Skip to main content
Log in

Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, Cummings JL (1999) Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 67:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aarsland D, Andersen K, Larsen JP, Perry R, Wentzel-Larsen T, Lolk A, Kragh-Sorensen P (2004) The rate of cognitive decline in Parkinson disease. Arch Neurol 61:1906–1911. doi:10.1001/archneur.61.12.1906

    Article  PubMed  Google Scholar 

  • Abbott RD et al (2005) Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 65:1442–1446. doi:10.1212/01.wnl.0000183056.89590.0d

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Thoenen H, Meyer M (1997) Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 9:120–127

    Article  CAS  PubMed  Google Scholar 

  • Akil M, Lewis DA (1994) The distribution of tyrosine hydroxylase-immunoreactive fibers in the human entorhinal cortex. Neuroscience 60:857–874

    Article  CAS  PubMed  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589. doi:10.1176/ajp.156.10.1580

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Koeppe RA, Bohnen NI, Wernette K, Kilbourn MA, Frey KA (2008) Spared caudal brainstem SERT binding in early Parkinson’s disease. J Cereb Blood Flow Metab 28:441–444. doi:10.1038/sj.jcbfm.9600599

    Article  CAS  PubMed  Google Scholar 

  • Alexander GM, Schwartzman RJ, Brainard L, Gordon SW, Grothusen JR (1992) Changes in brain catecholamines and dopamine uptake sites at different stages of MPTP parkinsonism in monkeys. Brain Res 588:261–269

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Wang M, Paspalas CD (2015) Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev 67:681–696. doi:10.1124/pr.115.010512

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  CAS  PubMed  Google Scholar 

  • Augood SJ, Hollingsworth ZR, Standaert DG, Emson PC, Penney JB Jr (2000) Localization of dopaminergic markers in the human subthalamic nucleus. J Comp Neurol 421:247–255

    Article  CAS  PubMed  Google Scholar 

  • Baba M et al (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballanger B et al (2016) Imaging dopamine and serotonin systems on MPTP monkeys: a longitudinal PET investigation of compensatory mechanisms. J Neurosci 36:1577–1589. doi:10.1523/JNEUROSCI.2010-15.2016

    Article  CAS  PubMed  Google Scholar 

  • Barraud Q et al (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219:574–582. doi:10.1016/j.expneurol.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin-Gobert M et al (2015) Behavioural impact of a double dopaminergic and serotonergic lesion in the non-human primate. Brain 138:2632–2647. doi:10.1093/brain/awv183

    Article  PubMed  Google Scholar 

  • Belzunegui S et al (2007) The number of dopaminergic cells is increased in the olfactory bulb of monkeys chronically exposed to MPTP. Synapse 61:1006–1012. doi:10.1002/syn.20451

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J (2014) Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Front Aging Neurosci 6:87. doi:10.3389/fnagi.2014.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Berendse HW, Ponsen MM (2009) Diagnosing premotor Parkinson’s disease using a two-step approach combining olfactory testing and DAT SPECT imaging. Parkinsonism Relat Disord 15(Suppl 3):S26–S30. doi:10.1016/S1353-8020(09)70774-6

    Article  PubMed  Google Scholar 

  • Berendse HW, Booij J, Francot CM, Bergmans PL, Hijman R, Stoof JC, Wolters EC (2001) Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 50:34–41

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119. doi:10.1002/cne.902730109

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1992) Colocalization of neurotensin in the mesocortical dopaminergic system. Restricted regional and laminar distribution in rat, lack of colocalization in human. Ann N Y Acad Sci 668:307–310

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi:10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 26:993–1002. doi:10.1002/mds.23696

    Article  PubMed  Google Scholar 

  • Bezard E et al (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21:6853–6861

    CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166. doi:10.1111/j.1742-4658.2012.08491.x

    Article  CAS  PubMed  Google Scholar 

  • Blesa J et al (2012) The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 48:79–91. doi:10.1016/j.nbd.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  • Blier P (2006) Psychopharmacology for the clinician. Treating depression with selective norepinephrine reuptake inhibitors. J Psychiatry Neurosci 31:288

    PubMed  PubMed Central  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573. doi:10.1016/j.bbr.2009.12.048

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Guehl D, Bioulac B, Gross C (1998) Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787:157–160

    Article  CAS  PubMed  Google Scholar 

  • Boulet S et al (2008) Behavioral recovery in MPTP-treated monkeys: neurochemical mechanisms studied by intrastriatal microdialysis. J Neurosci 28:9575–9584. doi:10.1523/JNEUROSCI.3465-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. doi:10.1016/j.neuroscience.2011.10.057

    Article  CAS  PubMed  Google Scholar 

  • Boyce S, Rupniak NM, Steventon MJ, Iversen SD (1990) Characterisation of dyskinesias induced by l-dopa in MPTP-treated squirrel monkeys. Psychopharmacology 102:21–27

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2):II3–II10. doi:10.1007/PL00007758

    PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003b) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brooks DJ, Doder M (2001) Depression in Parkinson’s disease. Curr Opin Neurol 14:465–470

    Article  CAS  PubMed  Google Scholar 

  • Brooks DJ, Piccini P (2006) Imaging in Parkinson’s disease: the role of monoamines in behavior. Biol Psychiatry 59:908–918. doi:10.1016/j.biopsych.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111(Pt 2):323–345

    Article  PubMed  Google Scholar 

  • Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168:133–150

    Article  CAS  PubMed  Google Scholar 

  • Brownell AL et al (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. Neuroimage 20:1064–1075. doi:10.1016/S1053-8119(03)00348-3

    Article  PubMed  Google Scholar 

  • Buddhala C, Loftin SK, Kuley BM, Cairns NJ, Campbell MC, Perlmutter JS, Kotzbauer PT (2015) Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann Clin Transl Neurol 2:949–959. doi:10.1002/acn3.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    Article  CAS  PubMed  Google Scholar 

  • Carbon M, Edwards C, Eidelberg D (2003) Functional brain imaging in Parkinson’s disease. Adv Neurol 91:175–181

    PubMed  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833. doi:10.1093/brain/awm082

    Article  PubMed  Google Scholar 

  • Cenci MA, Francardo V, O’Sullivan SS, Lindgren HS (2015) Rodent models of impulsive-compulsive behaviors in Parkinson’s disease: how far have we reached? Neurobiol Dis 82:561–573. doi:10.1016/j.nbd.2015.08.026

    Article  PubMed  Google Scholar 

  • Chan-Palay V (1991) Alterations in the locus coeruleus in dementias of Alzheimer’s and Parkinson’s disease. Prog Brain Res 88:625–630

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Kordower JH (2015) The prion hypothesis of Parkinson’s disease. Curr Neurol Neurosci Rep 15:28. doi:10.1007/s11910-015-0549-x

    Article  PubMed  CAS  Google Scholar 

  • Collier TJ et al (2007) Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: diminished compensatory mechanisms as a prelude to parkinsonism. Neurobiol Dis 26:56–65. doi:10.1016/j.nbd.2006.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier TJ, Redmond DE Jr, Steece-Collier K, Lipton JW, Manfredsson FP (2016) Is alpha-synuclein loss-of-function a contributor to parkinsonian pathology? Evidence from non-human primates. Front Neurosci 10:12. doi:10.3389/fnins.2016.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooney JW, Stacy M (2016) Neuropsychiatric issues in Parkinson’s disease. Curr Neurol Neurosci Rep 16:49. doi:10.1007/s11910-016-0647-4

    Article  PubMed  Google Scholar 

  • Cossette M, Levesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res 34:51–54

    Article  CAS  PubMed  Google Scholar 

  • Coull JT, Buchel C, Friston KJ, Frith CD (1999) Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage 10:705–715. doi:10.1006/nimg.1999.0513

    Article  CAS  PubMed  Google Scholar 

  • Court J, Clementi F (1995) Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord 9(Suppl 2):6–14

    Article  PubMed  Google Scholar 

  • Court JA et al (2000) Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease and in relation to neuroleptic medication. Neuroscience 98:79–87

    Article  CAS  PubMed  Google Scholar 

  • Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (2004) Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20:1788–1802. doi:10.1111/j.1460-9568.2004.03629.x

    Article  PubMed  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59. doi:10.3389/fnana.2011.00059

    Article  PubMed  PubMed Central  Google Scholar 

  • Crittenden JR et al (2016) Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc Natl Acad Sci USA 113:11318–11323. doi:10.1073/pnas.1613337113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JL (1992) Depression and Parkinson’s disease: a review. Am J Psychiatry 149:443–454. doi:10.1176/ajp.149.4.443

    Article  CAS  PubMed  Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231:987–989

    Article  PubMed  Google Scholar 

  • D’Amato RJ et al (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22:229–236. doi:10.1002/ana.410220207

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999a) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 122(Pt 8):1421–1436

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999b) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 122(Pt 8):1421–1436

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999c) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999d) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  • Datta S, Spoley EE, Mavanji VK, Patterson EH (2002) A novel role of pedunculopontine tegmental kainate receptors: a mechanism of rapid eye movement sleep generation in the rat. Neuroscience 114:157–164

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • Davis MR et al (2003) Initial human PET imaging studies with the dopamine transporter ligand 18F-FECNT. J Nucl Med 44:855–861

    CAS  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2004) Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur J Neurosci 20:1371–1378. doi:10.1111/j.1460-9568.2004.03586.x

    Article  CAS  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2006) Effects of nicotinic therapies on attention and executive functions in chronic low-dose MPTP-treated monkeys. Eur J Neurosci 24:2098–2104. doi:10.1111/j.1460-9568.2006.05077.x

    Article  CAS  PubMed  Google Scholar 

  • Del Tredici K, Braak H (2013) Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia. J Neurol Neurosurg Psychiatry 84:774–783. doi:10.1136/jnnp-2011-301817

    Article  PubMed  Google Scholar 

  • Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    Article  PubMed  Google Scholar 

  • Delwaide PJ (2001) Parkinsonian rigidity. Funct Neurol 16:147–156

    CAS  PubMed  Google Scholar 

  • Deutch AY, Goldstein M, Baldino F Jr, Roth RH (1988) Telencephalic projections of the A8 dopamine cell group. Ann N Y Acad Sci 537:27–50

    Article  CAS  PubMed  Google Scholar 

  • Devine MJ, Gwinn K, Singleton A, Hardy J (2011) Parkinson’s disease and alpha-synuclein expression. Mov Disord 26:2160–2168. doi:10.1002/mds.23948

    Article  PubMed  PubMed Central  Google Scholar 

  • Devoto P, Flore G, Saba P, Cadeddu R, Gessa GL (2012) Disulfiram stimulates dopamine release from noradrenergic terminals and potentiates cocaine-induced dopamine release in the prefrontal cortex. Psychopharmacology 219:1153–1164. doi:10.1007/s00213-011-2447-5

    Article  CAS  PubMed  Google Scholar 

  • Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord 15:459–466

    Article  PubMed  Google Scholar 

  • Dogali M et al (1994) Anatomic and physiological considerations in pallidotomy for Parkinson’s disease. Stereotact Funct Neurosurg 62:53–60

    Article  CAS  PubMed  Google Scholar 

  • Dopeso-Reyes IG et al (2014) Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8:146. doi:10.3389/fnana.2014.00146

    Article  PubMed  PubMed Central  Google Scholar 

  • Doty RL, Risser JM (1989) Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology 98:310–315

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI (1992) Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreher JC, Burnod Y (2002) An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex. Neural Netw 15:583–602

    Article  PubMed  Google Scholar 

  • Drouot X et al (2004) Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron 44:769–778. doi:10.1016/j.neuron.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  • Duchamp-Viret P, Coronas V, Delaleu JC, Moyse E, Duchamp A (1997) Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study. Neuroscience 79:203–216

    Article  CAS  PubMed  Google Scholar 

  • Dunnett SB, Lelos M (2010) Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson’s disease. Prog Brain Res 184:35–51. doi:10.1016/S0079-6123(10)84003-8

    Article  CAS  PubMed  Google Scholar 

  • Dunning CJ, Reyes JF, Steiner JA, Brundin P (2012) Can Parkinson’s disease pathology be propagated from one neuron to another? Prog Neurobiol 97:205–219. doi:10.1016/j.pneurobio.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  • Dunning CJ, George S, Brundin P (2013) What’s to like about the prion-like hypothesis for the spreading of aggregated alpha-synuclein in Parkinson disease? Prion 7:92–97. doi:10.4161/pri.23806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    CAS  PubMed  Google Scholar 

  • Eckert T et al (2008) Abnormal metabolic networks in atypical parkinsonism. Mov Disord 23:727–733. doi:10.1002/mds.21933

    Article  PubMed  Google Scholar 

  • Eidelberg D et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14:783–801. doi:10.1038/jcbfm.1994.99

    Article  CAS  PubMed  Google Scholar 

  • Elsworth JD, Deutch AY, Redmond DE Jr, Taylor JR, Sladek JR Jr, Roth RH (1989) Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates: biochemical changes in striatal regions. Neuroscience 33:323–331

    Article  CAS  PubMed  Google Scholar 

  • Elsworth JD, Taylor JR, Sladek JR Jr, Collier TJ, Redmond DE Jr, Roth RH (2000) Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience 95:399–408

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME (2007) Nonhuman primate models of Parkinson’s disease. ILAR J 48:339–355

    Article  CAS  PubMed  Google Scholar 

  • Erickson SL, Sesack SR, Lewis DA (2000) Dopamine innervation of monkey entorhinal cortex: postsynaptic targets of tyrosine hydroxylase-immunoreactive terminals. Synapse 36:47–56. doi:10.1002/(SICI)1098-2396(200004)36:1<47:AID-SYN5>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A et al (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130:799–815. doi:10.1093/brain/awl382

    Article  PubMed  Google Scholar 

  • Fallon SJ, Smulders K, Esselink RA, van de Warrenburg BP, Bloem BR, Cools R (2015) Differential optimal dopamine levels for set-shifting and working memory in Parkinson’s disease. Neuropsychologia 77:42–51. doi:10.1016/j.neuropsychologia.2015.07.031

    Article  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  • Fernagut PO et al (2010) Dopamine transporter binding is unaffected by l-DOPA administration in normal and MPTP-treated monkeys. PLoS One 5:e14053. doi:10.1371/journal.pone.0014053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrante RJ, Schulz JB, Kowall NW, Beal MF (1997) Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753:157–162

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Piggins H, Deboer T (2016) Modeling sleep alterations in Parkinson’s disease: how close are we to valid translational animal models? Sleep Med Rev 25:95–111. doi:10.1016/j.smrv.2015.02.005

    Article  PubMed  Google Scholar 

  • Filion M, Tremblay L, Bedard PJ (1991) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:152–161

    CAS  PubMed  Google Scholar 

  • Flores G, Liang JJ, Sierra A, Martinez-Fong D, Quirion R, Aceves J, Srivastava LK (1999) Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography. Neuroscience 91:549–556

    Article  CAS  PubMed  Google Scholar 

  • Forgacs PB, Bodis-Wollner I (2004) Nicotinic receptors and cognition in Parkinson’s Disease: the importance of neuronal synchrony. J Neural Transm (Vienna) 111:1317–1331. doi:10.1007/s00702-004-0169-0

    Article  CAS  Google Scholar 

  • Fornai F et al (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418. doi:10.1073/pnas.0409713102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455. doi:10.1002/ana.410200403

    Article  CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1993) Similarities and differences between MPTP-induced parkinsonism and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 60:600–608

    CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1995) Ultrastructure of eosinophilic inclusion bodies in the amygdala-parahippocampal region of aged squirrel monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci Lett 184:44–47

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157. doi:10.1016/S0079-6123(10)84007-5

    Article  CAS  PubMed  Google Scholar 

  • Francois C, Savy C, Jan C, Tande D, Hirsch EC, Yelnik J (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson’s disease patients. J Comp Neurol 425:121–129

    Article  CAS  PubMed  Google Scholar 

  • Freeman A et al (2001) Nigrostriatal collaterals to thalamus degenerate in parkinsonian animal models. Ann Neurol 50:321–329

    Article  CAS  PubMed  Google Scholar 

  • Friedman A et al (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333. doi:10.1016/j.cell.2015.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668–677. doi:10.1111/j.1460-9568.2010.07564.x

    Article  PubMed  Google Scholar 

  • Gai WP, Halliday GM, Blumbergs PC, Geffen LB, Blessing WW (1991) Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain 114(Pt 5):2253–2267

    Article  PubMed  Google Scholar 

  • Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189. doi:10.1016/j.baga.2011.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Hu X, Rommelfanger KS, Pare JF, Khan ZU, Smith Y, Wichmann T (2014) Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J Neurophysiol 112:467–479. doi:10.1152/jn.00849.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cabezas MA, Rico B, Sanchez-Gonzalez MA, Cavada C (2007) Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 34:965–984. doi:10.1016/j.neuroimage.2006.07.032

    Article  PubMed  Google Scholar 

  • Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434. doi:10.1093/cercor/bhn093

    Article  PubMed  Google Scholar 

  • Garvey J et al (1986) Administration of MPTP to the common marmoset does not alter cortical cholinergic function. Mov Disord 1:129–134. doi:10.1002/mds.870010207

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271. doi:10.1002/cne.902790208

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30:365–374. doi:10.1002/ana.410300308

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Stepniewska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325:1–21. doi:10.1002/cne.903250102

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Febvret A, Colombo J (1993) Serotonergic sprouting in primate MTP-induced hemiparkinsonism. Exp Brain Res 96:100–106

    Article  CAS  PubMed  Google Scholar 

  • Gauthier J, Parent M, Levesque M, Parent A (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834:228–232

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    CAS  PubMed  Google Scholar 

  • German DC, Manaye KF, Sonsalla PK, Brooks BA (1992a) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci 648:42–62

    Article  CAS  PubMed  Google Scholar 

  • German DC et al (1992b) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676. doi:10.1002/ana.410320510

    Article  CAS  PubMed  Google Scholar 

  • Gibb WR, Terruli M, Lees AJ, Jenner P, Marsden CD (1989) The evolution and distribution of morphological changes in the nervous system of the common marmoset following the acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Mov Disord 4:53–74. doi:10.1002/mds.870040109

    Article  CAS  PubMed  Google Scholar 

  • Gilman S et al (2003) REM sleep behavior disorder is related to striatal monoaminergic deficit in MSA. Neurology 61:29–34

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Amaya JM, Graybiel AM (1991) Modular organization of projection neurons in the matrix compartment of the primate striatum. J Neurosci 11:779–791

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994a) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration. J Pharmacol Exp Ther 270:1000–1007

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RE (1994b) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2: central administration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:177–187

    Article  CAS  PubMed  Google Scholar 

  • Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45. doi:10.1111/nyas.12762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr, Yoneoka ES, Elde RP (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6:377–397

    Article  CAS  PubMed  Google Scholar 

  • Grimbergen YA, Munneke M, Bloem BR (2004) Falls in Parkinson’s disease. Curr Opin Neurol 17:405–415

    Article  PubMed  Google Scholar 

  • Gut NK, Winn P (2016) The pedunculopontine tegmental nucleus—a functional hypothesis from the comparative literature. Mov Disord 31:615–624. doi:10.1002/mds.26556

    Article  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Fibiger HC, Jakubovic A, Calne DB (1990) Intracarotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration: biochemical and behavioral observations in a primate model of hemiparkinsonism. J Neurochem 54:1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Guttman M et al (2007) Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol 14:523–528. doi:10.1111/j.1468-1331.2007.01727.x

    Article  CAS  PubMed  Google Scholar 

  • Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T (2012) Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and Parkinsonian monkeys. J Neurophysiol 107:1500–1512. doi:10.1152/jn.00348.2011

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    Article  CAS  PubMed  Google Scholar 

  • Hantraye P et al (1992) Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. NeuroReport 3:265–268

    Article  CAS  PubMed  Google Scholar 

  • Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willer JC, Maziere M (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53:169–178

    Article  CAS  PubMed  Google Scholar 

  • Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94

    Article  CAS  PubMed  Google Scholar 

  • Hauber W, Lutz S (1999) Blockade of dopamine D2, but not of D1 receptors in the rat globus pallidus induced Fos-like immunoreactivity in the caudate-putamen, substantia nigra and entopeduncular nucleus Neurosci Lett 271:73–76

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82. doi:10.1002/cne.903250107

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409:400–410

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62:389–394

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000a) Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47:345–352

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000b) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(Pt 7):1410–1421

    Article  PubMed  Google Scholar 

  • Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291:415–418

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Little MD, Bankiewicz K, Yang SC, Markey SP, Johannessen JN (1991) Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: an in vivo autoradiographic study. Neuroscience 40:133–158

    Article  CAS  PubMed  Google Scholar 

  • Herrero MT, Hirsch EC, Javoy-Agid F, Obeso JA, Agid Y (1993a) Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Res 624:281–285

    Article  CAS  PubMed  Google Scholar 

  • Herrero MT et al (1993b) Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience 56:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoglinger GU et al (2003a) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger GU et al (2003b) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1975) Brain monoamines and parkinsonism. Natl Inst Drug Abuse Res Monogr Ser 3:13–21

    CAS  Google Scholar 

  • Hornykiewicz O (1998) Biochemical aspects of Parkinson’s disease. Neurology 51:S2–S9

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    CAS  PubMed  Google Scholar 

  • Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481–2487. doi:10.1523/JNEUROSCI.5411-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Hsia AY, Vincent JD, Lledo PM (1999) Dopamine depresses synaptic inputs into the olfactory bulb. J Neurophysiol 82:1082–1085

    Article  CAS  PubMed  Google Scholar 

  • Huang C et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130:1834–1846. doi:10.1093/brain/awm086

    Article  PubMed  PubMed Central  Google Scholar 

  • Huisman E, Uylings HB, Hoogland PV (2004) A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692. doi:10.1002/mds.10713

    Article  PubMed  Google Scholar 

  • Iacopino A, Christakos S, German D, Sonsalla PK, Altar CA (1992a) Calbindin-D28 K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Brain Res Mol Brain Res 13:251–261

    Article  CAS  PubMed  Google Scholar 

  • Iacopino AM, Christakos S, Modi P, Altar CA (1992b) Nerve growth factor increases calcium binding protein (calbindin-D28K) in rat olfactory bulb. Brain Res 578:305–310

    Article  CAS  PubMed  Google Scholar 

  • Iravani MM, Syed E, Jackson MJ, Johnston LC, Smith LA, Jenner P (2005) A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur J Neurosci 21:841–854. doi:10.1111/j.1460-9568.2005.03915.x

    Article  PubMed  Google Scholar 

  • Irizarry MC, Growdon W, Gomez-Isla T, Newell K, George JM, Clayton DF, Hyman BT (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol 57:334–337

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S183–S185. doi:10.1016/S1353-8020(11)70057-8

    Article  PubMed  Google Scholar 

  • Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S (2015) Evaluation of models of Parkinson’s disease. Front Neurosci 9:503. doi:10.3389/fnins.2015.00503

    PubMed  Google Scholar 

  • Jan C, Pessiglione M, Tremblay L, Tande D, Hirsch EC, Francois C (2003) Quantitative analysis of dopaminergic loss in relation to functional territories in MPTP-treated monkeys. Eur J Neurosci 18:2082–2086

    Article  PubMed  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner P (2002) Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology 58:S1–S8

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Marsden CD (1986) The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease. J Neural Transm Suppl 20:11–39

    CAS  PubMed  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1987) Subdivisions of the dopamine-containing A8–A9–A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience 23:223–242

    Article  CAS  PubMed  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  CAS  PubMed  Google Scholar 

  • Johannessen JN (1991) A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) within catecholaminergic neurons. Neurotoxicology 12:285–302

    CAS  PubMed  Google Scholar 

  • Johannessen JN, Chiueh CC, Burns RS, Markey SP (1985) Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects. Life Sci 36:219–224

    Article  CAS  PubMed  Google Scholar 

  • Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116. doi:10.1016/j.neuro.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Johnston TM, Fox SH (2015) Symptomatic models of Parkinson’s disease and l-DOPA-induced dyskinesia in non-human primates. Curr Top Behav Neurosci 22:221–235. doi:10.1007/7854_2014_352

    Article  CAS  PubMed  Google Scholar 

  • Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep–waking cycle. Ergeb Physiol 64:166–307

    CAS  PubMed  Google Scholar 

  • Kaasinen V, Nurmi E, Bruck A, Eskola O, Bergman J, Solin O, Rinne JO (2001) Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 124:1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Karachi C et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Investig 120:2745–2754. doi:10.1172/JCI42642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkwal G et al (2016) Parkinsonism driven by antipsychotics originates from dopaminergic control of striatal cholinergic interneurons. Neuron 91:67–78. doi:10.1016/j.neuron.2016.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilbourn MR, Sherman P, Abbott LC (1998) Reduced MPTP neurotoxicity in striatum of the mutant mouse tottering. Synapse 30:205–210. doi:10.1002/(SICI)1098-2396(199810)30:2<205:AID-SYN10>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880. doi:10.1056/NEJM198804073181402

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131. doi:10.1093/brain/awm239

    PubMed  Google Scholar 

  • Kliem MA, Maidment NT, Ackerson LC, Chen S, Smith Y, Wichmann T (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98:1489–1500. doi:10.1152/jn.00171.2007

    Article  CAS  PubMed  Google Scholar 

  • Kliem MA, Pare JF, Khan ZU, Wichmann T, Smith Y (2010) Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci 31:836–851. doi:10.1111/j.1460-9568.2010.07109.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko JH et al (2013) Prefrontal dopaminergic receptor abnormalities and executive functions in Parkinson’s disease. Hum Brain Mapp 34:1591–1604. doi:10.1002/hbm.22006

    Article  PubMed  Google Scholar 

  • Ko WK, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, Bezard E (2016) An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 110:48–58. doi:10.1016/j.neuropharm.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  • Koprich JB, Johnston TH, Reyes G, Omana V, Brotchie JM (2016) Towards a non-human primate model of alpha-synucleinopathy for development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in macaque. PLoS One 11:e0167235. doi:10.1371/journal.pone.0167235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korczyn AD (2001) Dementia in Parkinson’s disease. J Neurol 248(Suppl 3):III1–III4

    PubMed  Google Scholar 

  • Koster NL, Norman AB, Richtand NM, Nickell WT, Puche AC, Pixley SK, Shipley MT (1999) Olfactory receptor neurons express D2 dopamine receptors. J Comp Neurol 411:666–673

    Article  CAS  PubMed  Google Scholar 

  • Kostic VS, Djuricic BM, Covickovic-Sternic N, Bumbasirevic L, Nikolic M, Mrsulja BB (1987) Depression and Parkinson’s disease: possible role of serotonergic mechanisms. J Neurol 234:94–96

    Article  CAS  PubMed  Google Scholar 

  • Kumakura Y et al (2010) Elevated [(18)F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson’s disease. Neuroimage 49:2933–2939. doi:10.1016/j.neuroimage.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  • Lange KW, Wells FR, Jenner P, Marsden CD (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J Neurochem 60:197–203

    Article  CAS  PubMed  Google Scholar 

  • Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350

    Article  CAS  PubMed  Google Scholar 

  • Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596. doi:10.1002/ana.20834

    Article  PubMed  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309:310

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. NeuroReport 2:601–604

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289:36–52. doi:10.1002/cne.902890104

    Article  CAS  PubMed  Google Scholar 

  • Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567–3583. doi:10.1523/JNEUROSCI.5050-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Lee JY et al (2014) Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry 85:23–30. doi:10.1136/jnnp-2013-305549

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106(Pt 2):257–270

    Article  PubMed  Google Scholar 

  • Lemke MR (2008) Depressive symptoms in Parkinson’s disease. Eur J Neurol 15(Suppl 1):21–25. doi:10.1111/j.1468-1331.2008.02058.x

    Article  PubMed  Google Scholar 

  • Lenka A, Hegde S, Jhunjhunwala KR, Pal PK (2016) Interactions of visual hallucinations, rapid eye movement sleep behavior disorder and cognitive impairment in Parkinson’s disease: a review. Parkinsonism Relat Disord 22:1–8. doi:10.1016/j.parkreldis.2015.11.018

    Article  PubMed  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7:279–290

    CAS  PubMed  Google Scholar 

  • Lewis DA, Melchitzky DS, Haycock JW (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res 656:1–13

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432:119–136

    Article  CAS  PubMed  Google Scholar 

  • Liang CL, Sinton CM, German DC (1996a) Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 75:523–533

    Article  CAS  PubMed  Google Scholar 

  • Liang CL, Sinton CM, Sonsalla PK, German DC (1996b) Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5:313–318

    Article  CAS  PubMed  Google Scholar 

  • Lin X et al (2015) Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. Biochim Biophys Acta 1854:779–787. doi:10.1016/j.bbapap.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren HS, Dunnett SB (2012) Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? Eur J Neurosci 35:1894–1907. doi:10.1111/j.1460-9568.2012.08162.x

    Article  PubMed  Google Scholar 

  • Low K, Aebischer P (2012) Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis 48:189–201. doi:10.1016/j.nbd.2011.12.038

    Article  PubMed  CAS  Google Scholar 

  • Lu L et al (2006) Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson’s disease: a post-mortem study in human control subjects. Neurobiol Dis 23:409–421. doi:10.1016/j.nbd.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  • Luft AR, Schwarz S (2009) Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 27:415–421. doi:10.1016/j.ijdevneu.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  • Marmion DJ, Kordower JH (2017) alpha-Synuclein nonhuman primate models of Parkinson’s disease. J Neural Transm (Vienna). doi:10.1007/s00702-017-1720-0

    Google Scholar 

  • Masilamoni G, Smith Y (2011) Chronic MPTP treatment induces extrastriatal monoaminergic denervation and α-synuclein aggregates in a rhesus monkey model of Parkinson’s disease. Program No. 882.01. 2011, Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC (online)

  • Masilamoni G et al (2010) (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp Neurol 226:265–273. doi:10.1016/j.expneurol.2010.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masilamoni G, Weinkle A, Bogenpohl J, Groover O, Wichmann T (2011a) A nonhuman primate model of Parkinson’s disease associated with cortical and subcortical dopaminergic, noradrenergic and serotonergic neuronal degeneration. Mov Disord 26(2):S23–S24 (abstract)

    Google Scholar 

  • Masilamoni GJ et al (2011b) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073. doi:10.1093/brain/awr137

    Article  PubMed  PubMed Central  Google Scholar 

  • Masilamoni GJ, Groover O, Smith Y (2016) Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Neurobiol Dis 100:9–18. doi:10.1016/j.nbd.2016.12.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCallum SE, Parameswaran N, Perez XA, Bao S, McIntosh JM, Grady SR, Quik M (2006) Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates. J Neurochem 96:960–972. doi:10.1111/j.1471-4159.2005.03610.x

    Article  CAS  PubMed  Google Scholar 

  • McCance-Katz EF, Marek KL, Price LH (1992) Serotonergic dysfunction in depression associated with Parkinson’s disease. Neurology 42:1813–1814

    Article  CAS  PubMed  Google Scholar 

  • McCormack AL, Mak SK, Shenasa M, Langston WJ, Forno LS, Di Monte DA (2008) Pathologic modifications of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol 67:793–802. doi:10.1097/NEN.0b013e318180f0bd

    Article  PubMed  PubMed Central  Google Scholar 

  • McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162. doi:10.1002/ana.20186

    Article  CAS  PubMed  Google Scholar 

  • Meissner W, Prunier C, Guilloteau D, Chalon S, Gross CE, Bezard E (2003) Time-course of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson’s disease. Mol Neurobiol 28:209–218. doi:10.1385/MN:28:3:209

    Article  CAS  PubMed  Google Scholar 

  • Mejias-Aponte CA, Drouin C, Aston-Jones G (2009) Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary homeostatic centers. J Neurosci 29:3613–3626. doi:10.1523/JNEUROSCI.4632-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegas W et al (2015) Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife 4:e10032. doi:10.7554/eLife.10032

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55:84–90

    Article  CAS  PubMed  Google Scholar 

  • Mihatsch W, Russ H, Gerlach M, Riederer P, Przuntek H (1991) Treatment with antioxidants does not prevent loss of dopamine in the striatum of MPTP-treated common marmosets: preliminary observations. J Neural Transm Park Dis Dement Sect 3:73–78

    Article  CAS  PubMed  Google Scholar 

  • Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI (1999a) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156:138–148. doi:10.1006/exnr.1998.7008

    Article  CAS  PubMed  Google Scholar 

  • Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999b) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20:424–429

    Article  CAS  PubMed  Google Scholar 

  • Miyasaki JM et al (2006) Practice Parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66:996–1002. doi:10.1212/01.wnl.0000215428.46057.3d

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Whone AL, Brooks DJ (2008) Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol Dis 29:381–390. doi:10.1016/j.nbd.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Quinn B, DeLanney LE, Irwin I, Langston JW, Graybiel AM (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 89:3859–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin N, Jourdain VA, Di Paolo T (2014) Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 256:105–116. doi:10.1016/j.expneurol.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Di Paolo T (2017) Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna). doi:10.1007/s00702-017-1722-y

    Google Scholar 

  • Mounayar S et al (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130:2898–2914. doi:10.1093/brain/awm208

    Article  PubMed  Google Scholar 

  • Mundinano IC et al (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74. doi:10.1007/s00401-011-0830-2

    Article  CAS  PubMed  Google Scholar 

  • Mundinano IC, Hernandez M, Dicaudo C, Ordonez C, Marcilla I, Tunon MT, Luquin MR (2013) Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys. Acta Neuropathol 126:411–425. doi:10.1007/s00401-013-1144-3

    Article  CAS  PubMed  Google Scholar 

  • Munro-Davies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Exp Brain Res 129:511–517

    Article  CAS  PubMed  Google Scholar 

  • Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15:415–418. doi:10.1002/ana.410150503

    Article  CAS  PubMed  Google Scholar 

  • Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430

    Article  PubMed  Google Scholar 

  • Naneix F, Marchand AR, Di Scala G, Pape JR, Coutureau E (2009) A role for medial prefrontal dopaminergic innervation in instrumental conditioning. J Neurosci 29:6599–6606. doi:10.1523/JNEUROSCI.1234-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Narayanan NS, Rodnitzky RL, Uc EY (2013) Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 24:267–278. doi:10.1515/revneuro-2013-0004

    Article  PubMed  Google Scholar 

  • Nayyar T et al (2009) Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation. Eur J Neurosci 30:207–216. doi:10.1111/j.1460-9568.2009.06806.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y et al (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24:2308–2317. doi:10.1093/hmg/ddu748

    Article  CAS  PubMed  Google Scholar 

  • Nobin A, Bjorklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40

    CAS  PubMed  Google Scholar 

  • Ohama E, Ikuta F (1976) Parkinson’s disease: distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol 34:311–319

    Article  CAS  PubMed  Google Scholar 

  • Oke AF, Adams RN (1987) Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. Schizophr Bull 13:589–604

    Article  CAS  PubMed  Google Scholar 

  • Oliveras-Salva M et al (2013) rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener 8:44. doi:10.1186/1750-1326-8-44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papadopoulos GC, Parnavelas JG (1990) Distribution and synaptic organization of dopaminergic axons in the lateral geniculate nucleus of the rat. J Comp Neurol 294:356–361. doi:10.1002/cne.902940305

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Cossette M (2001) Extrastriatal dopamine and Parkinson’s disease. Adv Neurol 86:45–54

    CAS  PubMed  Google Scholar 

  • Parent A, Smith Y (1987) Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus). Brain Res 426:397–400

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Smith Y, Filion M, Dumas J (1989) Distinct afferents to internal and external pallidal segments in the squirrel monkey. Neurosci Lett 96:140–144

    Article  CAS  PubMed  Google Scholar 

  • Parry TJ, Eberle-Wang K, Lucki I, Chesselet MF (1994) Dopaminergic stimulation of subthalamic nucleus elicits oral dyskinesia in rats. Exp Neurol 128:181–190. doi:10.1006/exnr.1994.1126

    Article  CAS  PubMed  Google Scholar 

  • Patt S, Gerhard L (1993) A Golgi study of human locus coeruleus in normal brains and in Parkinson’s disease. Neuropathol Appl Neurobiol 19:519–523

    Article  CAS  PubMed  Google Scholar 

  • Pavese N et al (2010) In vivo assessment of brain monoamine systems in parkin gene carriers: a PET study. Exp Neurol 222:120–124. doi:10.1016/j.expneurol.2009.12.021

    Article  CAS  PubMed  Google Scholar 

  • Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ (2011) Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage 56:1463–1468. doi:10.1016/j.neuroimage.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic l-DOPA administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix jacchus). Mov Disord 10:731–740. doi:10.1002/mds.870100606

    Article  CAS  PubMed  Google Scholar 

  • Perez-Otano I, Herrero MT, Oset C, De Ceballos ML, Luquin MR, Obeso JA, Del Rio J (1991) Extensive loss of brain dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Res 567:127–132

    Article  CAS  PubMed  Google Scholar 

  • Perez-Otano I, Oset C, Luquin MR, Herrero MT, Obeso JA, Del Rio J (1994a) MPTP-induced parkinsonism in primates: pattern of striatal dopamine loss following acute and chronic administration. Neurosci Lett 175:121–125

    Article  CAS  PubMed  Google Scholar 

  • Perez-Otano I, Oset C, Luquin MR, Herrero MT, Obeso JA, Del Rio J (1994b) MPTP-induced parkinsonism in primates: pattern of striatal dopamine loss following acute and chronic administration. Neurosci Lett 175:121–125

    Article  CAS  PubMed  Google Scholar 

  • Perry EK et al (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessiglione M, Guehl D, Jan C, Francois C, Hirsch EC, Feger J, Tremblay L (2004) Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. Eur J Neurosci 19:437–446

    Article  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Petryszyn S, Di Paolo T, Parent A, Parent M (2016) The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiol Dis 95:46–53. doi:10.1016/j.nbd.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1988a) The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson’s disease. Neurosci Lett 92:228–233

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1988b) The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson’s disease. Neurosci Lett 92:228–233

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Bertel O, Schingnitz G, Hornykiewicz O (1990) Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17:263–270

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44:591–605

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Hornykiewicz O, Giros B, Caron MG (1996) Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. J Pharmacol Exp Ther 277:1437–1443

    CAS  PubMed  Google Scholar 

  • Pifl C, Reither H, Del Rey NL, Cavada C, Obeso JA, Blesa J (2017) Early paradoxical increase of dopamine: a neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys. Front Neuroanat 11:46. doi:10.3389/fnana.2017.00046

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillon B, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y (1989) Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry 52:201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P (2010) Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 40:216–221. doi:10.1016/j.nbd.2010.05.028

    Article  CAS  PubMed  Google Scholar 

  • Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2:a009308. doi:10.1101/cshperspect.a009308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM (2014) Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol 256:133–143. doi:10.1016/j.expneurol.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  • Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24. doi:10.1162/jocn.1995.7.1.1

    Article  CAS  PubMed  Google Scholar 

  • Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O (2008) Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlation. Neurology 70:1403–1410. doi:10.1212/01.wnl.0000285082.18969.3a

    Article  CAS  PubMed  Google Scholar 

  • Rakshi JS et al (1999) Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [(18)F]dopa-PET study. Brain 122(9):1637–1650

    Article  PubMed  Google Scholar 

  • Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7:413–423. doi:10.1016/j.nurt.2010.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recasens A et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. doi:10.1002/ana.24066

    Article  CAS  PubMed  Google Scholar 

  • Reichmann H, Brandt MD, Klingelhoefer L (2016) The nonmotor features of Parkinson’s disease: pathophysiology and management advances. Curr Opin Neurol 29:467–473. doi:10.1097/WCO.0000000000000348

    Article  PubMed  Google Scholar 

  • Rey NL, Wesson DW, Brundin P (2016) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis. doi:10.1016/j.nbd.2016.12.013

    PubMed  Google Scholar 

  • Roeltgen DP, Schneider JS (1991) Chronic low-dose MPTP in nonhuman primates: a possible model for attention deficit disorder. J Child Neurol 6(Suppl):S82–S89

    Article  PubMed  Google Scholar 

  • Roeltgen DP, Schneider JS (1994) Task persistence and learning ability in normal and chronic low dose MPTP-treated monkeys. Behav Brain Res 60:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17:163–170. doi:10.1002/ana.410170210

    Article  CAS  PubMed  Google Scholar 

  • Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4:139. doi:10.3389/fnana.2010.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Rommelfanger KS, Weinshenker D, Miller GW (2004) Reduced MPTP toxicity in noradrenaline transporter knockout mice. J Neurochem 91:1116–1124. doi:10.1111/j.1471-4159.2004.02785.x

    Article  CAS  PubMed  Google Scholar 

  • Russ H, Mihatsch W, Gerlach M, Riederer P, Przuntek H (1991) Neurochemical and behavioural features induced by chronic low dose treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset: implications for Parkinson’s disease? Neurosci Lett 123:115–118

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083. doi:10.1523/JNEUROSCI.0968-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Sanghera MK, Manaye K, McMahon A, Sonsalla PK, German DC (1997) Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. NeuroReport 8:3327–3331

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS (2006) Modeling cognitive deficits associated with parkinsonism in the chronic-low-dose MPTP-treated monkey. In: Levin ED, Buccafusco JJ (eds) Animal models of cognitive impairment. Frontiers in Neuroscience, Boca Raton

    Google Scholar 

  • Schneider JS, Kovelowski CJ 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519:122–128

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290:731–739

    CAS  PubMed  Google Scholar 

  • Sesack SR, Bressler CN, Lewis DA (1995) Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: a study of calretinin-immunoreactive cells. Neurosci Lett 200:9–12

    Article  CAS  PubMed  Google Scholar 

  • Shimozawa A et al (2017) Propagation of pathological alpha-synuclein in marmoset brain. Acta Neuropathol Commun 5:12. doi:10.1186/s40478-017-0413-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slovin H, Abeles M, Vaadia E, Haalman I, Prut Y, Bergman H (1999) Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys. J Neurophysiol 81:858–874

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23:S28–S33

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547. doi:10.1002/mds.22027

    Article  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527. doi:10.1016/j.tins.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B, Pare JF, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68. doi:10.1016/j.brainresbull.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Surmeier DJ, Redgrave P, Kimura M (2011) Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci 31:16102–16106. doi:10.1523/JNEUROSCI.4634-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y et al (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5. doi:10.3389/fnsys.2014.00005

    PubMed  PubMed Central  Google Scholar 

  • Solari N, Bonito-Oliva A, Fisone G, Brambilla R (2013) Understanding cognitive deficits in Parkinson’s disease: lessons from preclinical animal models. Learn Mem 20:592–600. doi:10.1101/lm.032029.113

    Article  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28:317–324. doi:10.1016/j.tins.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Sterpenich V et al (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26:7416–7423. doi:10.1523/JNEUROSCI.1001-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113. doi:10.1038/nrn.2016.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutoo D, Akiyama K, Yabe K (2001) Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain. J Neurosci Res 63:369–376. doi:10.1002/1097-4547(20010301)63:5<369:AID-JNR1031>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand 70:20–28

    Article  CAS  PubMed  Google Scholar 

  • Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220. doi:10.1016/j.neuroscience.2003.10.028

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Pancani T, Lim SAO, Tubert C, Melendez AE, Shen W, Surmeier DJ (2017) Striatal cholinergic interneurons and Parkinson’s disease. Eur J Neurosci. doi:10.1111/ejn.13638

    PubMed  Google Scholar 

  • Taylor JR, Elsworth JD, Roth RH, Sladek JR Jr, Redmond DE Jr (1990) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 113(Pt 3):617–637

    Article  PubMed  Google Scholar 

  • Taylor TN et al (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 29:8103–8113. doi:10.1523/JNEUROSCI.1495-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor TN, Greene JG, Miller GW (2010) Behavioral phenotyping of mouse models of Parkinson’s disease. Behav Brain Res 211:1–10. doi:10.1016/j.bbr.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Thevathasan W et al (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatry 81:1099–1104. doi:10.1136/jnnp.2009.189324

    Article  PubMed  Google Scholar 

  • Thompson JL et al (2014) Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [(1)(1)C]NNC112. Psychopharmacology 231:4231–4240. doi:10.1007/s00213-014-3566-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K (1999) Experimental models of Parkinson’s disease: insights from many models. Lab Anim Sci 49:363–371

    CAS  PubMed  Google Scholar 

  • Unguez GA, Schneider JS (1988) Dopaminergic dorsal raphe neurons in cats and monkeys are sensitive to the toxic effects of MPTP. Neurosci Lett 94:218–223

    Article  CAS  PubMed  Google Scholar 

  • Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience 63:47–56

    Article  CAS  PubMed  Google Scholar 

  • Venator DK, Lewis DA, Finlay JM (1999) Effects of partial dopamine loss in the medial prefrontal cortex on local baseline and stress-evoked extracellular dopamine concentrations. Neuroscience 93:497–505

    Article  CAS  PubMed  Google Scholar 

  • Vezoli J et al (2011) Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson’s disease. PLoS One 6:e23952. doi:10.1371/journal.pone.0023952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba RM, Smith Y (2011) Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 519:989–1005. doi:10.1002/cne.22563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba R, Smith Y (2017) Significant increase in the density of striatal cholinergic interneurons in the caudate nucleus of MPTP-treated parkinsonian monkeys. Program No. 757.13. 2017, Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC (online)

  • Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394. doi:10.1007/s00429-013-0507-9

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets FJ, Snow BJ, Tetrud JW, Langston JW, Schulzer M, Calne DB (1994) Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann Neurol 36:765–770. doi:10.1002/ana.410360513

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Hunt SP, Jenner P, Marsden CD (1987) An immunohistochemical study of the acute and long-term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Neuroscience 23:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL 3rd, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248. doi:10.1002/ana.410130304

    Article  CAS  PubMed  Google Scholar 

  • Whone AL, Moore RY, Piccini PP, Brooks DJ (2003) Plasticity of the nigropallidal pathway in Parkinson’s disease. Ann Neurol 53:206–213. doi:10.1002/ana.10427

    Article  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 991:199–213

    Article  CAS  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998a) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  CAS  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998b) Widespread origin of the primate mesofrontal dopamine system Cerebr. Cortex 8:321–345

    Article  CAS  Google Scholar 

  • Wilson DA, Sullivan RM (1995) The D2 antagonist spiperone mimics the effects of olfactory deprivation on mitral/tufted cell odor response patterns. J Neurosci 15:5574–5581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690. doi:10.1016/j.tins.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  • Yang W et al (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35:8345–8358. doi:10.1523/JNEUROSCI.0772-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HH, Chen RJ, Zhu YH, Peng CL, Zhu XR (2013) The neuroprotective effect of overexpression of calbindin-D(28k) in an animal model of Parkinson’s disease. Mol Neurobiol 47:117–122. doi:10.1007/s12035-012-8332-3

    Article  CAS  PubMed  Google Scholar 

  • Yue Z (2012) Genetic mouse models for understanding LRRK2 biology, pathology and pre-clinical application. Parkinsonism Relat Disord 18(Suppl 1):S180–S182. doi:10.1016/S1353-8020(11)70056-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003a) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003b) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40:599–607. doi:10.1016/j.nbd.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Zesiewicz TA, Hauser RA (2002) Depression in Parkinson’s disease. Curr Psychiatry Rep 4:69–73

    Article  PubMed  Google Scholar 

  • Zesiewicz TA, Baker MJ, Wahba M, Hauser RA (2003) Autonomic nervous system dysfunction in Parkinson’s disease. Curr Treat Options Neurol 5:149–160

    Article  PubMed  Google Scholar 

  • Zilles K et al (1996) Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats. Neurosci Biobehav Rev 20:593–605

    Article  CAS  PubMed  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46. doi:10.1002/ana.410260106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mrs. Susan Jenkins and Jean-Francois Pare for their technical support. This work was supported by NIH/ORIP Grant P51-OD011132 to the Yerkes National Primate Research Center, grants from P50NS098685-NINDS (UDALL PD Center) and R01NS083386-NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunasingh J. Masilamoni.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masilamoni, G.J., Smith, Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm 125, 337–363 (2018). https://doi.org/10.1007/s00702-017-1774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1774-z

Keywords

Navigation