Skip to main content

MPTP Neurotoxicity: Actions, Mechanisms, and Animal Modeling of Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The study of neurotoxicity induced by MPTP led to drastically change the perspective on Parkinson’s disease. In fact, the selective neurotoxicity induced by MPTP rejuvenated PD research and generated a number of studies aimed at elucidating the mechanisms of action of MPTP. Remarkably, these molecular mechanisms turned out to be critical also for the survival of DA neurons in idiopathic PD. In this chapter, the main concepts developed over the last three decades to understand key molecular steps which are pivotal in MPTP toxicity are reported. This is the case of the role played by DAT and VMAT-2 in conditioning the sensitivity to MPTP neurotoxicity. Similarly, the mitochondria as targets of MPTP toxicity appear similarly affected by selective mutation of genes leading to PD. Again, the fate of mitochondria and the ability to clear these organelles when being dysfunctional are key in the modulation of MPTP toxicity. This also applies for misfolded proteins such as alpha-synuclein. Again, multiple brain areas as well as peripheral sites are increasingly recognized to be affected both during MPTP toxicity and sporadic PD patients. Nowadays, it seems that MPTP per se did not lead to the discovery of the environmental compound which causes PD; nonetheless, the study of MPTP did disclose several molecular and cellular pathways which are critical in the genesis of PD. This latter point fairly corresponds to what enthusiastically is expected from MPTP when it was identified as a causal agent of what it remains, a toxic form of environmental parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

ATG:

Autophagy

ATP:

Adenosine triphosphate

BBB:

Blood–brain barrier

COX:

Cyclooxygenase

DA:

Dopamine

DAT:

DA transporter

DSP-4:

N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine

EAA:

Excitatory amino acids

ENS:

Enteric nervous system

GI:

Gastrointestinal

GSH:

Glutathione

i.c.v.:

Intracerebroventricular

IP3:

Inositol(1,4,5)trisphosphate

JNK:

c-Jun N-terminal kinase

KO:

Knockout

LC:

Locus coeruleus

MAO-B:

Monoamine oxidase type B

METH:

Methamphetamine

MK-801:

Dizocilpine

Mn-SOD:

Manganese superoxide dismutase

MPDP+:

1-Methyl-4-phenyl-2,3-dihydropyridine

MPP+:

1-Methyl-4-phenylpyridinium

MPPP:

1-Methyl-4-phenyl-4-propionoxy-piperidine

MPT:

Mitochondrial permeability transition

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NAD:

Nicotinamide adenine dinucleotide

NE:

Norepinephrine

NET:

NE transporter

NMDA:

N-Methyl-D-aspartate

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

NST:

Nucleus of the solitary tract

PD:

Parkinson’s disease

PET:

Positron emission tomography

ROS:

Reactive oxygen species

RVLM:

Rostral ventral-lateral medulla

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor alpha

UP:

Ubiquitin–proteasome

UTR:

Untranslated region

VMAT-2:

Vesicular monoamine transporter type 2

References

  • Algeri, S., Ambrosio, S., Garofalo, P., & Gerli, P. (1987). Peripheral effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its main metabolite 1-methyl-4-phenylpyridinium ion (MPP+) in the rat. European Journal of Pharmacology, 141(2), 309–312.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Fischer, D., Guerreiro, S., Hunot, S., Saurini, F., Marien, M., Sokoloff, P., Hirsch, E. C., Hartmann, A., & Michel, P. P. (2008). Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 107(3), 701–711.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, G., Noorian, A. R., Taylor, G., Anitha, M., Bernhard, D., Srinivasan, S., & Greene, J. G. (2007). Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Experimental Neurology, 207(1), 4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen, O. A., Ferrante, R. J., Dedeoglu, A., Albers, D. W., Klivenyi, P., Carlson, E. J., Epstein, C. J., & Beal, M. F. (2001). Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Experimental Neurology, 167(1), 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Anglade, P., Vyas, S., Hirsch, E. C., & Agid, Y. (1997). Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histology and Histopathology, 12, 603–610.

    CAS  PubMed  Google Scholar 

  • Bagga, P., Chugani, A. N., & Patel, A. B. (2016). Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A (13)C NMR study. Neurochemistry International, 92, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Ballard, P. A., Tetrud, J. W., & Langston, J. W. (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology, 35(7), 949–956.

    Article  CAS  PubMed  Google Scholar 

  • Battaglia, G., Fornai, F., Busceti, L. C., Aloisi, G., Cerrito, F., De Blasi, A., Melchiorri, D., & Nicoletti, F. (2002). Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. The Journal of Neuroscience, 22, 2135–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia, G., Busceti, C. L., Molinaro, G., Biagioni, F., Storto, M., Fornai, F., Nicoletti, F., & Bruno, V. (2004). Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. The Journal of Neuroscience, 24(4), 828–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezard, E., Imbert, C., Deloire, X., Bioulac, B., & Gross, C. E. (1997a). A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: Evolution of motor symptoms in the monkey. Brain Research, 766(1–2), 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Bezard, E., Dovero, S., Bioulac, B., & Gross, C. (1997b). Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Experimental Neurology, 148(1), 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Biagioni, F., Vivacqua, G., Lazzeri, G., Ferese, R., Iannacone, S., Onori, P., Morini, S., D’Este, L., & Fornai, F. (2021). Chronic MPTP in mice damage-specific neuronal phenotypes within dorsal laminae of the spinal cord. Neurotoxicity Research, 39(2), 156–169.

    Article  CAS  PubMed  Google Scholar 

  • Boraud, T., Bezard, E., Bioulac, B., & Gross, C. E. (2001). Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain, 124(Pt 3), 546–557.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, J. D., Jang, H., Shepherd, K. R., Faherty, C., Slack, S., Jiao, Y., & Smeyne, R. J. (2007). Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Research, 1175, 107–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, E., Sandmann-Keil, D., Rüb, U., Gai, W. P., de Vos, R. A., Steur, E. N., Arai, K., & Braak, H. (2001). Alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathologica, 101, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    Article  PubMed  Google Scholar 

  • Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A., & Del Tredici, K. (2007). Parkinson’s disease: Lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathologica, 113, 421–429.

    Article  PubMed  Google Scholar 

  • Brooks, D. J., & Pavese, N. (2011). Imaging biomarkers in Parkinson’s disease. Progress in Neurobiology, 95(4), 614–628.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, W. J., Jarvis, M. F., & Wagner, G. C. (1989). Astrocytes as a primary locus for the conversion MPTP into MPP+. Journal of Neural Transmission, 76(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Brownell, A., Canales, K., Chen, Y. I., Jenkins, B. G., Owen, C., Livni, E., Yu, M., Cicchetti, F., Sanchez-Pernaute, R., & Isacson, O. (2003). Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. NeuroImage, 20, 1064–1075.

    Article  PubMed  Google Scholar 

  • Callaghan, R. C., Cunningham, J. K., Sajeev, G., & Kish, S. J. (2010). Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Movement Disorders, 25(14), 2333–2339.

    Article  PubMed  Google Scholar 

  • Callier, S., Morissette, M., Grandbois, M., Pelaprat, D., & Di Paolo, T. (2001). Neuroprotective properties of 17β-estradiol, progesterone, and raloxifene in MPTP C57BL/6 mice. Synapse, 41, 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Campello, L., Esteve-Rudd, J., Bru-Martínez, R., Herrero, M.-T., Fernández-Villalba, E., Cuenca, N., & Martín-Nieto, J. (2013). Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys. PLoS One, 8(9), e74439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carboni, S., Melis, F., Pani, L., Hadgiconstantinou, M., & Rossetti, Z. (1990). Non-competitive NMDA receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by MPP+. Neuroscience Letters, 117, 129–133.

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Abellan, M., Martínez-Valbuena, I., DiCaudo, C., Marcilla, I., & Luquin, M. R. (2019). Cardiac sympathetic innervation in the MPTP non-human primate model of Parkinson disease. Clinical Autonomic Research, 29(4), 415–425.

    Article  PubMed  Google Scholar 

  • Castino, R., Lazzeri, G., Lenzi, P., Bellio, N., Follo, C., Ferrucci, M., Fornai, F., & Isidoro, C. (2008). Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. Journal of Neurochemistry, 106(3), 1426–1439.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W., & Di Monte, D. (1991). Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. Journal of Neurochemistry, 57, 348–351.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P., Langston, J. W., Irwin, I., DeLanney, L. E., & Di Monte, D. A. (1993). 2-Deoxyglucose enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced ATP loss in the mouse brain. Journal of Neurochemistry, 61, 610–616.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. X., Huang, S. Y., Zhang, L., & Liu, Y. J. (2005). Synaptophysin enhances the neuroprotection of VMAT2 in MPP+-induced toxicity in MN9D cells. Neurobiology of Disease, 19(3), 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M. K., Kuwabara, H., Zhou, Y., Adams, R. J., Brašić, J. R., McGlothan, J. L., Verina, T., Burton, N. C., Alexander, M., Kumar, A., Wong, D. F., & Guilarte, T. R. (2008). VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. Journal of Neurochemistry, 105(1), 78–90.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T. J., Feng, Y., Liu, T., Wu, T. T., Chen, Y. J., Li, X., Li, Q., & Wu, Y. C. (2020). Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Frontiers in Neuroscience, 14, 549037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chera, B., Schaecher, K. E., Rocchini, A., Imam, S. Z., Ray, S. K., Ali, S. F., & Banik, N. L. (2002). Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Annals of the New York Academy of Sciences, 965, 274–280.

    Article  CAS  PubMed  Google Scholar 

  • Chiu, C. C., Yeh, T. H., Chen, R. S., Chen, H. C., Huang, Y. Z., Weng, Y. H., Cheng, Y. C., Liu, Y. C., Cheng, A. J., Lu, Y. C., Chen, Y. J., Lin, Y. W., Hsu, C. C., Chen, Y. L., Lu, C. S., & Wang, H. L. (2019). Upregulated expression of microRNA-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated apoptotic signaling cascade. Frontiers in Cellular Neuroscience, 13, 399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiueh, C. C., Markey, S. D., Burns, R. S., Johannessen, J. N., Jacobowitz, D. M., & Kopin, I. J. (1984). Neurochemical and behavioral effects of MPTP in rat, guinea pig and monkey. Psychopharmacology Bulletin, 20, 548–553.

    CAS  PubMed  Google Scholar 

  • Choi, J. G., Jeong, M., Joo, B. R., Ahn, J. H., Woo, J. H., Kim, D. H., Oh, M. S., & Choi, J. H. (2020). Reduced levels of intestinal neuropeptides and neurotrophins in neurotoxin-induced Parkinson disease mouse models. Journal of Neuropathology & Experimental Neurology, 1, nlaa113.

    Google Scholar 

  • Cleren, C., Yang, L., Lorenzo, B., Calingasan, N. Y., Schomer, A., Sireci, A., Wille, E. J., & Beal, M. F. (2008). Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of parkinsonism. Journal of Neurochemistry, 104(6), 1613–1621.

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Annals of the New York Academy of Sciences, 920, 42–45.

    Article  CAS  PubMed  Google Scholar 

  • Corsini, G. U., Pintus, S., Chiueh, C. C., Weiss, J. F., & Kopin, I. J. (1985). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice is enhanced by pretreatment with diethyldithiocarbamate. European Journal of Pharmacology, 119(1–2), 127–128.

    Article  CAS  PubMed  Google Scholar 

  • Côté, M., Bourque, M., Poirier, A. A., Aubé, B., Morissette, M., Di Paolo, T., & Soulet, D. (2015). GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson’s disease. Neurobiology of Disease, 82, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Cuenca, N., Herrero, M.-T., Angulo, A., De Juan, E., Martínez-Navarrete, G. C., López, S., Barcia, C., & Martín-Nieto, J. (2005). Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. Journal of Comparative Neurology, 493, 261–273.

    Article  CAS  Google Scholar 

  • Davis, G. C., Williams, A. C., Markey, S. P., Ebert, M. H., Caine, E. D., Reichert, C. M., & Kopin, I. J. (1979). Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Research, 1, 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Dehay, B., Bové, J., Rodŕıguez-Muela, N., Perier, C., Recasens, A., Boya, P., & Vila, M. (2010). Pathogenic lysosomal depletion in Parkinson’s disease. The Journal of Neuroscience, 30(37), 12535–12544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Tredici, K., & Braak, H. (2012). Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathologica, 124(5), 643–664.

    Article  PubMed  CAS  Google Scholar 

  • Del Zompo, M., Piccardi, M. P., Ruiu, S., Quartu, M., Gessa, G. L., & Vaccari, A. (1993). Selective uptake into synaptic dopamine vesicles: Possible involvement in MPTP neurotoxicity. British Journal of Pharmacology, 109, 411–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodson, M. W., & Guo, M. (2007). Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Current Opinion in Neurobiology, 17(3), 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Doudet, D. J., Rosa-Neto, P., Munk, O. L., Ruth, T. J., Jivan, S., & Cumming, P. (2006). Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: A multi-tracer PET study. NeuroImage, 30(1), 26–35.

    Article  PubMed  Google Scholar 

  • Erekat, N. S., & Al-Jarrah, M. D. (2018). Association of Parkinson disease induction with cardiac upregulation of apoptotic mediators P53 and active caspase-3: An immunohistochemistry study. Medical Science Monitor Basic Research, 24, 120–126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskow Jaunarajs, K. L., & Standaert, D. G. (2013). Removing the blinkers: Moving beyond striatal dopamine in Parkinson’s disease. Journal of Neurochemistry, 125(5), 639–641.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Bassi, L., Torracca, M. T., Scalori, V., & Corsini, G. U. (1995). Norepinephrine loss exacerbates methamphetamine induced striatal dopamine depletion in mice. European Journal of Pharmacology, 283, 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Torracca, M. T., Bassi, L., D’Errigo, D. A., Scalori, V., & Corsini, G. U. (1996). Norepinephrine loss selectively enhances chronic nigrostriatal dopamine depletion in mice and rats. Brain Research, 735(2), 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Alessandrì, M. G., Torracca, M. T., Bassi, L., & Corsini, G. U. (1997a). Effects of noradrenergic lesions on MPTP/MPP+ kinetics and MPTP-induced nigrostriatal dopamine depletions. The Journal of Pharmacology and Experimental Therapeutics, 283(1), 100–107.

    CAS  PubMed  Google Scholar 

  • Fornai, F., Vaglini, F., Maggio, R., Bonuccelli, U., & Corsini, G. U. (1997b). Species differences in the role of excitatory amino acids in experimental parkinsonism. Neuroscience and Biobehavioral Reviews, 21(4), 401–415.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Carrì, M. T., Ferri, A., Paolucci, E., Prisco, S., Bernardi, G., Rotilio, G., & Mercuri, N. B. (2002). Resistance to striatal dopamine depletion induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice expressing human mutant Cu,Zn superoxide dismutase. Neuroscience Letters, 325(2), 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Schlüter, O. M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., Lazzeri, G., Busceti, C. L., Pontarelli, F., Battaglia, G., Pellegrini, A., Nicoletti, F., Ruggieri, S., Paparelli, A., & Südhof, T. C. (2005). Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3413–3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornai, F., Di Poggio, A. B., Pellegrini, A., Ruggieri, S., & Paparelli, A. (2007a). Noradrenaline in Parkinson’s disease: From disease progression to current therapeutics. Current Medicinal Chemistry, 14(22), 2330–2334.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Ruffoli, R., Soldani, P., Ruggieri, S., & Paparelli, A. (2007b). The “parkinsonian heart”: From novel vistas to advanced therapeutic approaches in Parkinson’s disease. Current Medicinal Chemistry, 14(23), 2421–2428.

    Article  CAS  PubMed  Google Scholar 

  • Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I., & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Annals of Neurology, 20(4), 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Forno, L. S., DeLanney, L. E., Irwin, I., & Langston, J. W. (1995). Ultrastructure of eosinophilic inclusion bodies in the amygdala-parahippocampal region of aged squirrel monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neuroscience Letters, 184(1), 44–47.

    Article  CAS  PubMed  Google Scholar 

  • Fragkouli, A., & Doxakis, E. (2014). miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Frontiers in Cellular Neuroscience, 8, 182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freyaldenhoven, T. E., Ali, S. F., & Schmued, L. C. (1997). Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Research, 759, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov, R. R., Fumagalli, F., Jones, S. R., & Caron, M. G. (1997). Dopamine transporter is required for in vivo MPTP neurotoxicity: Evidence from mice lacking the transporter. Journal of Neurochemistry, 69(3), 1322–1325.

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W., & Caron, M. G. (1998). Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. Journal of Neurochemistry, 70(5), 1973–1978.

    Article  CAS  PubMed  Google Scholar 

  • García-Cabezas, M. A., Martínez-Sánchez, P., Sánchez-González, M. A., Garzón, M., & Cavada, C. (2009). Dopamine innervation in the thalamus: Monkey versus rat. Cerebral Cortex, 19, 424–434.

    Article  PubMed  Google Scholar 

  • Gerlach, M., & Riederer, P. (1996). Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. Journal of Neural Transmission. Supplementum, 103, 987–1041.

    Article  CAS  Google Scholar 

  • Gesi, M., Soldani, P., Giorgi, F. S., Santinami, A., Bonaccorsi, I., & Fornai, F. (2000). The role of locus coeruleus in the development of Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 24, 655–658.

    Article  CAS  PubMed  Google Scholar 

  • Ghilardi, M. F., Chung, E., Bodis-Wollner, I., Dvorzniak, M., Glover, A., & Onofrj, M. (1988). Systemic 1-methyl,4-phenyl,1-2-3-6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sciences, 43, 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Giovanni, A., Sieber, B. A., Heikkila, R. E., & Sonsalla, P. K. (1991). Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. The Journal of Pharmacology and Experimental Therapeutics, 257(2), 691–697.

    CAS  PubMed  Google Scholar 

  • Giovanni, A., Sieber, B. A., Heikkila, R. E., & Sonsalla, P. K. (1994a). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine part 1: Systemic administration. The Journal of Pharmacology and Experimental Therapeutics, 270, 1000–1007.

    CAS  PubMed  Google Scholar 

  • Giovanni, A., Sonsalla, P. K., & Heikkila, R. E. (1994b). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Part 2: Central administration of 1-methyl-4-phenylpyridinium. The Journal of Pharmacology and Experimental Therapeutics, 270, 1008–1014.

    CAS  PubMed  Google Scholar 

  • Goldberg, N. R., Haack, A. K., Lim, N. S., Janson, O. K., & Meshul, C. K. (2011). Dopaminergic and behavioral correlates of progressive lesioning of the nigrostriatal pathway with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience, 180, 256–271.

    Article  CAS  PubMed  Google Scholar 

  • Haber, S. N., Ryoo, H., Cox, C., & Lu, W. (1995). Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. The Journal of Comparative Neurology, 362(3), 400–410.

    Article  CAS  PubMed  Google Scholar 

  • He, Q., Wang, Q., Yuan, C., & Wang, Y. (2017). Downregulation of miR-7116-5p in microglia by MPP+ sensitizes TNF-α production to induce dopaminergic neuron damage. Glia, 65(8), 1251–1263.

    Article  PubMed  Google Scholar 

  • Heikkila, R. E. (1985). Differential neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Swiss-Webster mice from different sources. European Journal of Pharmacology, 117(1), 131–133.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila, R. E., Manzino, L., Cabbat, F. S., & Duvoisin, R. C. (1984a). Protection against the dopaminergic toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature, 311, 467–469.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila, R. E., Hess, A., & Duvoisin, R. C. (1984b). Dopaminergic neurotoxicity of MPTP in mice. Science, 224, 1451–1453.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila, R. E., Nicklas, W. J., Vyas, I., & Duvoisin, R. C. (1985). Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neuroscience Letters, 62(3), 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (1975). Brain monoamines and parkinsonism. National Institute on Drug Abuse Research Monograph Series, 3, 13–21.

    CAS  Google Scholar 

  • Huang, T., Shi, H., Xu, Y., & Ji, L. (2021). The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson’s disease via the AKT signaling pathway. Neuroreport, 32(3), 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis, V., & Przedborski, S. (2007). Protocol for the MPTP mouse model of Parkinson’s disease. Nature Protocols, 2(1), 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Javitch, J. A., Uhl, G. R., & Snyder, S. H. (1984). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Characterization and localization of receptor binding sites in rat and human brain. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4591–4595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner, P., Rupniak, N. M., Rose, S., Kelly, E., Kilpatrick, G., Lees, A., & Marsden, C. D. (1984). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neuroscience Letters, 50(1–3), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y., & Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA7. Proceedings of the National Academy of Sciences of the United States of America, 106, 13052–13057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. The New England Journal of Medicine, 318(14), 876–880.

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi, P., St Clair, D., Wermer, M., Yen, H. C., Oberley, T., Yang, L., & Flint Beal, M. (1998). Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiology of Disease, 5(4), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Kopin, I. J., & Markey, S. P. (1988). MPTP toxicity: Implication for research in Parkinson’s disease. Annual Review of Neuroscience, 11, 81–96.

    Article  CAS  PubMed  Google Scholar 

  • Koprich, J. B., Fox, S. H., Johnston, T. H., Goodman, A., Le Bourdonnec, B., Dolle, R. E., DeHaven, R. N., DeHaven-Hudkins, D. L., Little, P. J., & Brotchie, J. M. (2011). The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Movement Disorders, 26(7), 1225–1233.

    Article  PubMed  Google Scholar 

  • Lange, K. W., & Riederer, P. (1994). Glutamatergic drugs in Parkinson’s disease. Life Sciences, 55, 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  • Langston, J. W., & Palfreman, J. (1996). The case of the frozen addicts. Vintage Books.

    Google Scholar 

  • Langston, J. W., Ballard, P. A., Tetrud, J. W., & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980.

    Article  CAS  PubMed  Google Scholar 

  • Langston, J. W., Forno, L. S., Rebert, C. S., & Irwin, I. (1984). Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Research, 292, 390–394.

    Article  CAS  PubMed  Google Scholar 

  • Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A., & Karluk, D. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of Neurology, 46(4), 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Litim, N., Morissette, M., Caruso, D., Melcangi, R. C., & Di Paolo, T. (2017). Effect of the 5α-reductase enzyme inhibitor dutasteride in the brain of intact and parkinsonian mice. Journal of Steroid Biochemistry and Molecular Biology, 174, 242–256.

    Article  CAS  Google Scholar 

  • Liu, K., Shi, N., Sun, Y., Zhang, T., & Sun, X. (2013). Therapeutic effects of rapamycin on MPTP-induced parkinsonism in mice. Neurochemical Research, 38(1), 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wei, B., Bi, Q., Sun, Q., Li, L., He, J., Weng, Y., Zhang, S., Mao, G., Bao, Y., Wan, S., Shen, X. Z., Yan, J., & Shi, P. (2020). MPTP-induced impairment of cardiovascular function. Neurotoxicity Research, 38(1), 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Malagelada, C., Ryu, E. J., Biswas, S. C., Jackson-Lewis, V., & Greene, L. A. (2006). RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. The Journal of Neuroscience, 26(39), 9996–10005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani, A. P., Neff, N. H., & Hadjiconstantinou, M. (1986). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment decreases dopamine and increases lipofuscin in mouse retina. Neuroscience Letters, 72(2), 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L. J., Pan, Y., Price, A. C., Sterling, W., Copeland, N. G., Jenkins, N. A., Price, D. L., & Lee, M. K. (2006). Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. The Journal of Neuroscience, 26(1), 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masilamoni, G. J., Bogenpohl, J. W., Alagille, D., Delevich, K., Tamagnan, G., Votaw, J. R., Wichmann, T., & Smith, Y. (2011). Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain, 134, 2057–2073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masilamoni, G. J., Groover, O., & Smith, Y. (2017). Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Neurobiology of Disease, 100, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Masilamoni, G. J., & Smith, Y. (2018). Chronic MPTP administration regimen in monkeys: A model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. Journal of Neural Transmission (Vienna), 125(3), 337–363.

    Article  CAS  Google Scholar 

  • Mavridis, M., Degryse, A. D., Lategan, A. J., Marien, M. R., & Colpaert, F. C. (1991). Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: A possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience, 41, 507–523.

    Article  CAS  PubMed  Google Scholar 

  • Melamed, E., Pikarski, E., Goldberg, A., Rosenthal, J., Uzzan, A., & Conforti, N. (1986). Effect of serotonergic, corticostriatal and kainic acid lesions on the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in mice. Brain Research, 399(1), 178–180.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, G. E., Totterdell, S., Petroske, E., Santa Cruz, K., Callison, R. C., Jr., & Lau, Y. S. (2002). Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Research, 956(1), 156–165.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, G. E., Totterdell, S., Potashkin, J. A., & Surmeier, D. J. (2008). Modeling PD pathogenesis in mice: Advantages of a chronic MPTP protocol. Parkinsonism & Related Disorders, 14(Suppl 2), 112–115.

    Article  Google Scholar 

  • Meredith, G. E., Totterdell, S., Beales, M., & Meshul, C. K. (2009). Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson’s disease. Experimental Neurology, 219(1), 334–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monje, M. H. G., Blesa, J., García-Cabezas, M. Á., Obeso, J. A., & Cavada, C. (2020). Changes in thalamic dopamine innervation in a progressive Parkinson’s disease model in monkeys. Movement Disorders, 35(3), 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M. L. T. M., Albin, R. L., & Bohnen, N. I. (2013). Association of cardinal motor symptoms with region-specific dopamine transporter activity in mild to moderate Parkinson’s disease. European Neurological Journal, 4(2), 1–7.

    PubMed  PubMed Central  Google Scholar 

  • Natale, G., Pasquali, L., Ruggieri, S., Paparelli, A., & Fornai, F. (2008). Parkinson’s disease and the gut: A well known clinical association in need of an effective cure and explanation. Neurogastroenterology and Motility, 20(7), 741–749.

    Article  CAS  PubMed  Google Scholar 

  • Natale, G., Kastsiushenka, O., Fulceri, F., Ruggieri, S., Paparelli, A., & Fornai, F. (2010). MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut. Brain Research, 1355, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Natale, G., Pasquali, L., Paparelli, A., & Fornai, F. (2011). Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterology and Motility, 23(12), 1056–1065.

    Article  CAS  PubMed  Google Scholar 

  • Nicklas, W. J., Vyas, I., & Heikkila, R. E. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sciences, 36, 2503–2508.

    Article  CAS  PubMed  Google Scholar 

  • Novikova, L., Garris, B. L., Garris, D. R., & Lau, Y. S. (2006). Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience, 140, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Petzinger, G. M., & Langston, J. W. (1998). The MPTP-lesioned nonhuman primate: A model for Parkinson’s disease. In J. Marwah & H. Teiltelbaum (Eds.), Advances in neurodegenerative disorders. Parkinson’s disease (pp. 113–148). Prominent Press.

    Google Scholar 

  • Pifl, C., Schingnitz, G., & Hornykiewicz, O. (1988). The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson’s disease. Neuroscience Letters, 92(2), 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Pifl, C., Bertel, O., Schingnitz, G., & Hornykiewicz, O. (1990). Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochemistry International, 17, 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Pifl, C., Hornykiewicz, O., Blesa, J., Adánez, R., Cavada, C., & Obeso, J. A. (2013). Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: Relation to severity of parkinsonism. Journal of Neurochemistry, 125(5), 657–662.

    Article  CAS  PubMed  Google Scholar 

  • Pifl, C., Kish, S. J., & Hornykiewicz, O. (2012). Thalamic noradrenaline in Parkinson’s disease: Deficits suggest role in motor and non-motor symptoms. Movement Disorders, 27(13), 1618–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prediger, R. D., Aguiar, A. S., Jr., Moreira, E. L., Matheus, F. C., Castro, A. A., Walz, R., De Bem, A. F., Latini, A., Tasca, C. I., Farina, M., & Raisman-Vozari, R. (2011). The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Current Pharmaceutical Design, 17(5), 489–507.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Popilskis, S., Kostic, V., Levivier, M., Fahn, S., & Cadet, J. L. (1991). Unilateral MPTP-induced parkinsonism in monkeys. A quantitative autoradiographic study of dopamine D1 and D2 receptors and re-uptake sites. Neurochirurgie, 37(6), 377–382.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., Carlon, E., Epstein, C. J., & Cadet, J. L. (1992). Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. The Journal of Neuroscience, 12, 1658–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Naini, A. B., Jakowec, M., Petzinger, G., Miller, R., & Akram, M. (2001). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A technical review of its utility and safety. Journal of Neurochemistry, 76, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., Porter, J. E., Wold, L. E., Aberle, N. S., Muralikrishnan, D., & Haselton, J. R. (2004). Depressed contractile function and adrenergic responsiveness of cardiac myocytes in an experimental model of Parkinson disease, the MPTP-treated mouse. Neurobiology of Aging, 25(1), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., & Moore, R. Y. (1982). Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Research, 235, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Ruffoli, R., Soldani, P., Pasquali, L., Ruggieri, S., Paparelli, A., & Fornai, F. (2008). Methamphetamine fails to alter the noradrenergic integrity of the heart. Annals of the New York Academy of Sciences, 1139, 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Samantaray, S., Knaryan, V. H., Butler, J. T., Ray, S. K., & Banik, N. L. (2008). Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. Journal of Neurochemistry, 104(5), 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  • Samantaray, S., Knaryan, V. H., Shields, D. C., Cox, A. A., Haque, A., & Banik, N. L. (2015). Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Molecular Neurobiology, 52(2), 1054–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath, C., Kalpana, R., Ansah, T., Charlton, C., Hale, A., Channon, K. M., Srinivasan, S., & Gangula, P. R. (2019). Impairment of Nrf2- and nitrergic-mediated gastrointestinal motility in an MPTP mouse model of Parkinson’s disease. Digestive Diseases and Sciences, 64(12), 3502–3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-González, M. A., García-Cabezas, M. A., Rico, B., & Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. Journal of Neuroscience, 25, 6076–6083.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, J. S., Ault, M. E., & Anderson, D. W. (2014). Retinal pathology detected by optical coherence tomography in an animal model of Parkinson’s disease. Movement Disorders, 29(12), 1547–1551.

    Article  CAS  PubMed  Google Scholar 

  • Seniuk, N. A., Tatton, W. G., & Greenwood, C. E. (1990). Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Research, 527(1), 7–20.

    Article  CAS  PubMed  Google Scholar 

  • Serra, P. A., Sciola, L., Delogu, M. R., Spano, A., Monaco, G., Miele, E., Rocchitta, G., Miele, M., Migheli, R., & Desole, M. S. (2002). The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. The Journal of Biological Chemistry, 277(37), 34451–34461.

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla, P. K., & Heikkila, R. E. (1986). The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. European Journal of Pharmacology, 129(3), 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla, P. K., & Heikkila, R. E. (1988). Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 12(2–3), 345–354.

    Article  CAS  Google Scholar 

  • Sonsalla, P. K., Giovanni, A., Sieber, B. A., Delle Donne, K., & Manzino, L. (1992). Characteristics of dopaminergic neurotoxicity produced by MPTP and methamphetamine. Annals of the New York Academy of Sciences, 648, 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Staal, R. G., & Sonsalla, P. K. (2000). Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. The Journal of Pharmacology and Experimental Therapeutics, 293(2), 336–342.

    CAS  PubMed  Google Scholar 

  • Szabo, S., Brown, A., Pihan, G., Dali, H., & Neumeyer, J. L. (1985). Duodenal ulcer induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine). Proceedings of the Society for Experimental Biology and Medicine, 180, 567–571.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., & Uhl, G. R. (1997). VMAT2 knockout mice: Heterozygotes display reduced amphetamine conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proceedings of the National Academy of Sciences of the United States of America, 94, 9938–9943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatton, N. A., & Kish, S. J. (1997). In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience, 77(4), 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  • Tong, J., Hornykiewicz, O., & Kish, S. J. (2006). Inverse relationship between brain noradrenaline level and DA loss in Parkinson disease: A possible neuroprotective role for noradrenaline. Archives of Neurology, 63(12), 1724–1728.

    Article  PubMed  Google Scholar 

  • Tretiakoff C. (1919). Contributions a l’etude de l’anatomie pathologique du locus niger de soemmering avec quelques deductions relatives a la pathogenie des troubles de tonus musculaire et de la maladie de Parkinson. Thesis, Paris.

    Google Scholar 

  • Vaglini, F., Fascetti, F., Fornai, F., Maggio, R., & Corsini, G. U. (1994). (+)MK-801 prevents the DDC induced enhancement of MPTP toxicity in mice. Brain Research, 668, 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Vaglini, F., Fascetti, F., Tedeschi, D., Cavalletti, M., Fornai, F., & Corsini, G. U. (1996). Striatal MPP+ levels do not necessarily correlate with striatal dopamine levels after MPTP treatment in mice. Neurodegeneration, 5(2), 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Villalba, R. M., & Smith, Y. (2011). Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. Journal of Comparative Neurology, 519, 989–1005.

    Article  CAS  Google Scholar 

  • Villalba, R. M., Wichmann, T., & Smith, Y. (2014). Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Structure and Function, 219, 381–394.

    Article  CAS  PubMed  Google Scholar 

  • Vivacqua, G., Biagioni, F., Yu, S., Casini, A., Bucci, D., D’Este, L., & Fornai, F. (2012). Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced parkinsonism in mice. Journal of Chemical Neuroanatomy, 44(2), 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Vivacqua, G., Biagioni, F., Busceti, C. L., Ferrucci, M., Madonna, M., Ryskalin, L., Yu, S., D’Este, L., & Fornai, F. (2020). Motor neurons pathology after chronic exposure to MPTP in mice. Neurotoxicity Research, 37(2), 298–313.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, Y., Himeda, T., & Araki, T. (2005). Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 11(1), 17–23.

    Google Scholar 

  • Weinshenker, D., Ferrucci, M., Busceti, C. L., Biagioni, F., Lazzeri, G., Liles, L. C., Lenzi, P., Pasquali, L., Murri, L., Paparelli, A., & Fornai, F. (2008). Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioral, and neurotoxic effects of methamphetamine. Journal of Neurochemistry, 105(2), 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Xie, W., Gao, J., Jiang, R., Liu, X., Lai, F., Tang, Y., Xiao, H., Jia, Y., & Bai, Q. (2020). Twice subacute MPTP administrations induced time-dependent dopaminergic neurodegeneration and inflammation in midbrain and ileum, as well as gut microbiota disorders in PD mice. Neurotoxicology, 76, 200–212.

    Article  PubMed  Google Scholar 

  • Yao, L., Zhu, Z., Wu, J., Zhang, Y., Zhang, H., Sun, X., Qian, C., Wang, B., Xie, L., Zhang, S., & Lu, G. (2019). MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB Journal, 33(7), 8648–8665.

    Article  CAS  PubMed  Google Scholar 

  • Yazdani, U., German, D. C., Liang, C. L., Manzino, L., Sonsalla, P. K., & Zeevalk, G. D. (2006). Rat model of Parkinson’s disease: Chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Experimental Neurology, 200(1), 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Zarow, C., Lyness, S. A., Mortimer, J. A., & Chui, H. C. (2003). Neuronal loss is greater in the LC than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Archives of Neurology, 60(3), 337–341.

    Article  PubMed  Google Scholar 

  • Ziering, A., Berger, L., Heineman, S. D., & Lee, J. (1947). Piperidine derivatives; 4-arylpiperidines. The Journal of Organic Chemistry, 12(6), 894–903.

    Article  CAS  PubMed  Google Scholar 

  • Zuddas, A., Oberto, G., Vaglini, F., Fascetti, F., Fornai, F., & Corsini, G. U. (1992). MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates. Journal of Neurochemistry, 59, 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Zuddas, A., Fascetti, F., Corsini, G. U., & Piccardi, M. P. (1994). In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: A model of natural resistance to MPTP Toxicity. Experimental Neurology, 127(1), 54–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fornai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferrucci, M., Fornai, F. (2021). MPTP Neurotoxicity: Actions, Mechanisms, and Animal Modeling of Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_239-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_239-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics