide decision support system, resistance and pathogen races. Can J Plant Pathol 40:189–198. https://doi.org/10.1080/07060661.2018.1441185

    Article  Google Scholar 

  • Cao Z, Li L, Kapoor K et al (2019) Using a transcriptome sequencing approach to explore candidate resistance genes against stemphylium blight in the wild lentil species Lens ervoides. BMC Plant Biol 19:399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceccobelli S, Ciancaleoni S, Lancioni H et al (2019) Genetic distinctiveness of a protected geographic indication lentil landrace from the Umbria region, Italy, over 20 years. Genet Resour Crop Evol 66:1483–1493

    Article  CAS  Google Scholar 

  • Céron-Rojas JJ, Crossa J (2018) Linear selection indices in modern plant breeding. Springer, New York, NY

    Book  Google Scholar 

  • Chakraborty M, Haque MF (2000) Genetic variability and component analysis in lentil. J Res Birsa Agric Univ 12(2):199–204

    Google Scholar 

  • Chatzoglou T, Tokatlidis IS (2012) Decision on germplasm choice to apply breeding within a local population of common vetch is affected by crowding. Span J Agric Res 10(3):752–755

    Article  Google Scholar 

  • Chauhan MP, Singh IS (1998) Genetic variability, heritability and expected genetic advance for seed yield and other characters over two years in lentil. Lens Newsl 25(1):3–6

    Google Scholar 

  • Chauhan BS, Matloob A, Mahajan G et al (2017) Emerging challenges and opportunities for education and research in weed science. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01537

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Sharma H, Muehlbauer FJ (eds) (2011) Compendium of chickpea and lentil diseases and pests. APS Press, St Paul, MN, p 165

    Google Scholar 

  • Chhabra G, Chaudhary D, Varma M et al (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14(4):347–353

    Article  CAS  PubMed  Google Scholar 

  • Chopra R, Aparna, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium - mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143:127–134. https://doi.org/10.1016/j.scienta.2012.06.019

    Article  CAS  Google Scholar 

  • Choudhary AK, Kumar S (2016) Genetic improvement for fusarium wilt resistance in lentil. In: Singh AK, Bhakta N, Sangale UR, Manibhushan, Sundaram PK, Kumar S, Yasin JK (eds) Scientific lentil production: Indian perspectives. Society for Upliftment of Rural Economy, Varanasi, pp 59–72

    Google Scholar 

  • Chowdhury RK, Chowdhury JB (1983) Compatibility between Vigna radiata (L.) Wilczek and Vigna umbellata Thumb. Ohwi and Ohashi. Genet Agraria 37:257–266

    Google Scholar 

  • Chowdhury MA, Andrahennadi CP, Slinkard AE et al (2001) RAPD and SCAR markers for resistance to Ascochyta blight in lentil. Euphytica 118:331–337. https://doi.org/10.1023/A:1017581817201

    Article  CAS  Google Scholar 

  • Cokkizgin A, Shtaya MJY (2013) Lentil: origin, cultivation techniques, utilization and advances in transformation. Agric Sci 1(1):55–62. https://doi.org/10.12735/as.v1i1p55

    Article  Google Scholar 

  • Collard BCY, Ades PK, Pang ECK et al (2001) Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Australas Plant Pathol 30:271–276

    Article  Google Scholar 

  • Dadu RHR, Ford R, Sambasivam P et al (2017) A novel Lens orientalis resistance source to the recently evolved highly aggressive Australian Ascochyta lentis isolates. Front Plant Sci 8:1038. https://doi.org/10.3389/fpls.2017.01038

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalgetty DD, Baik BK (2006) Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal Chem 83(3):269–274. https://doi.org/10.1094/CC-83-0269

    Article  CAS  Google Scholar 

  • Damm U, O’Connell RJ, Groenewald JZ, Crous PW (2014) The Colletotrichum destructivum species complex - hemibiotrophic pathogens of forage and field crops. Stud Mycol 79:49–84. https://doi.org/10.1016/j.simyco.2014.09.003. PMID: 25492986; PMCID: PMC4255528

  • Das R, Nath R, Dikshit HK (2017) Host resistance of lentil genotypes against Stemphylium blight caused by Stemphylium botryosum Wallr. in lower gangetic alluvial zone of West Bengal, India. J Mycopathol Res 55:169–172

    Google Scholar 

  • Das A, Dutta S, Jash S et al (2019) Current knowledge on pathogenicity and management of Stemphylium botryosum in lentils (Lens culinaris ssp. culinaris Medik). Pathogens 8:225. https://doi.org/10.3390/pathogens8040225

    Article  PubMed Central  Google Scholar 

  • Davis KR (1981) Effect of processing on composition an Tetrahy-mena relative nutritive value on green and yellow peas, lentils and white pea beans. Cereal Chem 58:454–460

    Google Scholar 

  • Davidson J, Smetham G, Russ MH et al (2016) Changes in aggressiveness of the Ascochyta lentis population in southern Australia. Front Plant Sci 7:393. https://doi.org/10.3389/fpls.2016.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • De Almeida Costa GE, Da Silva Q-MK, Pissini Machado Reis SM et al (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94(3):327–330. https://doi.org/10.1016/j.foodchem.2004.11.020

    Article  CAS  Google Scholar 

  • Delahunty A, Nuttall J, Nicolas M et al (2018) Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop Past Sci 69:1103–1112. https://doi.org/10.1071/CP18004

    Article  CAS  Google Scholar 

  • Dhindsa KS, Sood DR, Chaudhary MS (1985) Nutritional evaluation of some varieties of lentil (Lens esculenta). Ind J Nutr Diet 22:187–189

    Google Scholar 

  • Dikshit HK, Singh A, Singh D et al (2015) Genetic diversity in lens species revealed by EST and genomic simple sequence repeat analysis. PLoS One 10(9):e0138101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dikshit HK, Singh A, Singh D et al (2016) Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris). Indian J Exp Biol 54:394–399

    CAS  PubMed  Google Scholar 

  • Dubey K, Mishra A (2019). Identification of lentil genotype(s) resistant to the Fusarium oxysporum f. sp. Lentis. Int J Agri Plant Sci 1(3):31–33

    Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, USA, 345 p. (online ISBN: 978-1-4684-8151-8)

    Google Scholar 

  • Duranti M, Gius C (1997) Legume seeds: protein content and nutritional value. Field Crops Res 53(1/3):31–45

    Google Scholar 

  • Durán Y (2002) Utilización de marcadores moleculares en Lens (Miller): variabilidad y mapa genético. PhD thesis Universidad de León, León, Spain

    Google Scholar 

  • El Attar AH (1991) Genetic variability among some exotic lentil germplasm in Egypt. Bull Fac Agric Univ Cairo 42(3):993–1000

    Google Scholar 

  • El-Monem A, Sharaf M (2008) Tolerance of five genotypes of lentil to NaCl-salinity stress. N Y Sci J 1:70–80

    Google Scholar 

  • El-Nahas AI, El-Shazly HH, Ahmed SM et al (2011) Molecular and biochemical markers in some lentil (Lens culinaris Medik.) genotypes. Ann Agric Sci 56(2):105–112. https://doi.org/10.1016/j.aoas.2011.11.001

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:1–10. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  Google Scholar 

  • Erskine W (1997) Lessons for breeders from landraces of lentil. Euphytica 93:107–112

    Article  Google Scholar 

  • Erskine W, Sarker A (2004) Lentil/breeding. In: Wrigley C, Corke H, Walker C (eds) Encyclopedia of grain science. Elsevier, Amsterdam, pp 142–150

    Chapter  Google Scholar 

  • Erskine W, Saxena MC (1993) Breeding lentil at ICARDA for southern latitudes. In: Erskine W, Saxena MC, Roush S (eds) Lentils in South Asia. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo

    Google Scholar 

  • Erskine W, Isawi J, Masoud K (1990) Single plant selection for yield in lentil. Euphytica 48:113–116

    Article  Google Scholar 

  • Erskine W, Tufail M, Russell A et al (1994) Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73:127–135

    Article  Google Scholar 

  • Erskine W, Chandra S, Chaudhry M et al (1998) A bottleneck in lentil: widening its genetic base in South Asia. Euphytica 101:207–211

    Article  Google Scholar 

  • Erskine W, Muehlbauer FJ, Saker A et al (2009) The lentil: botany, production and uses. CAB International, Wallingford, p 456

    Book  Google Scholar 

  • Erskine W, Sarker A, Kumar S (2011) Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Secur 3(2):127–139. https://doi.org/10.1007/s12571-011-0124-5

    Article  Google Scholar 

  • Erskine W, Sarker A, Kumar S (2015) Lentil: breeding. In: Encyclopedia of food grains, 2nd edn. Elsevier Inc, Amsterdam, pp 317–324. https://doi.org/10.1016/B978-0-12-394437-5.00210-2

    Chapter  Google Scholar 

  • Erskine W, Sarker A, Kumar S (2016) Lentil: breeding. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds) Encyclopedia of food grains, 2nd edn. Elsevier Ltd, Academic Press, Oxford, pp 317–324

    Chapter  Google Scholar 

  • Esmail AM, Mohamed AA, Hamdi A et al (1994) Genetic variability and heritability for agronomic traits in segregating populations of lentil (Lens culinaris Medik.). Ann Agric Sci Moshtohor 32(3):1107–1118

    Google Scholar 

  • Eujayl I, Baum M, Powell W et al (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97(1–2):83–89. https://doi.org/10.1007/s001220050869

    Article  CAS  Google Scholar 

  • Eujayl I, Erskine W, Bayaa B et al (2006) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01147

    Article  Google Scholar 

  • Farooq M, Gogoi N, Hussain M et al (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217. https://doi.org/10.1016/j.plaphy.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2019) Available at: http://www.fao.org/faostat/en/#data/QC

  • Fasoula DA, Fasoula VA (1997) Competitive ability and plant breeding. Plant Breed Rev 14:89–138

    Google Scholar 

  • Fasoulas A (1973) A new approach to breeding superior yielding varieties. Dept. of Genetics and Plants Breeding Pub. No. 3. Aristotelian University of Thessaloniki, Thessaloniki

    Google Scholar 

  • Fedoruk LK, Johnson EN, Shirtliffe SJ (2011) The critical period of weed control for lentil in western Canada. Weed Sci 59(4):517–526. https://doi.org/10.1614/ws-d-11-00051.1

    Article  CAS  Google Scholar 

  • Fedoruk MJ, Vandenberg A, Bett KE (2013) Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genome 6:plantgenome2013.05.0012. https://doi.org/10.3835/plantgenome2013.05.0012

    Article  Google Scholar 

  • Ferguson M (2000) Lens spp: conserved resources, priorities for collection and future prospects. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st Century. Proceedings of the Third International Food Legumes Research Conference, Current plant science and biotechnology in agriculture, vol 34. Kluwer Academic Publishers, Dordrecht; Boston, MA; London, pp 613–620

    Google Scholar 

  • Ferguson ME, Robertson LD (1996) Genetic diversity and taxonomic relationships within the genus Lens as revealed by allozyme polymorphism. Euphytica 91:163–172

    Article  CAS  Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Pérez-De-Luque A et al (2008) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48:85–94. https://doi.org/10.1111/j.1365-3180.2008.00604.x

    Article  Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2009) Resistance to broomrape in wild lentils (Lens spp.). Plant Breed 128:266–270. https://doi.org/10.1111/j.1439-0523.2008.01559.x

    Article  Google Scholar 

  • Fernández-Aparicio M, Reboud X, Gibot-Leclerc S (2016) Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front Plant Sci 7:135. https://doi.org/10.3389/fpls.2016.00135

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiala JV (2006) Transferring resistance to Colletotrichum truncatum from wild lentil species to cultivated lentil species (Lens culinaris subsp culinaris). Dissertation, University of Saskatchewan

    Google Scholar 

  • Fiala JV, Tullu A, Banniza S et al (2009) Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medic). Crop Sci 49:825–8305

    Article  Google Scholar 

  • Fikiru E, Tesfaye K, Bekele E (2011) Morphological and molecular variation in Ethiopian lentil (Lens culinaris Medikus) varieties. Int J Genet Mol Biol 3(4):60–67

    Google Scholar 

  • Fiocchetti F, Laddomada B, Roselli M et al (2009) Fingerprinting of three typical macrosperma Italian lentil (Lens culinaris Medik.) landraces using fluorescence-based AFLP markers. Sci Hortic 121:383–387

    Article  CAS  Google Scholar 

  • Fischer RA (2020) Breeding wheat for increased potential yield: contrasting ideas from Donald and Fasoulas, and the case for early generation selection under nil competition. Field Crop Res 252:107782. https://doi.org/10.1016/j.fcr.2020.107782

    Article  Google Scholar 

  • Fischer RA, Moreno Ramos OH, Ortiz Monasterio I et al (2019) Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update. Field Crop Res 232:95–105. https://doi.org/10.1016/j.fcr.2018.12.011

    Article  Google Scholar 

  • Fleming SE (1981) A study of relationships between flatus potential and carbohydrate distribution in legume seeds. J Food Sci 46:794–798

    Article  CAS  Google Scholar 

  • Flint-Hamilton KB (1999) Legumes in Ancient Greece and Rome: food, medicine, or poison? Hesperia 68:371. https://doi.org/10.2307/148493

    Article  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96:247–255

    Article  CAS  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to Ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98:93–98. https://doi.org/10.1007/s001220051044

    Article  CAS  Google Scholar 

  • Foti C, Khah E, Pavli O (2018) Response of lentil genotypes under PEG-induced drought stress: effect on germination and growth. Plant 6:75. https://doi.org/10.11648/j.plant.20180604.12

    Article  Google Scholar 

  • Foti C, Khah EM, Pavli O (2019) Germination profiling of lentil genotypes subjected to salinity stress. Plant Biol 21:480–486. https://doi.org/10.1111/plb.12714

    Article  CAS  PubMed  Google Scholar 

  • Fratini R, Ruiz ML (2003) A rooting procedure for lentil (Lens culinaris Medik) and other hypogeous legumes (Pea, chickpea and Lathyrus) based on plant polarity. Plant Cell Rep 21:726–732

    Article  CAS  PubMed  Google Scholar 

  • Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280

    Article  CAS  Google Scholar 

  • Gaad D, Laouar M, Udupa SM et al (2017) Diversity study of Algerian accessions of lentil (Lens culinaris Medik.) by using microsatellite markers. Res Crop 18(4):722–727. https://doi.org/10.5958/2348-7542.2017.00119.x

    Article  Google Scholar 

  • Gahoonia TS, Ali O, Sarker A et al (2005) Root traits, nutrient uptake, multi-location grain yield and benefit-cost ratio of two lentil (Lens culinaris Medikus.) varieties. Plant Soil 272:153–161. https://doi.org/10.1007/s11104-004-4573-x

    Article  CAS  Google Scholar 

  • Gahoonia TS, Ali O, Sarker A et al (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29:643–655. https://doi.org/10.1080/01904160600564378

    Article  CAS  Google Scholar 

  • Gaur PM, Samineni S, Krishnamurthy L et al (2015) High temperature tolerance in grain legumes. Legum Perspect 6–7:23

    Google Scholar 

  • Gautam NK, Singh M, Khan Z et al (2013) Assessment of lentil germplasm with respect to agronomic performance and major biotic stress. Legum Res 36(3):214–219

    Google Scholar 

  • Gepts P, Beavis WD, Brummer EC et al (2005) Legumes as a model plant family. Genomics for Food and Feed Report of the Cross-Legume Advances through Genomics Conference. Plant Physiol 137:1228–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem ME, Kibbou F, Guiguitant J et al (2017) Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to enhance yield increase in water-limited environments. Chem Biol Technol Agric 4:1–6. https://doi.org/10.1186/s40538-017-0103-y

    Article  CAS  Google Scholar 

  • Gorim LY, Vandenberg A (2018) Can wild lentil genotypes help improve water use and transpiration efficiency in cultivated lentil? Plant Genet Res 16:459–468. https://doi.org/10.1017/S1479262117000399

    Article  CAS  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2001) Regeneration and micrografting of lentil shoots. In Vitro Cell Dev Biol Plant 37:798–802

    Article  CAS  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38(4):316–324. https://doi.org/10.1079/IVP2002303

    Article  CAS  Google Scholar 

  • Gupta D, Sharma SK (2006) Evaluation of wild Lens taxa for agro-morphological traits, fungal diseases and moisture stress in northwestern Indian hills. Genet Resour Crop Evol 53:1233–1241

    Article  Google Scholar 

  • Gupta D, Sharma SK (2007) Widening the gene pool of cultivated lentils through introgression of alien chromatin from wild Lens subspecies. Plant Breed 126:58–61. https://doi.org/10.1111/j.1439-0523.2007.01318.x

    Article  Google Scholar 

  • Gupta DS, McPhee K, Kumar S (2017) Development of molecular markers for iron metabolism related genes in lentil and their expression analysis under excess iron stress. Front Plant Sci 8:1–8. https://doi.org/10.3389/fpls.2017.00579

    Article  CAS  Google Scholar 

  • Gupta D, Harinath R, Dadu R et al (2019) Toward climate-resilient lentils: challenges and opportunities. In: Genomic designing of climate-smart pulse crops. Springer International Publishing, Cham, pp 165–234. https://doi.org/10.1007/978-3-319-96932-9_4

    Chapter  Google Scholar 

  • Haddad NI, Muehlbauer FJ (1981) Comparison of random bulk population and single seed descent methods for Lentil breeding. Euphytica 30:643–651

    Article  Google Scholar 

  • Hahn DH, Rooney LW, Earp CF (1984) Tannins and phenols of sorghum. Cereal Foods World 29:776–779

    Google Scholar 

  • Halcro K, McNabb K, Lockinger A et al (2020) The BELT and phenoSEED platforms: shape and colour phenotyping of seed samples. Plant Methods 16(1):1–13. https://doi.org/10.1186/s13007-020-00591-8

    Article  Google Scholar 

  • Hallauer AR, Carena MJ, Filho JB (2010) Quantitative genetics in maize breeding. Springer, New York, NY; Dordrecht; Heidelberg; London

    Google Scholar 

  • Hamdi A, El-Ghareib AA, Shafey SA, Ibrahim MAM (2003) Genetic variability, heritability and expected genetic advance for earliness and seed yield from selection in lentil. Egypt J Agric Res 81(1):125–138

    Google Scholar 

  • Hamwieh A, Udapa SM, Choumane W et al (2005) A genetic linkage map of lentil based on microsatellite and AFLP markers and localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Renfrew JM (1978) Paleolithic-Neolithic seed remains at Franchthi cave, Greece. Nature 71:349–352

    Article  Google Scholar 

  • Harkess A (2018) Handling the heat: methylome variation underlying heat tolerance in cotton. Plant Cell 30:1947–1948. https://doi.org/10.1105/tpc.18.00698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Variability for restriction fragment lengths and phylogenies in lentil. Theor Appl Genet 77:839–843

    Article  CAS  PubMed  Google Scholar 

  • Hawtin GC, Singh KB, Saxena MC (1980) Some recent developments in the understanding and improvement of Cicer and Lens. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanical Garden, London, pp 613–624

    Google Scholar 

  • Hiremani NS, Dubey SC (2018) Race profiling of Fusarium oxysporum f. sp. lentis causing wilt in lentil. Crop Prot 108:23–30. https://doi.org/10.1016/j.cropro.2018.02.010

    Article  Google Scholar 

  • Hobson K, Armstrong R, Nicolas M et al (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151:371–382. https://doi.org/10.1007/s10681-006-9159-7

    Article  CAS  Google Scholar 

  • Hossain MI, Islam MM, Wahed MA et al (2009) Lentil-based high protein diet is comparable to animal-based diet in respect to nitrogen absorption and nitrogen balance in malnourished children recovering from shigellosis. Asia Pac J Clin Nutr 18(1):8–14

    CAS  PubMed  Google Scholar 

  • Hulse JH (1990) Nature, composition and utilization of grain legumes. Uses of tropical grain legumes. In: Proceedings of a consultants’ meeting, ICRISAT, pp 11–27

    Google Scholar 

  • IAEA (2020) Mutant Variety Database. http://mvd.iaea.org. Accessed 18 Mar 2020

  • Ibrahim HM (2011) Heat stress in food legumes: evaluation of membrane thermostability methodology and use of infra-red thermometry. Euphytica 180(1):99–105. https://doi.org/10.1007/s10681-011-0443-9

    Article  Google Scholar 

  • Idrissi O (2020) Application of extended photoperiod in lentil: towards accelerated genetic gain in breeding for rapid improved variety development. Morrocan J Agric Sci 1(1):14–19

    Google Scholar 

  • Idrissi O, Draye X (2019) High-throughput phenotyping for drought tolerance-related root traits in lentil: steps ahead for the development of efficient screening protocol for climate change resilient varieties. In: International Conference Climate Resilient Agriculture: Ways of Adaptation, Rabat, 2019

    Google Scholar 

  • Idrissi O, Houasli C, Udupa SM et al (2015) Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica 204:693–709. https://doi.org/10.1007/s10681-015-1373-8

    Article  CAS  Google Scholar 

  • Idrissi O, Udupa SM, De Keyser E et al (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris medik.) recombinant inbred line population. Front Plant Sci 7:1174. https://doi.org/10.3389/fpls.2016.01174

    Article  PubMed  PubMed Central  Google Scholar 

  • Idrissi O, Piergiovanni AR, Toklu F et al (2017) Molecular variance and population structure of lentil (Lens culinaris Medik.) landraces from Mediterranean countries as revealed by simple sequence repeat DNA markers: implications for conservation and use. Plant Genet Resour Charact Util 16:249–259. https://doi.org/10.1017/S1479262117000260

    Article  CAS  Google Scholar 

  • Idrissi O, Piergiovanni A, Faruk T et al (2018) Molecular variance and population structure of lentil (Lens culinaris Medik.) landraces from Mediterranean countries as revealed by simple sequence repeat DNA markers: implications for conservation and use. Plant Genet Res 16(3):249–259. https://doi.org/10.1017/S1479262117000260

    Article  CAS  Google Scholar 

  • Idrissi O, Sahri A, Udupa S et al (2019) Single seed descent under extended photoperiod as a simple, rapid and efficient breeding method for accelerated genetic gain in lentil. In: Proceedings of the 3rd International Legume Society Conference, Poznan, Poland, 2019

    Google Scholar 

  • Iliadis CG, Roupakias DG, Goulas CK (2003) Effectiveness of honeycomb selection for yield superiority at three interplant distances: a field simulation study using chickpea (Cicer arietinum L.) inbred lines. Euphytica 133:299–311

    Article  Google Scholar 

  • Inder P, Materne M, Taylor PWJ et al (2008) Genotyping elite genotypes within the Australian lentil breeding program with lentil-specific sequenced tagged microsatellite site (STMS) markers. Aust J Agric Res 59:222–225

    Article  CAS  Google Scholar 

  • Jankowicz-Cieslak J, Till BJ (2016) Chemical mutagenesis of seed and vegetatively propagated plants using EMS. Curr Protoc Plant Biol 1:617–635

    Article  PubMed  Google Scholar 

  • Jarpa-Parra M (2018) Lentil protein: a review of functional properties and food application. An overview of lentil protein functionality. Int J Food Sci Technol 53:892. https://doi.org/10.1111/ijfs.13685

    Article  CAS  Google Scholar 

  • Kafi M, Goldani M, Shariat Jafari MH (2012) Effectiveness of nutrient management in managing saline agro-ecosystems: a case study of Lens culinaris Medik. Pak J Bot 44:269–274

    Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N et al (2004a) QTL mapping of winter hardiness genes in lentil. Crop Sci 44:13–22. https://doi.org/10.2135/cropsci2004.1300

    Article  CAS  Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N et al (2004b) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44:5–12. https://doi.org/10.2135/cropsci2004.5000

    Article  Google Scholar 

  • Kahraman A, Demirel U, Ozden M et al (2010) Mapping of QTLs for leaf area and the association with winter hardiness in fall-sown lentil. Afr J Biotechnol 9(50):8515–8519. https://doi.org/10.5897/AJB10.572

    Article  Google Scholar 

  • Kamboj RK, Pandey MP, Chaube HS (1990) Inheritance of resistance to Fusarium wilt in Indian lentil germplasm (Lens culinaris Medic.). Euphytica 50:113–117

    Google Scholar 

  • Kant P, Materne M, Rodda MS et al. (2017) Screening lentil germplasm for stemphylium blight resistance. Australasian Plant Pathol 46:129–136. https://doi.org/10.1007/s13313-017-0469-0

  • Karagounis D, Katsavou E, Vlachostergios D et al (2011) A comparative study on physicochemical and sensory properties in lentil varieties cultivated under conventional and organic growing conditions. In: 25th General Congress of HSHS Horticulture in Europe, Cyprus

    Google Scholar 

  • Kargiotidou A, Chatzivassiliou E, Sinapidou E et al (2014) Selection at ultra-low density highlights plants escaping virus infection and leads towards high-performing pure-line cultivars in lentil. J Agric Sci 152:749–758

    Article  Google Scholar 

  • Kargiotidou A, Tzantarmas C, Chatzivassiliou E et al (2015) Seed propagation at low density facilitates the selection of healthy plants to produce seeds with a reduced virus load in a lentil landrace. Seed Sci Technol 43:31–39

    Article  Google Scholar 

  • Kargiotidou A, Vlachostergios DN, Tzantarmas C et al (2016) Addressing huge spatial heterogeneity induced by virus infections in lentil breeding trials. J Biol Res (Thessaloniki) 23:2. https://doi.org/10.1186/s40709-016-0039-6

    Article  Google Scholar 

  • Katerji N, Van Hoorn JW, Hamdy A et al (2001) Response of two varieties of lentil to soil salinity. Agric Water Manag 47:179–190. https://doi.org/10.1016/S0378-3774(00)00109-8

    Article  Google Scholar 

  • Katerji N, Van Hoorn JW, Hamdy A et al (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag 62(1):37–66. https://doi.org/10.1016/S0378-3774(03)00005-2

    Article  Google Scholar 

  • Kaur S, Cogan NOI, Pembleton LW et al (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265. https://doi.org/10.1186/1471-2164-12-265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Cogan NOI, Stephens A et al (2014) EST-SNP discovery and fine-resolution genetic mapping in lentil (Lens culinaris Medik.) enables candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713. https://doi.org/10.1007/s00122-013-2252-0

    Article  CAS  PubMed  Google Scholar 

  • Kay DE (1979) Food legumes TPI crop and product digest, vol 3. Tropical Development and Research Institute (TPI), London

    Google Scholar 

  • Khan A, Khan S (2011) Induced variation in quantitative traits due to chemical mutagen (hydrazine hydrate) treatment in lentil (Lens culinaris Medik.). Ind Stream Res J 1(VII)

    Google Scholar 

  • Khatib F, Koudsieh S, Ghazal B et al (2007) Developing herbicide resistant lentil (Lens culinaris Medikus subsp. culinaris) through Agrobacterium-mediated transformation. Arab J Plant Prot 25(2):185–192

    Google Scholar 

  • Khazaei H, Caron CT, Fedoruk M et al (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1–7. https://doi.org/10.3389/fpls.2016.01093

    Article  Google Scholar 

  • Khazaei H, Podder R, Caron CT et al (2017) Marker-trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2). https://doi.org/10.3835/plantgenome2017.02.0007

  • Khazaei H, Fedoruk M, Caron CT et al (2018) Single nucleotide polymorphism markers associated with seed quality characteristics of cultivated lentil. Plant Genome 11:1–7. https://doi.org/10.3835/plantgenome2017.06.0051

    Article  CAS  Google Scholar 

  • Khorramdelazad M et al (2018) Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 19(1):1–21. https://doi.org/10.1186/s12864-018-4488-1

    Article  CAS  Google Scholar 

  • Knuckles BE, Kuzmicky DD, Betschart AA (1982) HPLC analysis of phytic acid in selected foods and biological samples. J Food Sci 49:1257–1258

    Article  Google Scholar 

  • Krohn RM, Raqib R, Akhtar E et al (2016) A high-selenium lentil dietary intervention in Bangladesh to counteract arsenic toxicity: study protocol for a randomized controlled trial. Trials 17:218. https://doi.org/10.1186/s13063-016-1344-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh DP, Singh BB (1995) Genetic variability of yield and its components in lentil (Lens culinaris Medik.). Ind J Puls Res 8(1):60–66

    Google Scholar 

  • Kumar R, Kumar D, Kumar S (1999) Genetic variability in lentil (Lens culinaris Medik.). Ann Agric Res 4(1):75–77

    CAS  Google Scholar 

  • Kumar R, Mishra SK, Sharma B (2001) Genetics of rust resistance in lentil (Lens culinaris Medik.). Ind J Genet Plant Breed 61:238–241

    CAS  Google Scholar 

  • Kumar R, Sharma SK, Luthra OP et al (2005) Phenotypic stability of lentil genotypes under different environments. Ann Biol 21(2):155–158

    Google Scholar 

  • Kumar J, Basu PS, Srivastava E et al (2012) Phenotyping of traits imparting drought tolerance in lentil. Crop Past Sci 63(6):547–554. https://doi.org/10.1071/CP12168

    Article  CAS  Google Scholar 

  • Kumar SK, Barpete S, Kumar J et al (2013) Global lentil production: constraints and strategies. SATSA Mukhapatra Annu Tech Issue 17:1–13

    Google Scholar 

  • Kumar S, Rajendran K, Kumar J et al (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:1–13. https://doi.org/10.3389/fpls.2015.00078

    Article  Google Scholar 

  • Kumar J, Gupta S, Gupta P et al (2016a) Breeding strategies to improve lentil for diverse agro-ecological environments. Ind J Genet Plant Breed 76:530–549. https://doi.org/10.5958/0975-6906.2016.00071.7

    Article  Google Scholar 

  • Kumar J, Kant R, Basu PS et al (2016b) Heat tolerance in lentil under field conditions. Legum Genom Genet 7:1–11. https://doi.org/10.5376/lgg.2016.07.0001

    Article  Google Scholar 

  • Kumar J, Basu PS, Gupta S et al (2018) Physiological and molecular characterisation for high temperature stress in Lens culinaris. Funct Plant Biol 45(4):474–487. https://doi.org/10.1071/FP17211

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Choudhary AK, Gupta DS et al (2019) Towards exploitation of adaptive traits for climate-resilient smart pulses. Int J Mol Sci 20(12):2971. https://doi.org/10.3390/ijms20122971

    Article  CAS  PubMed Central  Google Scholar 

  • Kumari J, Ahmad R, Chandra S et al (2009) Determination of morpholological attributes imparting resistance against aphids (Aphis craccivora Koch) in lentil (Lens culinaris Medik). Arch Phytopathol Plant Protect 42:52–57. https://doi.org/10.1080/03235400600940806

    Article  CAS  Google Scholar 

  • Kyriakou DT, Fasoulas AC (1985) Effects of competition and selection pressure on yield response in winter rye (Secale cereale L.). Euphytica 34:883–895

    Article  Google Scholar 

  • Ladizinsky G (1979) The origin of lentil and its wild genepool. Euphytica 28:179–187

    Article  Google Scholar 

  • Ladizinsky G, Braun D, Goshen D et al (1984) The biological species of the genus Lens L. [Lens nigricans]. Bot Gaz 145:253–261

    Article  Google Scholar 

  • Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus Lens by means of embryo culture. Theor Appl Genet 70:97–101

    Article  CAS  PubMed  Google Scholar 

  • Laserna-Ruiz I, De-Los-Mozos-Pascual M, Santana MO et al (2012) Screening and selection of lentil (Lens Miller) germplasm resistant to seed bruchids (Bruchus spp.). Euphytica 188:153–162

    Article  Google Scholar 

  • Liener IE, Kakade ML (1980) Protease inhibitors. In: Liener IE (ed) Toxic constituents of plant foodstuffs. Academic Press, London

    Google Scholar 

  • Lira Junior MDA, Lima AST, Arruda JRF et al (2005) Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem 37:235–239. https://doi.org/10.1016/j.soilbio.2004.07.032

    Article  CAS  Google Scholar 

  • Liu K, Blackshaw RE, Johnson EN et al (2019) Lentil enhances the productivity and stability of oilseed-cereal cropping systems across different environments. Eur J Agron 105:24–31. https://doi.org/10.1016/j.eja.2019.02.005

    Article  Google Scholar 

  • Ljuština M, Mikić A (2010) Archaeological evidence of the domestication of lentil (Lens culinaris) and its distribution in Europe. J Lentil Res 4:26–29

    Google Scholar 

  • Lombardi M, Materne M, Cogan NOI et al (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 15:1–10. https://doi.org/10.1186/s12863-014-0150-3

  • MacCarrone M, Veldinka GA, Finazzi A et al (1995) Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. Biochim Biophys Acta 1243(1):136–142

    Article  PubMed  Google Scholar 

  • MacCarrone M, Van Zadelhoff G, Veldink GA et al (2000) Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death. Eur J Biochem 267(16):5078–5084

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740

    CAS  Google Scholar 

  • Martin RJ, Wilcox JR, LaViolette FA (1978) Variability in soybean progenies developed by single seed descent at two plant populations. Crop Sci 18:359–363

    Article  Google Scholar 

  • Marzougui A, Ma Y, Zhang C et al (2019) Advanced imaging for quantitative evaluation of aphanomyces root rot resistance in lentil. Front Plant Sci 10:1–16. https://doi.org/10.3389/fpls.2019.00383

    Article  Google Scholar 

  • Materne M, McNeil DL (2007) Breeding methods and achievements. In: Yadav S, McNeil D, Stevenson P (eds) Lentil. An ancient crop for modern times. Springer, Dordrecht, pp 241–255

    Google Scholar 

  • Materne MA, McMurray L, Nitschke S et al (2002) The future of Australian lentil production. In: Brouwer JB (ed) Proceedings of Lentil Focus. Horsham, Victoria, 2002

    Google Scholar 

  • Mbasani-Mansi J, Briache FZ, Ennami M et al (2019a) Resistance of Moroccan lentil genotypes to Orobanche crenata infestation. J Crop Improv 33:306–326. https://doi.org/10.1080/15427528.2019.1581866

    Article  CAS  Google Scholar 

  • Mbasani-Mansi J, Ennami M, Briache FZ et al (2019b) Characterization of genetic diversity and population structure of Moroccan lentil cultivars and landraces using molecular markers. Physiol Mol Biol Plants 25(4):965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean LA, Sosulski FW, Youngs CG (1974) Effects of nitrogen and moisture on yield and protein in field peas. Can J Plant Sci 54:301–305

    Article  Google Scholar 

  • Mishra SK, Sarker A, Singh BB et al (2005) Slow rusting and its potential donors for resistance in lentil (Lens culinaris Medik.). Ind J Genet Plant Breed 65(4):319–320

    Google Scholar 

  • Mishra BK, Srivastava JP, Lal JP et al (2016) Physiological and biochemical adaptations in lentil genotypes under drought stress. Russ J Plant Physiol 63(5):695–708. https://doi.org/10.1134/S1021443716040117

    Article  CAS  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD et al (2016) Low red: far-red light ratio causes faster in vitro flowering in lentil. Can J Plant Sci 96:908–918

    Article  CAS  Google Scholar 

  • Mohammadi N, Goltapeh EM, Babaie-Ahari A et al (2011) The genetic diversity of Iranian isolates causing fusarium wilt of Lentil. J Agric Technol 7:63–72

    Google Scholar 

  • Mondal D, Bhattacharyya PK, Das R (2017) Disease reaction of lentil genotypes against Stemphylium blight caused by Stemphylium botryosum Wallr. in west Bengal. J Agroecol Nat Res Manag 4:149–152

    Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK et al (2019) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19. https://doi.org/10.1111/pce.13203

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer FJ (1991) Use of introduced germplasm in cool season food legume cultivar development. In: Shands HL, Wiesner LE (eds) Use of plant introductions in cultivar development (Part 2). Crop Science Society America, Madison, WI, pp 49–73

    Google Scholar 

  • Muehlbauer FJ, McPhee KE (2004) Registration of ‘Pennell’ lentil. Crop Sci 44:1488–1488

    Article  Google Scholar 

  • Muehlbauer F, Slinkard A (1982) Genetics and breeding methodology. In: Webb C, Hartwin GC (eds) Lentils. Commonwealth Agricultural Bureau, Farnham Royal, pp 69–90

    Google Scholar 

  • Muehlbauer FJ, Cubero JL, Summerfield RJ (1985) Lentil (Lens culinaris Medic.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 266–311

    Google Scholar 

  • Muehlbauer F, Redden R, Nassib A et al (1988) Population improvement in pulse crops: an assessment of methods and techniques. In: Summerfield RJ (ed) World crops: cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 941–966

    Google Scholar 

  • Muehlbauer FJ, Weeden NF, Hoffman DL (1989) Inheritance and linkage relationships of morphological and isozyme loci in lentil (Lens Miller). J Hered 80:298–303

    Article  Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A et al (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165. https://doi.org/10.1007/s10681-006-7108-0

    Article  Google Scholar 

  • Muehlbauer FJ, Mihov M, Vandenberg A et al (2009) Improvement in developed countries. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Berlin, pp 137–154

    Google Scholar 

  • Muench DG, Slinkard AE, Scoles GJ (1991) Determination of genetic variation and taxonomy in lentil (Lens Miller) species by chloroplast DNA polymorphism. Euphytica 56:213–218

    Article  Google Scholar 

  • Muscolo A, Sidari M, Anastasi U et al (2014) Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact 9:354–363. https://doi.org/10.1080/17429145.2013.835880

    Article  CAS  Google Scholar 

  • Muscolo A, Junker A, Klukas C et al (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480. https://doi.org/10.1093/jxb/erv208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwakutuya E, Banniza S (2010) Influence of temperature and wetness periods on the development of stemphylium blight on lentil. Plant Dis 94:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Nadeem M, Li J, Yahya M et al (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20(10):2541. https://doi.org/10.3390/ijms20102541

    Article  CAS  PubMed Central  Google Scholar 

  • Naivikul O, D’Apollonia BL (1979) Carbohydrates of legume flours compared with wheat flour: II. Starch. Cereal Chem 56:24–28

    Google Scholar 

  • Nene YL (2006) Indian pulses through the millennia. Asian Agric Hist 10(3):179–202

    Google Scholar 

  • Nguyen TT, Taylor PWJ, Brouwer JB et al (2001) A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to Ascochyta blight caused by A. lentis. Aust Plant Path 30:211–215

    Article  Google Scholar 

  • Ninou E, Mylonas I, Tsivelikas A et al (2014) Wheat landraces are better qualified as potential gene pools at ultraspaced rather than densely grown conditions. Sci World J 2014:957472. https://doi.org/10.1155/2014/957472

    Article  Google Scholar 

  • Ninou E, Papathanasiou F, Vlachostergios DN et al (2019) Intense breeding within lentil landraces for high-yielding pure lines sustained the seed quality characteristics. Agriculture 9:175. https://doi.org/10.3390/agriculture9080175

    Article  CAS  Google Scholar 

  • Nourollahi K, Madahjalali M (2017) Analysis of population genetic structure of Iranian Fusarium oxysporum f. sp. lentis isolates using microsatellite markers. Aust Plant Pathol 46:35–42

    Article  Google Scholar 

  • Nozzolillo C, De Bezada GM (1984) Browning of lentil seeds, concomitant loss of viability and the possible role of soluble tannins in both phenomena. Can J Plant Sci 64:815–824

    Article  CAS  Google Scholar 

  • Ocampo B, Conicella C, Moss JP (2000) Wide crossing: opportunities and progress. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st Century, 3rd International Food Legumes Research Conference, Current plant science and biotechnology in agriculture, vol 34. Kluwer Academic Publishers, Dordrecht; Boston, MA; London, pp 411–419

    Google Scholar 

  • Ogutcen E, Ramsay L, Bishop von Wettberg E et al (2018) Capturing variation in Lens (Fabaceae): development and utility of an exome capture array for lentil. Appl Plant Sci 6(7):e1165. https://doi.org/10.1002/aps3.1165

    Article  Google Scholar 

  • Öktem HA, Mahmoudian M, Eyidooan F et al (1999) GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment. Lens Newsl 26:3–6

    Google Scholar 

  • Öktem HA, Eyidodan F, Demirba D et al (2008) Antioxidant responses of lentil to cold and drought stress. J Plant Biochem Biotechnol 17:15–21. https://doi.org/10.1007/BF03263254

    Article  Google Scholar 

  • Omran VG, Bagheri A, Moshtaghi N (2008) Direct in vitro regeneration of lentil (Lens culinaris Medik.). Pak J Biol Sci 11(18):2237–2242

    Article  CAS  PubMed  Google Scholar 

  • Ouji A, El-bok S, Mouelhi M et al (2015) Effect of salinity stress on germination of five tunisian lentil (Lens culinaris L.) genotypes. Eur Sci J 11:63–75

    Google Scholar 

  • Pan XY, Wang GX, Yang HM et al (2003) Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in northwest China. Field Crop Res 80:195–205

    Article  Google Scholar 

  • Pandey A, Singh DP, Singh BB (1992) Evaluation of indigenous germplasm for yield and yield components in lentil (Lens culinaris Medik.). N. D. University of Agriculture & Technology, Faizabad, India. Res Bull 1:45

    Google Scholar 

  • Pandurng JA, Lomte SS (2015) Digital image processing applications in agriculture: a survey. IJARCSSE 5(3):622–624

    Google Scholar 

  • Papakosta – Tasopoulou D (2005) Legumes for fruits and hay. Sinhroni Paedia Press, Thessaloniki, Greece (ISBN: 978-960-357-067-2)

    Google Scholar 

  • Pavan S, Bardaro N, Fanelli V et al (2019) Genotyping by sequencing of cultivated lentil (Lens culinaris Medik.) highlights population structure in the Mediterranean gene pool associated with geographic patterns and phenotypic variables. Front Genet 10:1–9. https://doi.org/10.3389/fgene.2019.00872

    Article  CAS  Google Scholar 

  • Petterson D, Sipsas S, Mackintosh JB (1997) The chemical composition and nutritive value of Australian pulses. Grains Research and Development Corporation, Kingston, ACT

    Google Scholar 

  • Podder R, Banniza S, Vandenberg A (2013) Screening of wild and cultivated lentil germplasm for resistance to stemphylium blight. Plant Genet Res 11:26–35. https://doi.org/10.1017/S1479262112000329

    Article  Google Scholar 

  • Polanco MC, Ruiz ML (2001) Factors that affect plant regeneration from in vitro culture of immature seeds in four lentil (Lens culinaris Medik.) cultivars. Plant Cell Tissue Org Cult 66:133–139

    Article  CAS  Google Scholar 

  • Polanco MC, Pelaez MI, Ruiz ML (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Cult 15:175–182

    Article  Google Scholar 

  • Poonam S (2006) Characterization of lentil germplasm through morphological and metric traits and molecular markers. Ph.D. Thesis, Bundelkhand University, Jhansi, India

    Google Scholar 

  • Pouralibaba HR, Rubiales D, Fondevilla S (2016) Identification of pathotypes in Fusarium oxysporum f.sp. lentis. Eur J Plant Pathol 144:539–549

    Article  CAS  Google Scholar 

  • Rajput M, Sarwar G (1989) Genetic variability, correlation studies and their implications in selection of high yielding genotypes in lentil. Lens Newsl 16(2):5–8

    Google Scholar 

  • Ram S, Ghosh AK, Nema AK et al (2018) Influence of long term tillage, organic and inorganic fertilization on primary nutrient and S in rice - lentil cropping sequence under dry land ecosystem. Int J Curr Microbiol App Sci 7:2511–2522. https://doi.org/10.20546/ijcmas.2018.704.287

    Article  CAS  Google Scholar 

  • Rameshwaran P, Qadir M, Ragab R et al (2016) Tolerance of faba bean, chickpea and lentil to salinity: accessions’ salinity response functions. Irrig Drain 65:49–60. https://doi.org/10.1002/ird.1922

    Article  Google Scholar 

  • Rana A, Solanki IS (2015) Ethyl methane sulphonate induced genetic variability and heritability in macrosperma and microsperma lentils. J Environ Biol 36:1119–1123

    CAS  PubMed  Google Scholar 

  • Rana M, Sood A, Hussain W et al (2019) Gene pyramiding and multiple character breeding. In: Singh M (ed) Lentils: potential resources for enhancing genetic gains. Academic Press, London, pp 83–124

    Chapter  Google Scholar 

  • Rao PS, Chadha MS (1986) Protoplast culture of some economically important plants. In: Nuclear techniques and in vitro culture for plant improvement. Proceedings of a symposium, Vienna, pp 493–496

    Google Scholar 

  • Rathi AS, Sindhu JS, Singh VS (2002) Variability, heritability and genetic advance in lentil. Legum Res 25(2):113–116

    Google Scholar 

  • Rathod RP, Annapure US (2016) Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT Food Sci Technol 66:114. https://doi.org/10.1016/j.lwt.2015.10.028

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34. https://doi.org/10.3390/plants8020034

    Article  CAS  PubMed Central  Google Scholar 

  • Razzak MA, Islam MA, Rahman MH et al (2018) Screening of lentil germplasm against stemphylium blight by observing disease reaction in three different stages. Malay J Halal Res 1(2):15–18

    Article  Google Scholar 

  • Reddy NR, Sathe SK, Pierson MD (1988) Removal of phytate from great northern beans (Phaseolus vulgaris L.) and its combined density fraction. J Food Sci 53:107

    Article  CAS  Google Scholar 

  • Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1984) Chemical, nutritional and physiological aspects of dry bean carbohydrates—A review. Food Chem 13(1):25–68

    Google Scholar 

  • Rispail N, Dita MA, González-Verdejo C et al (2007) Plant resistance to parasitic plants: molecular approaches to an old foe: research review. New Phytol 173:703–712. https://doi.org/10.1111/j.1469-8137.2007.01980.x

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Aslam M, Asghar MJ et al (2017) Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis. PLoS One 12:1–15. https://doi.org/10.1371/journal.pone.0171846

    Article  CAS  Google Scholar 

  • Rodda MS, Davidson J, Javid M et al (2017) Molecular breeding for ascochyta blight resistance in lentil. Current progress and future directions. Front Plant Sci 8:1136. https://doi.org/10.3389/fpls.2017.01136

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers D, McGuire P (2015) Genetic erosion: context is key. In: Ahuja MR, Mohain Jain S (eds) Genetic diversity and erosion in plants. Indicators and prevention, vol 1. Springer, Cham, pp 1–24

    Google Scholar 

  • Rubiales D, Mónica FA (2012) Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Dev 32:433–449. https://doi.org/10.1007/s13593-011-0045-x

    Article  CAS  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Fernández-Aparico M et al (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199. https://doi.org/10.1007/s10681-006-7399-1

    Article  Google Scholar 

  • Rubiales D, Flores F, Emeran AA et al (2014) Identification and multi-environment validation of resistance against broomrapes (Orobanche crenata and Orobanche foetida) in faba bean (Vicia faba). Food Crop Res 166:58–65. https://doi.org/10.1016/j.fcr.2014.06.010

    Article  Google Scholar 

  • Rutter JB (2017) Aegean prehistoric archaeology. http://www.dartmouth.edu/~prehistory/aegean/?page_id=107

  • Saha GC, Sarker A, Chen WD et al (2010) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265

    Article  CAS  Google Scholar 

  • Salunkhe DK, Kadam SS (1989) Handbook of world food legumes, nutritional chemistry, processing technology and utilization. CRC Press, Boca Raton, FL

    Google Scholar 

  • Sambasivam P, Taylor PWJ, Ford R (2017) Pathogenic variation and virulence related responses of Ascochyta lentis on lentil. Eur J Plant Pathol 147:265–277. https://doi.org/10.1007/s10658-016-0999-2

    Article  Google Scholar 

  • Sandhu JS, Singh S (2007) History and origin. In: Yadav S, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 1–10

    Google Scholar 

  • Sari D, Mutlu N, Toker C (2016) Assessment of resistance gene analog, peroxidase, and WRKY gene polymorphisms in the genus lens miller. Turk J Bot 40(2):121–129. https://doi.org/10.3906/bot-1501-41

    Article  CAS  Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci 144:19–29

    Article  Google Scholar 

  • Sarker RH, Mustafa BM, Biswas A et al (2003) In vitro regeneration in lentil (Lens culinaris Medik.). Plant Tissue Cult 13:155–163

    Google Scholar 

  • Sarker A, Erskine W, Singh M (2005) Variation in root and shoot traits and their relationship in drought tolerance in lentil. Genet Resour Crop Evol 52:87–95

    Article  Google Scholar 

  • Saxena PK, King J (1987) Morphogenesis in lentil: plant regeneration from callus cultures of Lens culinaris Medik. via somatic embryogenesis. Plant Sci 52:223–227

    Article  CAS  Google Scholar 

  • Sedgley RH (1991) An appraisal of the Donald ideotype after 21 years. Field Crop Res 26:93–112

    Article  Google Scholar 

  • Sehgal A, Sita K, Kumar J et al (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776. https://doi.org/10.3389/fpls.2017.01776

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahin MA, Symons SJ (2001) A machine vision system for grading lentils. Can Biosyst Eng/Le Genie des biosystems au Canada 43:77–714

    Google Scholar 

  • Shahwar D, Ansari M, Mohsin T et al (2017) Evaluation of high yielding mutant of lentil developed through caffeine of an exotic germplasm. Int J Plant Breed Genet 11:55–62. https://doi.org/10.3923/ijpbg.2017.55.62

    Article  CAS  Google Scholar 

  • Sharma SR, Singh S, Aggarwal N et al (2018) Genetic variation for tolerance to post-emergence herbicide, imazethapyr in lentil (Lens culinaris Medik.). Arch Agron Soil Sci 64:1818–1830. https://doi.org/10.1080/03650340.2018.1463519

    Article  CAS  Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA et al (2013) Ancient orphan crop joins the modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192. https://doi.org/10.1186/1471-2164-14-192

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha R, Turner NC, Siddique KHM et al (2006) Physiological and seed yield responses to water deficits among lentil genotypes from diverse origins. Aust J Agric Res 57:903–915. https://doi.org/10.1071/AR05204

    Article  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CAB International, Wallingford

    Book  Google Scholar 

  • Sidari M, Santonoceto C, Anastasi U et al (2008) Variations in four genotypes of lentil under NaCl-salinity stress. Am J Agric Biol Sci 3:410–416. https://doi.org/10.3844/ajabssp.2008.410.416

    Article  Google Scholar 

  • Singh RK, Raghuvanshi SS (1989) Plantlet regeneration from nodal segment and soot tip-derived explants of lentil. Lens Newsl 16:33

    Google Scholar 

  • Singh U, Singh B (1992a) Tropical grain legumes as important human foods. Econ Bot 46:310–321

    Article  Google Scholar 

  • Singh JP, Singh IS (1992b) Genetics of rust resistance in lentil (Lens culinaris). Indian J Agric Sci 62:337–338

    Google Scholar 

  • Singh KM, Singh AK (2014) Lentil in India: an overview. SSRN. https://doi.org/10.2139/ssrn.2510906

  • Singh M, Sardana S, Sharma SK (2011) Genetic resources of lentil and its utilization in India. Plant Genet Res 9:30–37

    Article  Google Scholar 

  • Singh M, Rana MK, Kumar K et al (2013) Broadening the genetic base of lentil cultivars through inter-sub-specific and interspecific crosses of Lens taxa. Plant Breed 132:667–675

    Article  CAS  Google Scholar 

  • Singh G, Kaur H, Khanna V (2014a) Short communication Weed management in lentil with post-emergence herbicides. Ind J Weed Sci 46:187–189

    Google Scholar 

  • Singh M, Bisht IS, Kumar S et al (2014b) Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement. PLoS One 9:e107781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RSS (2016a) Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medikus). Mol Breed 36(58). https://doi.org/10.1007/s11032-016-0474-y

  • Singh D, Singh CK, Tomar RSS et al (2016b) Exploring genetic diversity for heat tolerance among lentil (Lens culinaris Medik.) genotypes of variant habitats by simple sequence repeat markers. Plant Breed 135:215–223. https://doi.org/10.1111/pbr.12341

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Tomar RSS et al (2016c) Molecular assortment of lens species with different adaptations to drought conditions using SSR markers. PLoS One 11:e0147213. https://doi.org/10.1371/journal.pone.0147213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh CK, Kumari S et al (2017a) Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. PLoS One 12(12):e0190462

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh CK, Tomar RSS, Pal M (2017b) Genetics and molecular mapping of heat tolerance for seedling survival and pod set in lentil. Crop Sci 57:3059–3067. https://doi.org/10.2135/cropsci2017.05.0284

    Article  CAS  Google Scholar 

  • Singh M, Rana JC, Singh B et al (2017c) Comparative agronomic performance and reaction to Fusarium wilt of Lens culinaris × L. orientalis and L. culinaris × L. ervoides derivatives. Front Plant Sci 8:1162. https://doi.org/10.3389/fpls.2017.01162

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh CK, Singh YP et al (2018a) Evaluation of cultivated and wild genotypes of Lens species under alkalinity stress and their molecular collocation using microsatellite markers. PLoS One 13:1–25. https://doi.org/10.1371/journal.pone.0199933

    Article  CAS  Google Scholar 

  • Singh M, Sharma SK, Singh B et al (2018b) Widening the genetic base of cultivated gene pool following introgression from wild Lens taxa. Plant Breed 137(4):470–485

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J et al (2019) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9:1–19. https://doi.org/10.1038/s41598-019-49496-0

    Article  CAS  Google Scholar 

  • Singh M, Kumar S, Basandrai AK et al (2020) Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS One 15(3):e0229554. https://doi.org/10.1371/journal.pone.0229554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha RP, Yadav BP (1989) Inheritance of resistance to rust in lentil. Lens Newsl 16:41

    Google Scholar 

  • Sita K, Sehgal A, Hanumantharao B et al (2017a) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1–30. https://doi.org/10.3389/fpls.2017.01658

    Article  Google Scholar 

  • Sita K, Sehgal A, Kumar J et al (2017b) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci 8:1–27. https://doi.org/10.3389/fpls.2017.00744

    Article  Google Scholar 

  • Sita K, Sehgal A, Bhandari K et al (2018) Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J Sci Food Agric 98:5134–5141. https://doi.org/10.1002/jsfa.9054

    Article  CAS  PubMed  Google Scholar 

  • Skliros D, Kalloniati C, Karalias G et al (2018) Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant Soil 429:451–468. https://doi.org/10.1007/s11104-018-3691-9

    Article  CAS  Google Scholar 

  • Slinkard A, Vandenberg A, Holm F (2015) Lentil plants having increased resistance to imidazolinone herbicides. US Patent 7,232,942 B2, 30 May 2007

    Google Scholar 

  • Sneep J (1977) Selection for yield in early generations of self-fertilizing crops. Euphytica 26:27–30

    Article  Google Scholar 

  • Solanki IS (2001) Stability of seed yield and its component characters in lentil (Lens culinaris). Indian J Agric Sci 71(6):414–416

    Google Scholar 

  • Solanki IS, Sharma B (2001a) N-nitroso-N-ethyl Urea induced genetic variability for quantitative characters in lentil (Lens culinaris Medik.). Natl J of Plant Improv 3:102–106

    Google Scholar 

  • Solanki IS, Sharma B (2001b) Early generation selection of polygenic mutations in lentil. Ind J Genet Plant Breed 6:330–334

    Google Scholar 

  • Solanki IS, Kapoor AC, Singh U (1999) Nutritional parameters and yield evaluation of newly developed genotypes of lentil (Lens culinaris Medik.). Plant Foods Hum Nutr 54(1):79–87. https://doi.org/10.1023/A:1008182302900

    Article  CAS  PubMed  Google Scholar 

  • Sonnante G, Pignone D (2007) The major Italian landraces of lentil (Lens culinaris Medik.): their molecular diversity and possible origin. Genet Resour Crop Evol 54(5):1023–1031. https://doi.org/10.1007/s10722-006-9153-x

    Article  Google Scholar 

  • Sosulski FW, Garratt MO, Slinkard AE (1976) Functional properties of ten legume flours. Can Inst Food Sci Technol J 9:66–69

    Google Scholar 

  • Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18:563–575. https://doi.org/10.1038/nrg.2017.45

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RP, Vasishtha H (2013) Dietary fiber, protein and lectin contents of lentils (Lens culinaris) on soaking and cooking. Curre Adv Agric Sci 5(2):238–241

    Google Scholar 

  • Stadler LJ (1928a) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Stefaniak TR, McPhee KE (2015) Lentil. In: De Ron A (ed) Grain legumes, Handbook of plant breeding, vol 10. Springer, New York, NY, pp 111–140

    Chapter  Google Scholar 

  • Stevenson PC, Dhillon MK, Sharma HC et al (2007) Insect pests of lentil and their management. In: Yadav S, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 331–348

    Chapter  Google Scholar 

  • Sudheesh S, Verma P, Forster JW et al (2016a) Generation and characterisation of a reference transcriptome for lentil (Lens culinaris Medik.). Int J Mol Sci 17:1887. https://doi.org/10.3390/ijms17111887

    Article  CAS  PubMed Central  Google Scholar 

  • Sudheesh S, Rodda MS, Davidson J et al (2016b) SNP-based linkage mapping for validation of QTLs for resistance to Ascochyta blight in lentil. Front Plant Sci 7:1604. https://doi.org/10.3389/fpls.2016.01604

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultana T, Ghafoor A (2008) Genetic diversity in ex-situ conserved Lens culinaris for botanical descriptors, biochemical and molecular markers and identification of landraces from indigenous genetic resources of Pakistan. J Integr Plant Biol 50(4):484–490. https://doi.org/10.1111/j.1744-7909.2007.00632.x

    Article  CAS  PubMed  Google Scholar 

  • Sultani MI, Gill MA, Anwar MM et al (2007) Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rain fed conditions. Int J Environ Sci Technol 4:109–118. https://doi.org/10.1007/BF03325968

    Article  CAS  Google Scholar 

  • Suschetet M (1975) Influence of tannic acid on the hepatic content of vitamin A in rats fed a vitamin A-containing diet or vitamin A-deficient diet. C. R. Seances SOC. Biol Ses Fil 169:970–978

    Google Scholar 

  • Tabekhia M, Luh BS (1980) Effect of germination cooking and canning on phosphorus and phytate retention in dry beans. J Food Sci 45:406–408

    Article  CAS  Google Scholar 

  • Tabti D, Laouar M, Rajendran K et al (2018) Identification of desirable mutants in quantitative traits of lentil at early (M) generation. J Environ Biol 39:137–142

    Article  CAS  Google Scholar 

  • Talib BS, Safarnejad A, Lahooti M et al (2003) Effect of genotype, explant and plant regulator in tissue culture of lentil (Lens culinaris M.). In: The Third National Conference of Biotechnology, Islamic Republic of Iran, pp 336–339

    Google Scholar 

  • Talukdar D (2013) Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. J Natl Sci Biol Med 4:396–402. https://doi.org/10.4103/0976-9668.116983

    Article  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 233:223–233

    Article  CAS  Google Scholar 

  • Tar’an B, Buchwaldt L, Tullu A et al (2003) Using molecular markers to pyramid genes for resistance to Ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134:223–230. https://doi.org/10.1023/B:EUPH.0000003913.39616.fd

    Article  Google Scholar 

  • Taylor P, Lindbeck K, Chen W et al (2007) Lentil diseases. In: Yadav S, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 291–313

    Chapter  Google Scholar 

  • Teja KC, Duary B, Dash S et al (2017) Post-emergence application of imazethapyr for weed management in lentil. SATSA Mukhapatra Annual Tech Issue 21:183–188

    Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agric Food Chem 56(22):10747–10753

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah D, Thavarajah P, Sarker A et al (2009a) Lentils (Lens culinaris medikus subspecies culinaris): a whole food for increased iron and zinc intake. J Agric Food Chem 57(12):5413–5419

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah P, Thavarajah D, Vandenberg A (2009b) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agric Food Chem 57(19):9044–9049

    Article  CAS  PubMed  Google Scholar 

  • Thompson LU (1993) Potential health benefits and problems associated with antinutrients in foods. Food Res Int 26:131–149

    Article  CAS  Google Scholar 

  • Tiwari N, Ahmed S, Sarker A (2018) Fusarium wilt: a killer disease of lentil. In: Tulin A (ed) Fusarium—plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. IntechOpen, Rijeka, pp 119–138

    Google Scholar 

  • Tokatlidis IS (2017) Crop adaptation to density to optimise grain yield: breeding implications. Euphytica 213:92. https://doi.org/10.1007/s10681-017-1874-8

    Article  Google Scholar 

  • Tokatlidis I, Vlachostergios D (2016) Sustainable stewardship of the landrace diversity. Diversity 8:29. https://doi.org/10.3390/d8040029

    Article  Google Scholar 

  • Tokatlidis IS, Papadopoulos II, Baxevanos D, Koutita O (2010) GxE effects on single-plant selection at low density for yield and stability in climbing dry bean. Crop Sci 50:775–783

    Article  Google Scholar 

  • Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav S, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 209–224

    Chapter  Google Scholar 

  • Toklu F, Biçer B, Karaköy T (2009) Agro-morphological characterization of the Turkish lentil landraces. Afric J Biotechnol 8(17):4121–4127. https://doi.org/10.4314/AJB.V8I17.62138

    Article  Google Scholar 

  • Tomlekova NB (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mutat Rep 2(2):4–27

    Google Scholar 

  • Torricelli R, Silveri DD, Ferradini N et al (2012) Characterization of the lentil landrace Santo Stefano di Sessanio from Abruzzo, Italy. Genet Resour Crop Evol 59:261–276

    Article  Google Scholar 

  • Tripathi HS (2015) Advances in diseases of lentil. In: Awasthi LP (ed) Recent advances in the diagnosis and management of plant diseases. Springer, New Delhi, pp 55–68

    Chapter  Google Scholar 

  • Tsanakas GF, Mylona PV, Koura K et al (2018) Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace “Eglouvis” using morphological and molecular markers. Plant Genet Res 16(5):469–477. https://doi.org/10.1017/S1479262118000096

    Article  Google Scholar 

  • Tullu A, Buchwaldt L, Warkentin T et al (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434

    Article  CAS  PubMed  Google Scholar 

  • Tullu A, Buchwaldt L, Lulsdorf M et al (2006a) Sources of resistance to anthracnose Colletotrichum truncatum in wild Lens species. Genet Resour Crop Evol 53:111–119

    Article  CAS  Google Scholar 

  • Tullu A, Tar’an B, Breitkreutz C et al (2006b) A quantitative-trait locus for resistance to ascochyta blight (Ascochyta lentis) maps close to a gene for resistance to anthracnose (Colletotrichum truncatum) in lentil. Can J Plant Pathol 28:588–595

    Article  CAS  Google Scholar 

  • Tullu A, Banniza S, Bett K et al (2011a) A walk on the wild side: exploiting wild species for improving cultivated lentil. Grain Legum 56:13–14

    Google Scholar 

  • Tullu A, Diederichsen A, Suvorova G et al (2011b) Genetic and genomic resources of lentil: status, use and prospects. Plant Genet Resour Charact Util 9:19–29. https://doi.org/10.1017/S1479262110000353

    Article  CAS  Google Scholar 

  • Tullu A, Bett K, Banniza S et al (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris “Eston” and L. ervoides accession IG 72815. Can J Plant Sci 93:1037–1047

    Article  Google Scholar 

  • Vaillancourt RE, Slinkard AE (1992) Inheritance of new genetic markers in lentil (Lens Miller). Euphytica 64:227–236

    Article  Google Scholar 

  • Van Hoorn JW, Katerji N, Hamdy A et al (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manag 51:87–98. https://doi.org/10.1016/S0378-3774(01)00114-7

    Article  Google Scholar 

  • Van Oss H, Aron Y, Ladizinsky G (1997) Chloroplast DNA variation and evolution in the genus Lens Mill. Theor Appl Genet 94:452–457

    Article  Google Scholar 

  • Vandenberg A, Slinkard AE (1989) Inheritance of four new quantitative genes in lentil. J Hered 80:320–322

    Article  Google Scholar 

  • Vandenberg A, Kiehn FA, Vera C et al (2002a) CDC vantage lentil. Can J Plant Sci 82:109–110

    Article  Google Scholar 

  • Vandenberg A, Kiehn FA, Vera C et al (2002b) CDC robin lentil. Can J Plant Sci 82:111–112

    Article  Google Scholar 

  • Vandenberg A, Vera C, Buchwaldt L et al (2005) CDC plato lentil. Can J Plant Sci 85:161–162

    Article  Google Scholar 

  • Venora G, Grillo O, Shahin MA et al (2007) Identification of Sicilian landraces and Canadian cultivars of lentil using an image analysis system. Food Res Int 40(1):161–166. https://doi.org/10.1016/j.foodres.2006.09.001

    Article  Google Scholar 

  • Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11:894–905. https://doi.org/10.1111/pbi.12082

    Article  CAS  PubMed  Google Scholar 

  • Vibhute A, Bodhe SK (2012) Applications of image processing in agriculture: a survey. Int J Comput Appl 52(2):34–39. https://doi.org/10.5120/8176-1495

    Article  Google Scholar 

  • Vlachostergios DN, Roupakias DG (2017) Screening under low plant density reinforces the identification of lentil plants with resistance to fusarium wilt. Crop Sci 57:1285–1294. https://doi.org/10.2135/cropsci2015.10.0626

    Article  CAS  Google Scholar 

  • Vlachostergios DN, Lithourgidis AS, Roupakias DG (2011) Effectiveness of single plant selection at low density under organic environment. A field study with lentil. Crop Sci 51:41–51. https://doi.org/10.2135/cropsci2010.03.0137

    Article  Google Scholar 

  • Vlachostergios DN, Tzantarmas C, Kargiotidou A et al (2018a) Single-plant selection within lentil landraces at ultra-low density: a short-time tool to breed high yielding and stable varieties across divergent environments. Euphytica 214:58. https://doi.org/10.1007/s10681-018-2139-x

    Article  Google Scholar 

  • Vlachostergios DN, Lithourgidis AS, Baxevanos D et al (2018b) Evaluation of lentil varieties and farming system effect on seed damage and yield loss due to bruchid infestation. Crop Past Sci 69:387–394. https://doi.org/10.1071/CP17309

    Article  Google Scholar 

  • Wang N, Daun JK (2003) Quality of Western Canadian pulse crops. http://grainscanada.gc.ca

  • Wang N, Daun JK (2006) Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem 95:493–502. https://doi.org/10.1016/j.foodchem.2005.02.001

  • Warkentin TD, McHughen A (1993) Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newsl 20:26–28

    Google Scholar 

  • Weiss E, Zohary D (2011) The neolithic southwest Asian founder crops their biology and archaeobotany. Curr Anthropol 52(4):237–254. https://doi.org/10.1086/658367

    Article  Google Scholar 

  • Westphal E (1974) Pulses in Ethiopia, their taxonomy and agricultural significance. Agricultural research reports 815. Centre for Agricultural Publishing and Documentation, Wageningen, p 263

    Google Scholar 

  • Williams DJ, McHughen A (1986) Plant regeneration of the legume Lens culinaris Medik (lentil) in vitro. Plant Cell Tiss Org 7:149–153

    Article  Google Scholar 

  • Williams JT, Sanchez AMC, Jackson MT (1974) Studies on lentils and their variation. I. The taxonomy of the species. SABRAO J 6:133–145

    Google Scholar 

  • Williams PC, Bhatty RS, Deshpande SS, Hussein LA, Savage GP (1994) Improving nutritional quality of cool season food legumes. In: Expanding the production and use of cool season food legumes. Muchbauer FJ, Kaizer WJ (Eds) Kluwer Academic Publishers, Dordrecht, The Netherlands, 113–129

    Google Scholar 

  • Wiraguna E, Malik AI, Erskine W (2017) Waterlogging tolerance in lentil (Lens culinaris Medik. subsp. culinaris) germplasm associated with geographic origin. Genet Resour Crop Evol 64:579–586. https://doi.org/10.1007/s10722-016-0385-0

    Article  Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD et al (1996) Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Exp Agric 32:445–460. https://doi.org/10.1017/S0014479700001526

    Article  Google Scholar 

  • Wong MML, Gujaria-Verma N, Ramsay L et al (2015) Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS). PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0122025

    Article  CAS  Google Scholar 

  • Yadav NK, Ghimire SK, Shakya SM et al (2016) Genetic diversity analysis of lentil (Lens culinaris L.) germplasm using DNA based SSR markers. Am J Food Sci Health 2(3):18–24

    Google Scholar 

  • Yadav NK, Ghimire SK, Shrestha SM et al (2017) Source of resistant against fusarium wilt and stemphylium blight in lentil (Lens culinaris Medikus). Int J Appl Sci Biotechnol 5:102–107

    Article  Google Scholar 

  • Yau SK, Erskine W (2000) Diversity of boron-toxicity tolerance in lentil growth and yield. Genet Resour Crop Evol 47:55–62. https://doi.org/10.1023/A:1008733106108

    Article  Google Scholar 

  • Ye G, McNeil DL, Hill GD (2002) Breeding for resistance to lentil Ascochyta blight. Plant Breed 121:185–191. https://doi.org/10.1046/j.1439-0523.2002.00705.x

    Article  Google Scholar 

  • Ye G, McNeil DL, Hill GD (2003) Inheritance of foliar resistance to Ascochyta blight in lentil (Lens culinaris). New Zeal J Crop Hort 31:77–83. https://doi.org/10.1080/01140671.2003.9514239

    Article  Google Scholar 

  • Yeong J, Kim J-B (2019) Frequency and spectrum of radiation-induced mutations revealed by whole-genome sequencing analyses of plants. Quant Beam Sci 3(7):1–13. https://doi.org/10.3390/qubs3020007

    Article  CAS  Google Scholar 

  • Yilmaz Temel H, Gol D, Betul Hilal K et al (2015) Single nucleotide polymorphism discovery through illumina-based transcriptome sequencing and mapping in lentil. Turk J Agric For 39(3):470–488. https://doi.org/10.3906/tar-1409-70

    Article  CAS  Google Scholar 

  • Zhang H, Pala M, Oweis T et al (2000) Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment. Aust J Agric Res 51:295–304. https://doi.org/10.17700/jai.2015.6.1

    Article  Google Scholar 

Download references

Acknowledgments

Research on lentil diversity and breeding in the labs of the authors has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-04633).

Author Contribution

Authors contributed equally according to their expertise and names are in alphabetical order after ANP who coordinated the effort, with students and postdocs first and senior scientists following. PVM with EK and AG wrote Sects. 25 on origin, diversity of wild relatives and progenitors, genetic resources, and in situ and ex situ collections of lentil germplasm; INO and ES wrote Sect. 6 on crop improvement, climate resilience, and herbicide resistance and also contributed to Sects. 11 and 12; AL wrote Sect. 7 on disease and insect pest resistance; DG and MAS wrote Sect. 8 on end use and nutritional quality; DV wrote Sect. 9 on classical breeding approaches; AM with IDA and SDK wrote Sect. 10 on induced genetic diversity; ANP wrote Sect. 11 on genomic resources, Sect. 12 on modern breeding approaches, and Sect. 13 on phenotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexios N. Polidoros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polidoros, A.N. et al. (2022). Lentil Gene Pool for Breeding. In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_11

Download citation

Publish with us

Policies and ethics