Skip to main content

Advertisement

Log in

Spinal cord lesions in sporadic Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In this autopsy-based study, α-synuclein immunohistochemistry and lipofuscin pigment-Nissl architectonics in serial sections of 100 μm thickness were used to investigate the spinal cords and brains of 46 individuals: 28 patients with clinically and neuropathologically confirmed Parkinson’s disease, 6 cases with incidental Lewy body disease, and 12 age-matched controls. α-Synuclein inclusions (particulate aggregations, Lewy neurites/bodies) in the spinal cord were present between neuropathological stages 2–6 in all cases whose brains were staged for Parkinson’s disease-related synucleinopathy. The only individuals who did not have Lewy pathology in the spinal cord were a single stage 1 case (incidental Lewy body disease) and all controls. Because the Parkinson’s disease-related lesions were observable in the spinal cord only after Lewy pathology was seen in the brain, it could be concluded that, within the central nervous system, sporadic Parkinson’s disease does not begin in the spinal cord. In addition: (1) α-Synuclein-immunoreactive axons clearly predominated over Lewy bodies throughout the spinal cord and were visible in medial and anterior portions of the anterolateral funiculus. Their terminal axons formed dense α-synuclein-immunoreactive networks in the gray matter and were most conspicuous in the lateral portions of layers 1, 7, and in the cellular islands of layer 9. (2) Notably, this axonopathy increased remarkably in density from cervicothoracic segments to lumbosacral segments of the cord. (3) Topographically, it is likely that the spinal cord α-synuclein immunoreactive axonal networks represent descending projections from the supraspinal level setting nuclei (locus coeruleus, lower raphe nuclei, magnocellular portions of the reticular formation). (4) Following the appearance of the spinal cord axonal networks, select types of projection neurons in the spinal cord gray matter displayed α-synuclein-immunoreactive inclusions: chiefly, nociceptive neurons of the dorsal horn in layer 1, sympathetic and parasympathetic preganglionic neurons in layer 7, the cellular pools of α-motoneurons in layer 9, and the smaller motoneurons in Onuf’s nucleus in layer 9 (ventral horn). The spinal cord lesions may contribute to clinical symptoms (e.g., pain, constipation, poor balance, lower urinary tract complaints, and sexual dysfunction) that occur during the premotor and motor phases of sporadic Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott RD, Petrovitch H, White LR et al (2001) Frequency of bowel movements and the risk of Parkinson’s disease. Neurology 57:456–462

    PubMed  CAS  Google Scholar 

  2. Abbott RD, Ross GW, Petrovitch H et al (2007) Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord 22:1581–1586

    PubMed  Google Scholar 

  3. Ashraf W, Pfeiffer RF, Quigley EMM (1994) Anorectal manometry in the assessment of anorectal function in Parkinson’s disease: a comparison with chronic idiopathic constipation. Mov Disord 9:655–663

    PubMed  CAS  Google Scholar 

  4. Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110

    PubMed  CAS  Google Scholar 

  5. Awerbuch GI, Sandyk R (1994) Autonomic functions in the early stages of Parkinson’s disease. Int J Neurosci 74:9–16

    PubMed  CAS  Google Scholar 

  6. Barson AJ, Sands J (1977) Regional and segmental characteristics of the human spinal cord. J Anat 123:797–803

    PubMed  CAS  Google Scholar 

  7. Basbaum AI, Fields HL (1984) Endogeneous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7:309–338

    PubMed  CAS  Google Scholar 

  8. Beach TG, Adler CH, Sue LI et al (2010) Multi-organ distribution of phospohorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702

    PubMed  CAS  Google Scholar 

  9. Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001

    PubMed  CAS  Google Scholar 

  10. Benarroch EE (2001) Pain-autonomic interactions: a selective review. Clin Auton Res 11:343–349

    PubMed  CAS  Google Scholar 

  11. Benarroch EE (2007) Enteric nervous system: functional organization and neurologic implications. Neurology 69:1953–1957

    PubMed  Google Scholar 

  12. Benarroch EE (2010) Neural control of the bladder: recent advances and neurologic implications. Neurology 75:1839–1846

    PubMed  Google Scholar 

  13. Benarroch EE, Schmeichel AM, Low PA et al (2005) Involvement of medullary regions controlling sympathetic output in Lewy body disease. Brain 128:338–344

    PubMed  Google Scholar 

  14. Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Academic Press, San Diego, pp 464–478

    Google Scholar 

  15. Bloch A, Probst A, Bissig H, Adams H, Tolnay M (2006) α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 12:284–295

    Google Scholar 

  16. Bohus B, Koolhaas JM, Luiten PGM et al (1996) The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine and autonomic outflow. Progr Brain Res 107:447–460

    CAS  Google Scholar 

  17. Bowsher D, Abdel-Maguid TE (1984) Superficial dorsal horn of the adult human spinal cord. Neurosurgery 15:893–899

    PubMed  CAS  Google Scholar 

  18. Braak E, Sandmann-Keil D, Rüb U et al (2001) Alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol 101:195–201

    PubMed  CAS  Google Scholar 

  19. Braak H (1984) Architectonics as seen by lipofuscin stains. In: Jones EG, Peters A (eds) Cerebral cortex. Cellular components of the cerebral cortex, vol I. Plenum Press, New York, pp 59–104

  20. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  21. Braak H, Braak E, Yilmazer D et al (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88:493–500

    PubMed  CAS  Google Scholar 

  22. Braak H, Sandmann-Keil D, Gai WP, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by α-synuclein. Neurosci Lett 265:67–69

    PubMed  CAS  Google Scholar 

  23. Braak H, Rüb U, Sandmann-Keil D et al (2000) Parkinson’s disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol 99:489–495

    PubMed  CAS  Google Scholar 

  24. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–210

    PubMed  Google Scholar 

  25. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    PubMed  CAS  Google Scholar 

  26. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    PubMed  CAS  Google Scholar 

  27. Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K (2007) Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 113:421–429

    PubMed  Google Scholar 

  28. Brown RG, Jahanshahi M, Quinn N, Marsden CD (1990) Sexual function in patients with Parkinson’s disease and their partners. J Neurol Neurosurg Psychiatry 53:480–486

    PubMed  CAS  Google Scholar 

  29. Buzas B, Max MB (2004) Pain in Parkinson disease. Neurology 62:2156–2157

    PubMed  Google Scholar 

  30. Cersósimo MG, Benarroch EE (2008) Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord 23:1065–1075

    PubMed  Google Scholar 

  31. Cersósimo MG, Perandonas C, Micheli FE et al (2011) Alpha-synuclein immunoreactivity in minor salivary gland biopsies of Parkinson’s disease patients. Mov Disord 26:188–190

    PubMed  Google Scholar 

  32. Chalmers D, Swash M (1987) Selective vulnerability of urinary Onuf motoneurons in Shy–Drager syndrome. J Neurol 234:259–260

    PubMed  CAS  Google Scholar 

  33. Clark FM, Proudfit HK (1991) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245

    PubMed  CAS  Google Scholar 

  34. Craig AD (1993) Propriospinal input to thoracolumbar sympathetic nuclei from cervical and lumbar lamina I neurons in the cat and monkey. J Comp Neurol 331:517–530

    PubMed  CAS  Google Scholar 

  35. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Ann Rev Neurosci 26:1–30

    PubMed  CAS  Google Scholar 

  36. Dale GE, Probst A, Luthert P et al (1992) Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 83:525–529

    PubMed  CAS  Google Scholar 

  37. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 111:192–203

    PubMed  CAS  Google Scholar 

  38. Defazio G, Beradelli A, Fabrini G et al (2008) Pain as a nonmotor symptom of Parkinson disease: evidence from a case-control study. Arch Neurol 65:1191–1194

    PubMed  Google Scholar 

  39. de Jong TR, Veening JG, Waldinger MD, Cools AR, Olivier B (2006) Serotonin and the neurobiology of the ejaculatory threshold. Neurosci Biobehav Rev 30:893–907

    PubMed  Google Scholar 

  40. Delledonne A, Klos KJ, Fujishiro H et al (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65:1074–1080

    PubMed  Google Scholar 

  41. Del Tredici K, Braak H (2012) Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 27:597–607

    PubMed  Google Scholar 

  42. Del Tredici K, Rüb U, de Vos RAI, Bohl JRE, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  43. Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H (2010) Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol 119:703–713

    PubMed  Google Scholar 

  44. den Hartog Jager WA, Bethlem J (1960) The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. J Neurol Neurosurg Psychiatry 23:283–290

    Google Scholar 

  45. Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    PubMed  CAS  Google Scholar 

  46. Dickson DW (2001) α-Synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432

    PubMed  CAS  Google Scholar 

  47. Dickson DW, Fujishiro H, DelleDonne A et al (2008) Evidence that incidental Lewy body disease is presymptomatic Parkinson’s disease. Acta Neuropathol 115:437–444

    PubMed  Google Scholar 

  48. Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157

    PubMed  CAS  Google Scholar 

  49. Dickson DW, Uchikado H, Fujishiro H, Tsuboi Y (2010) Evidence in favor of Braak staging of Parkinson’s disease. Mov Disord 25(Suppl 1):S78–S82

    PubMed  Google Scholar 

  50. Djaldetti R, Shifrin A, Rogowski Z et al (2004) Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 62:2171–2175

    PubMed  CAS  Google Scholar 

  51. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates: new insights into mechanism of neurodegenerative diseases. J Neurosi Res 61:121–127

    CAS  Google Scholar 

  52. Dugger BN, Murray ME, Boeve BR et al (2012) Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathol Appl Neurol 38:142–152

    CAS  Google Scholar 

  53. Dunning CJ, Reyes JF, Steiner JA, Brundin P (2012) Can Parkinson’s disease pathology be propagated from one neuron to another? Progr Neurobiol 97:205–219

    CAS  Google Scholar 

  54. Eadie MJ, Tyrer JH (1965) Alimentary disorder in parkinsonism. Austral Ann Med 14:13–22

    CAS  Google Scholar 

  55. Edwards LL, Pfeiffer RF, Quigley EMM, Hofman R, Balluff M (1991) Gastrointestinal symptoms in Parkinson’s disease. Mov Disord 6:151–156

    PubMed  CAS  Google Scholar 

  56. Edwards LL, Quigley EMM, Hofman R, Pfeiffer RF (1993) Gastrointestinal symptoms in Parkinson Disease: 18-month follow-up study. Mov Disord 8:83–86

    PubMed  CAS  Google Scholar 

  57. Edwards LL, Quigley EMM, Harned RK et al (1994) Characterization of swallowing and defecation in Parkinson’s disease. Am J Gastroenterol 89:15–25

    PubMed  CAS  Google Scholar 

  58. Ford B (1998) Pain in Parkinson’s disease. Clin Neurosci 5:63–72

    PubMed  CAS  Google Scholar 

  59. Foreman RD, Blair RW (1988) Central organization of sympathetic cardiovascular response to pain. Ann Rev Physiol 50:607–622

    CAS  Google Scholar 

  60. Forger N, Breedlove SM (1986) Sexual dimorphism in human and canine spinal cord: role of early androgen. Proc Natl Acad of Sci USA 83:7527–7531

    CAS  Google Scholar 

  61. Forno LS (1969) Concentric hyalin intraneuronal inclusions of Lewy type in the brain of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 17:557–575

    PubMed  CAS  Google Scholar 

  62. Forno LS (1987) The Lewy body in Parkinson’s disease. Adv Neurol 45:35–43

    PubMed  CAS  Google Scholar 

  63. Fowler CJ (2006) Integrated control of lower urinary tract—clinical perspective. Br J Pharmacol 147:S14–S24

    PubMed  CAS  Google Scholar 

  64. Frigerio R, Fujishiro H, Maraganore DM et al (2009) Comparison of risk factor profiles in incidental Lewy body disease and Parkinson disease. Arch Neurol 66:1114–1119

    PubMed  Google Scholar 

  65. Fürst S (1999) Transmitters involved in antinociception in the spinal cord. Brain Res Bull 48:129–141

    PubMed  Google Scholar 

  66. Gallagher DA, Lees AJ, Schrag A (2010) What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord 25:2493–2500

    PubMed  Google Scholar 

  67. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson’s disease. Arch Neurol 56:33–39

    PubMed  CAS  Google Scholar 

  68. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    PubMed  CAS  Google Scholar 

  69. Goetz CG, Tanner CM, Levy M, Wilson RS, Garron DC (1986) Pain in Parkinson’s disease. Mov Disord 1:45–49

    PubMed  CAS  Google Scholar 

  70. Grillner S, Wallén S, Saitoh K, Kozlov A, Robertson B (2008) Neural basis of goal-directed locomotion in vertebrates—an overview. Brain Res Rev 57:2–12

    PubMed  Google Scholar 

  71. Guyenet PG, Koshiya N, Huangfu D et al (1996) Role of medulla oblongata in generation of sympathetic and vagal outflows. Prog Brain Res 107:127–144

    PubMed  CAS  Google Scholar 

  72. Hansen C, Li J-Y (2012) Beyond alpha-synuclein transfer: pathology propagation in Parkinson’s disease. Trends Mol Med 18:248–255

    PubMed  CAS  Google Scholar 

  73. Hansen C, Angot E, Bergström A-L et al (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725

    PubMed  CAS  Google Scholar 

  74. Hilz MJ, Axelrod FB, Braeske K, Stemper B (2002) Cold pressor test demonstrates residual sympathetic cardiovascular activation in familial dysautonomia. J Neurol Sci 196:81–89

    PubMed  CAS  Google Scholar 

  75. Holstege G (1992) The emotional motor system. Europ J Morphol 30:67–79

    CAS  Google Scholar 

  76. Holstege G (1996) The somatic motor system. Progr Brain Res 107:9–26

    CAS  Google Scholar 

  77. Holstege G (2005) Micturition and the soul. J Comp Neurol 493:15–20

    PubMed  Google Scholar 

  78. Holstege G (2005) Central nervous system control of ejaculation. World J Urol 23:109–114

    PubMed  Google Scholar 

  79. Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Academic Press, San Diego, pp 1306–1325

    Google Scholar 

  80. Hopkins DA, Bieger D, de Vente J, Steinbusch HWM (1996) Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Progr Brain Res 107:79–96

    CAS  Google Scholar 

  81. Hornung J-P (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    PubMed  CAS  Google Scholar 

  82. Iwanaga K, Wakabayashi K, Yoshimoto M et al (1999) Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 52:1269–1271

    PubMed  CAS  Google Scholar 

  83. Jacobs BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352

    PubMed  CAS  Google Scholar 

  84. Jänig W (1996) Spinal cord reflex organization of sympathetic systems. Progr Brain Res 107:43–77

    Google Scholar 

  85. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    PubMed  CAS  Google Scholar 

  86. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197

    PubMed  CAS  Google Scholar 

  87. Jost WH, Eckardt VF (2003) Constipation in idiopathic Parkinson’s disease. Scand J Gastroenterol 38:681–686

    PubMed  CAS  Google Scholar 

  88. Kinder MV, Bastiaanssen EH, Janknegt RA, Marani E (1995) Neuronal circuitry of the lower urinary tract; central and peripheral neuronal control of the micturition cycle. Anat Embryol 192:195–209

    PubMed  CAS  Google Scholar 

  89. Klos KJ, Ahlskog JE, Josephs KA et al (2006) α-Synuclein pathology in the spinal cord of neurologically asymptomatic aged individuals. Neurology 66:1100–1102

    PubMed  CAS  Google Scholar 

  90. Kojima M, Sano Y (1983) The organization of serotonin fibers in the anterior column of the mammalian spinal cord. Anat Embryol 167:1–11

    PubMed  CAS  Google Scholar 

  91. Kojima H, Furuta Y, Fujita M, Fujioka Y, Nagashima K (1989) Onuf’s motoneuron is resistant to poliovirus. J Neurol Sci 93:85–92

    PubMed  CAS  Google Scholar 

  92. Koller WC (1984) Sensory symptoms in Parkinson’s disease. Neurology 34:957–959

    PubMed  CAS  Google Scholar 

  93. Korczyn AD (1990) Autonomic nervous system disturbances in Parkinson’s disease. Adv Neurol 53:463–468

    PubMed  CAS  Google Scholar 

  94. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    PubMed  CAS  Google Scholar 

  95. Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of α-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253

    PubMed  CAS  Google Scholar 

  96. Lee SJ (2008) Origins and effects of extracellular alpha synuclein: implications in Parkinson’s disease. J Mol Neurosci 34:17–22

    PubMed  CAS  Google Scholar 

  97. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 25:6016–6024

    PubMed  CAS  Google Scholar 

  98. Lee SJ, Desplats P, Sigurdson C, Tsigelny I, Masliah E (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 26:702–706

    Google Scholar 

  99. Light AR (1988) Normal anatomy and physiology of the spinal cord dorsal horn. Appl Neurophysiol 51:78–88

    PubMed  CAS  Google Scholar 

  100. Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 88–103

    Google Scholar 

  101. Luk KC, Song C, O’Brien P et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106:20051–20056

    PubMed  CAS  Google Scholar 

  102. Magerkurth C, Schnitzer R, Braune S (2005) Symptoms of autonomic failure in Parkinson’s disease: prevalence and impact on daily life. Clin Auton Res 15:76–82

    PubMed  Google Scholar 

  103. Makaroff L, Gunn A, Gervasoni C, Richy F (2011) Gastrointestinal disorders in Parkinson’s disease: prevalence and health outcomes in a US claims database. J Parkinsons Dis 1:65–74

    Google Scholar 

  104. Mannen T (2000) Neuropathological findings of Onuf’s nucleus and its significance. Neuropathology 20(Suppl):S30–S33

    PubMed  Google Scholar 

  105. Mannen T, Iwata M, Toyokura Y, Nagashima K (1977) Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry 40:464–469

    PubMed  CAS  Google Scholar 

  106. Mannen T, Iwata M, Toyokura Y, Nagashima K (1982) The Onuf’s nucleus and the external anal sphincter muscles in amyotrophic lateral sclerosis and Shy–Drager syndrome. Acta Neuropathol 58:255–260

    PubMed  CAS  Google Scholar 

  107. Markesbery WR, Jicha GA, Liu H, Schmitt FA (2009) Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol 68:816–822

    PubMed  Google Scholar 

  108. Martignoni E, Pacchetti C, Godi L, Miceli G, Nappi G (1995) Autonomic disorders in Parkinson’s disease. J Neural Transm 45(Suppl):11–19

    CAS  Google Scholar 

  109. Martin GF, Holstege G, Mehler WM (1990) Reticular formation of the pons and medulla. In: Paxinos G (ed) The human nervous system, 1st edn. Academic Press, New York, pp 203–220

    Google Scholar 

  110. Mathers SE, Kempster PA, Swash M, Lees AJ (1988) Constipation and paradoxical puborectalis contraction in anismus and Parkinson’s disease: a dystonic phenomenon? J Neurol Neu-rosurg Psy-chia-try 51:1503–1507

    CAS  Google Scholar 

  111. Mathers SE, Kempster PA, Law PJ et al (1989) Anal sphincter dysfunction in Parkinson’s disease. Arch Neurol 46:1061–1064

    PubMed  CAS  Google Scholar 

  112. McHugh JM, McHugh WB (2000) Pain: neuroanatomy, chemical mediators, and clinical implications. AACN Clin Issues 2:168–178

    Google Scholar 

  113. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1862

    Google Scholar 

  114. Millan MJ (2002) Descending control of pain. Prog Neurbiol 66:355–474

    CAS  Google Scholar 

  115. Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F et al (2007) Do α-synuclein aggregates in autonomic plexuses predate Lewy body disorders? A cohort study. Neurology 68:2012–2018

    PubMed  CAS  Google Scholar 

  116. Molony V, Steedman WM, Cervero F, Iggo A (1981) Intracellular marking of identified neurons in the superficial dorsal horn of the cat spinal cord. Quart J Exp Physiol 66:211–223

    CAS  Google Scholar 

  117. Mylius V, Brebbemann J, Dohmann H et al (2011) Pain sensitivity and clinical progression in Parkinson’s disease. Mov Disord 26:2220–2225

    PubMed  Google Scholar 

  118. The National Institute on Aging (1997) Consensus recommendations for the post-mortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–S2

    Google Scholar 

  119. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Progr Brain Res 107:551–580

    CAS  Google Scholar 

  120. Norris EH, Giasson BI, Lee VM (2004) α-Synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54

    PubMed  CAS  Google Scholar 

  121. Nyberg LG, Olson L (1977) A new major projection from locus coeruleus: the main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res 132:85–93

    Google Scholar 

  122. Oinas M, Paetau A, Myillykangas L et al (2010) alpha-Synuclein pathology in the spinal cord autonomic nuclei associates with alpha-synuclein pathology in the brain: a population-based Vantaa 85+ study. Acta Neuropathol 119:715–722

    PubMed  CAS  Google Scholar 

  123. Onufronwicz B (1899) Notes on the arrangement and function of the cell groups of the sacral regions of the spinal cord. J Nerv Med Dis 26:498–504

    Google Scholar 

  124. O’Sullivan SS, Holton JL, Massey LA et al (2008) Parkinson’s disease with Onuf’s nucleus involvement mimicking multiple system atrophy. J Neurol Neurosurg Psychiatry 79:232–234

    PubMed  Google Scholar 

  125. O’Sullivan SS, Williams DR, Gallagher DW et al (2008) Non-motor symptoms as presenting complaints in Parkinson’s disease: a clinicopathological study. Mov Disord 23:101–106

    PubMed  Google Scholar 

  126. Oyanagi K, Wakabayashi K, Ohama E et al (1990) Lewy bodies in lower sacral parasympathetic neurons of a patient with Parkinson’s disease. Acta Neuropathol 80:558–559

    PubMed  CAS  Google Scholar 

  127. Pan-Montojo F, Anichtchik O, Dening Y et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5:38762

    Google Scholar 

  128. Parkinson JD (1817) An essay on the shaking palsy. Sherwood, Neely and Jones, London

    Google Scholar 

  129. Paulus W, Jellinger KA (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50:743–755

    PubMed  CAS  Google Scholar 

  130. Paxinos G, Huang X-F, Sengul G, Watson C (2012) Organization of brainstem nuclei: In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, San Diego, pp 260–327

    Google Scholar 

  131. Perrin FE, Gerber YN, Teigell M et al (2011) Anatomical study of serotonergic innervation and 5-HT1A receptor in the human spinal cord. Cell Death Dis 2:3218

    Google Scholar 

  132. Perrotta A, Sandrini G, Serrao M et al (2011) Facilitated temporal summation of pain at spinal level in Parkinson’s disease. Mov Disord 26:442–448

    PubMed  Google Scholar 

  133. Pfeiffer RF (2011) Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Rel Disord 17:10–15

    Google Scholar 

  134. Pouclet H, Lebouvier T, Coron E et al (2012) A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson’s disease. Neurobiol Dis 45:305–309

    PubMed  Google Scholar 

  135. Prasad K, Beach TG, Hedreen J, Richfield EK (2012) Critical role for truncated α-synuclein and aggregates in Parkinson’s disease and incidental Lewy body disease. Brain Pathol March 27 [Epub ahead of print] PMID: 22452578

  136. Pullen AH, Tucker D, Martin JE (1997) Morphological and morphometric characterization of Onuf’s nucleus in the spinal cord in man. J Anat 191:201–213

    PubMed  Google Scholar 

  137. Puskár Z, Polgár E, Todd AJ (2001) A population of large lamina I projections neurons with selective inhibitory input in rat spinal cord. Neuroscience 102:167–176

    PubMed  Google Scholar 

  138. Quinn NP, Koller WC, Lang AE, Marsden CD (1996) Painful Parkinson’s disease. Lancet 1:1366–1369

    Google Scholar 

  139. Rajaofetra N, Passagia JG, Marlier L et al (1992) Serotoninergic, noradrenergic, and peptidergic innervation of Onuf’s nucleus of normal and transacted spinal cords of baboons (Papio papio). J Comp Neurol 318:1–17

    PubMed  CAS  Google Scholar 

  140. Ransmayr GN, Holliger S, Schletterer K et al (2008) Lower urinary tract symptoms in dementia with Lewy bodies, Parkinson disease, and Alzheimer disease. Neurology 70:299–303

    PubMed  CAS  Google Scholar 

  141. Rexed BA (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    PubMed  CAS  Google Scholar 

  142. Ross GW, Abbott RD, Petrovitch H et al (2006) Association of olfactory dysfunction with incidental Lewy bodies. Mov Disord 21:2062–2067

    PubMed  Google Scholar 

  143. Sage JI (2004) Pain in Parkinson’s disease. Curr Treat Options Neurol 6:191–200

    PubMed  Google Scholar 

  144. Sakakibara R, Shinotoh H, Uchiyama T et al (2001) Questionnaire-based assessment of pelvic organ dysfunction in Parkinson’s disease. Auton Neurosci 92:76–85

    PubMed  CAS  Google Scholar 

  145. Sakakibara R, Uchiyama T, Yamanishi T, Kishi M (2010) Genitourinary dysfunction in Parkinson’s disease. Mov Disord 25:2–12

    PubMed  Google Scholar 

  146. Sakakibara R, Tateno F, Kishi M et al (2012) Pathophysiology of bladder dysfunction in Parkinson’s disease. Neurobiol Dis 46:565–571

    PubMed  CAS  Google Scholar 

  147. Samuels ER, Szabadi E (2009) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253

    Google Scholar 

  148. Sandrini G, Serrae M, Rossi P et al (2005) The lower limb flexion reflex in humans. Prog Neurobiol 77:353–395

    PubMed  Google Scholar 

  149. Saper CB, Sorrentino DM, German DC, de Lacalle S (1991) Medullary catecholaminergic neurons in the normal human brain and in Parkinson’s disease. Ann Neurol 29:577–584

    PubMed  CAS  Google Scholar 

  150. Sasa M, Yoshimura N (1994) Locus coeruleus noradrenergic neurons as a micturition center. Microsc Res Tech 29:226–230

    PubMed  CAS  Google Scholar 

  151. Savica R, Cartin JM, Grossardt BR et al (2009) Medical records documentation of constipation preceding Parkinson disease: a case–control study. Neurology 73:1752–1758

    PubMed  CAS  Google Scholar 

  152. Scatton B, Dennis T, L’Heureux R et al (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of Parkinson patients. Brain Res 380:181–185

    PubMed  CAS  Google Scholar 

  153. Scherder E, Wolters E, Polman C, Serfeant J, Swaab D (2005) Pain in Parkinson’s disease and multiple sclerosis: its relation to the medial and lateral pain systems. Neurosci Biobehav Rev 29:1047–1056

    PubMed  Google Scholar 

  154. Schrøder HD (1981) Onuf’s nucleus X: a morphological study of a human spinal nucleus. Anat Embryol 162:443–453

    PubMed  Google Scholar 

  155. Sengul G, Watson C (2012) Spinal cord: regional anatomy, cytoarchitecture, and chemoarchitecture. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, Boston, pp 186–232

    Google Scholar 

  156. Serrao M, Ranavolo A, Anderson OK et al (2012) Adaptive behaviour of the spinal cord in the transition from quiet stance to walking. BMC Neurosci 16:80

    Google Scholar 

  157. Sethi K (2008) Levodopa unresponsive symptoms in Parkinson’s disease. Mov Disord 23(Suppl 3):S521–S533

    PubMed  Google Scholar 

  158. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 27:716–719

    PubMed  Google Scholar 

  159. Siddiqui MF, Rast S, Lynn MJ, Auchus AP, Pfeiffer RF (2002) Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Rel Disord 8:277–284

    CAS  Google Scholar 

  160. Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472

    PubMed  CAS  Google Scholar 

  161. Singer C, Weiner WJ, Sanchez-Ramos JR (1992) Autonomic dysfunction in men with Parkinson’s disease. Eur Neurol 32:134–140

    PubMed  CAS  Google Scholar 

  162. Snider SR, Fahn S, Isgreen WP, Cote LJ (1976) Primary sensory symptoms in Parkinsonism. Neurology 76:423–429

    Google Scholar 

  163. Sofic E, Riederer P, Gsell W et al (1991) Biogenic amines and metabolites in spinal cord of patients with Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm Park Dis Dement Sect 3:133–142

    PubMed  CAS  Google Scholar 

  164. Spillantini MG, Schmidt ML, Lee VMY et al (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    PubMed  CAS  Google Scholar 

  165. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Cell bodies and terminals. Neuroscience 6:557–618

    PubMed  CAS  Google Scholar 

  166. Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491:156–162

    PubMed  CAS  Google Scholar 

  167. Sun MK (1995) Central neural organization and control of sympathetic nervous system in mammals. Prog Neurobiol 47:157–233

    PubMed  CAS  Google Scholar 

  168. Tamura T, Yoshida M, Hashizume Y, Sobue G (2012) Lewy body-related α-synucleinopathy in the spinal cord of cases with incidental Lewy body disease. Neuropathology 32:13–22

    PubMed  Google Scholar 

  169. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  170. Thor KB (2003) Serotonin and norepinephrine involvement in efferent pathways to the urethral rhabdosphincter: implications for treating stress urinary incontinence. Urology 62(Suppl 1):3–9

    PubMed  Google Scholar 

  171. Thor KB (2004) Targeting serotonin and norepinephrin receptors in stress urinary incontinence. Int J Gynaecol Obstet 86(Suppl 1):38–52

    Google Scholar 

  172. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nature Rev Neurosci 11:823–836

    CAS  Google Scholar 

  173. Tofaris GK, Spillantini MG (2007) Physiological and pathological properties of α-synuclein. Cell Mol Life Sci 64:2194–2201

    PubMed  CAS  Google Scholar 

  174. Tracey I (2005) Nociceptive processing in the human brain. Curr Opin Neurobiol 15:478–487

    PubMed  CAS  Google Scholar 

  175. Trojanowski JQ, Lee VM (2007) Parkinson’s disease and related neurodegenerative synucleinopathies linked to progressive accumulations of synuclein aggregates in the brain. Parkinsonism Relat Disord 7:247–251

    Google Scholar 

  176. van de Berg WD, Hepp DH, Dijkstra AA et al (2012) Patterns of alpha-synuclein pathology in incidental cases and clinical subtypes of Parkinson’s disease. Parkinsonsim Relat Disord 18(Suppl 1):S28–S30

    Google Scholar 

  177. Verbaan D, Marinus J, Visser M et al (2007) Patient-reported autonomic symptoms in Parkinson disease. Neurology 69:333–341

    PubMed  CAS  Google Scholar 

  178. Vivacqua G, Casini A, Vaccaro R et al (2011) Spinal cord and parkinsonism: neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 42:327–340

    PubMed  CAS  Google Scholar 

  179. Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Progr Brain Res 122:223–235

    CAS  Google Scholar 

  180. Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson’s disease. Eur Neurol 38(Suppl 2):2–7

    PubMed  Google Scholar 

  181. Wakabayashi K, Takahashi H (1997) The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathol 94:287–289

    PubMed  CAS  Google Scholar 

  182. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76:217–221

    PubMed  CAS  Google Scholar 

  183. Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1990) Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 79:581–583

    PubMed  CAS  Google Scholar 

  184. Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F (1993) Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv Neurol 60:609–612

    PubMed  CAS  Google Scholar 

  185. Waseem S, Gwinn-Hardy K (2001) Pain in Parkinson’s disease. Postgrad Med 110:1–5

    Google Scholar 

  186. Watson C, Paxinos G, Kayalioglu G (eds) (2009) The spinal cord: a Christopher and Dana Reeve Foundation Text and Atlas. Academic Press, Boston

    Google Scholar 

  187. Waxman EA, Giasson BI (2009) Molecular mechanisms of alpha-synuclein neurodegeneration. Biochim Biophys Acta 1792:616–624

    PubMed  CAS  Google Scholar 

  188. Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in the monkey: axonal transport studies and dopamine-β-hydroxylase immunocytochemistry. Brain Res Rev 2:235–264

    CAS  Google Scholar 

  189. Westlund KN, Craig (1996) LC receives ascending input from nociceptive fibers located in lamina I of the spinal cord

  190. Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    PubMed  CAS  Google Scholar 

  191. Winge K, Fowler CJ (2006) Bladder dysfunction in parkinsonism: mechanisms, prevalence, symptoms, and management. Mov Disord 21:737–745

    PubMed  Google Scholar 

  192. Yamamoto T, Satomi H, Ise H, Takatama H, Takahashi K (1978) Sacral spinal innervations of the rectal and vesical smooth muscles and the sphincteric striated muscles as demonstrated by the horseradish peroxidase method. Neurosci Lett 7:41–47

    PubMed  CAS  Google Scholar 

  193. Yeo L, Singh R, Gundeti M, Barua JM, Masood J (2012) Urinary tract dysfunction in Parkinson’s disease: a review. Int Urol Nephrol 44:415–424

    PubMed  Google Scholar 

  194. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    PubMed  Google Scholar 

  195. Zhang ET, Craig AD (1997) Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci 17:3274–3284

    PubMed  CAS  Google Scholar 

  196. Zesiewicz TA, Sullivan KL, Arnulf I et al (2010) Practice parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 74:924–931

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was made possible by funding from the German Research Council (Deutsche Forschungsgemeinschaft, DFG, Grant number TR 1000/1-1). The authors wish to thank Albert C. Ludolph, M.D. (Director, Department of Neurology, University of Ulm) for his ongoing support. They also gratefully acknowledge Ms. Siegrid Baumann, Ms. Simone Feldengut, Ms. Gabriele Ehmke (immunohistochemistry), and Mr. David Ewert (graphics) for their technical expertise. The Braak Collection (Goethe University Frankfurt) provided autopsy material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Del Tredici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Tredici, K., Braak, H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol 124, 643–664 (2012). https://doi.org/10.1007/s00401-012-1028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1028-y

Keywords

Navigation