Skip to main content
Log in

Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

In light of postmortem human studies showing extensive degeneration of the center median (CM) and parafascicular (Pf) thalamic nuclei in Parkinson’s disease patients, the present study assessed the extent of neuronal loss in CM/Pf of non-human primates that were rendered parkinsonian by repeated injections of low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to determine the course of CM/Pf degeneration during the MPTP intoxication, motor-asymptomatic animals with partial striatal dopamine denervation were also used. The Cavalieri’s principle for volume estimation and the unbiased stereological cell count method with the optical dissector technique were used to estimate the total number of neurons in the CM/Pf. We found substantial neurons loss in the CM/Pf in both, motor-symptomatic MPTP-treated monkeys in which the striatal dopamine innervation was reduced by more than 80 %, and in motor-asymptomatic MPTP-treated animals with 40–50 % striatal dopamine loss. In MPTP-treated parkinsonian monkeys, 60 and 62 % neurons loss was found in CM and Pf, respectively, while partially dopamine-depleted asymptomatic animals displayed 59 and 52 % neurons loss in the CM and Pf, respectively. Thus, our study demonstrates that the CM/Pf neurons loss is an early phenomenon that occurs prior to the development of parkinsonian motor symptoms in these animals. In contrast, the neighboring mediodorsal nucleus of the thalamus was only mildly affected (18 % neurons loss) in the parkinsonian monkeys. Together with recent findings about the possible role of the CM/Pf-striatal system in cognition, our findings suggest that the pathology of the thalamostriatal system may precede the development of motor symptoms in PD, and may account for some of the cognitive deficits in attentional set-shifting often seen in these patients. Future studies in this animal model, and in monkeys with selective lesion of CM or Pf, are needed to further elucidate the role of the CM/Pf-striatal system in normal and parkinsonian conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AchE:

Acetylcholinesterase

Cb:

Calbindin

CD:

Caudate nucleus

CM:

Center median nucleus

MD:

Mediodorsal nucleus

MPP+ :

1-Methyl-4-phenylpyridinium ion

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

Pf:

Parafascicular nucleus

Pu:

Putamen

ROI:

Regions of interest

SN:

Substantia nigra

TH:

Tyrosine hydroxylase

vGluT2:

Vesicular glutamate transporter type 2

6-OHDA:

6-Hydroxydopamine

References

  • Aarsland D, Marsh L, Schrag A (2009) Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 24:2175–2186

    Article  PubMed Central  PubMed  Google Scholar 

  • Altar CA, Heikkila RE, Manzino L, Marien MR (1986) 1-Methyl-4-phenylpyridine (MPP+): regional dopamine neuron uptake, toxicity, and novel rotational behavior following dopamine receptor proliferation. Eur J Pharmacol 131:199–209

    Article  CAS  PubMed  Google Scholar 

  • Alvira D, Tajes M, Verdaguer E, de Arriba SG, Allgaier C, Matute C, Trullas R, Jimenez A, Pallas M, Camins A (2007) Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience 146:350–365

    Article  CAS  PubMed  Google Scholar 

  • Aymerich MS, Barroso-Chinea P, Perez-Manso M, Munoz-Patino AM, Moreno-Igoa M, Gonzalez-Hernandez T, Lanciego JL (2006) Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. Eur J Neurosci 23:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl JW, Galvan A, Hu X, Wichmann T, Smith Y (2012) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology. (In press), Corrected proof available online 22 May 2012

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brooks D, Halliday GM (2009) Intralaminar nuclei of the thalamus in Lewy body diseases. Brain Res Bull 78:97–104

    Article  PubMed  Google Scholar 

  • Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 30:14390–14398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camins A, Sureda FX, Gabriel C, Pallas M, Escubedo E, Camarasa J (1997) Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: interaction with the NMDA receptor. J Neural Transm 104:569–577

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  CAS  PubMed  Google Scholar 

  • Elgh E, Domellof M, Linder J, Edstrom M, Stenlund H, Forsgren L (2009) Cognitive function in early Parkinson’s disease: a population-based study. Eur J Neurol 16:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Foltynie T, Brayne CE, Robbins TW, Barker RA (2004) The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127:550–560

    Article  PubMed  Google Scholar 

  • Fornai F, Bassi L, Bonaccorsi I, Giorgi F, Corsini GU (1997a) Noradrenaline loss selectivity exacerbates nigrostriatal toxicity in different species of rodents. Funct Neurol 12:193–198

    CAS  PubMed  Google Scholar 

  • Fornai F, Alessandri MG, Torracca MT, Bassi L, Corsini GU (1997b) Effects of noradrenergic lesions on MPTP/MPP+ kinetics and MPTP-induced nigrostriatal dopamine depletions. J Pharmacol Exp Ther 283:100–107

    CAS  PubMed  Google Scholar 

  • Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A (2007) Noradrenaline in Parkinson’s disease: from disease progression to current therapeutics. Curr Med Chem 14:2330–2334

    Article  CAS  PubMed  Google Scholar 

  • Freyaldenhoven TE, Ali SF, Schmued LC (1997) Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Res 759:9–17

    Article  CAS  PubMed  Google Scholar 

  • Gai WP, Halliday GM, Blumbergs PC, Geffen LB, Blessing WW (1991) Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain 114:2253–2267

    Article  PubMed  Google Scholar 

  • Galvan A, Smith Y (2011) The primate thalamostriatal system: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189

    Article  PubMed Central  PubMed  Google Scholar 

  • Galvan A, Hu X, Smith Y, Wichmann T (2010) Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys. Exp Neurol 223:505–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  CAS  PubMed  Google Scholar 

  • Ghorayeb I, Fernagut PO, Hervier L, Labattu B, Bioulac B, Tison F (2002) A ‘single toxin-double lesion’ rat model of striatonigral degeneration by intrastriatal 1-methyl-4-phenylpyridinium ion injection: a motor behavioural analysis. Neuroscience 115:533–546

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Polo RA, Soler G, Fuentes JM (2004) MPP+: mechanism for its toxicity in cerebellar granule cells. Mol Neurobiol 30:253–264

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Osterby R (1981) Optimizing sampling efficiency of stereological studies in biology: or ‘do more less well!’. J Microsc 121:65–73

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM (2009) Thalamic changes in Parkinson’s disease. Parkinsonism Relat Dis 15(S3):S153–S155

    Google Scholar 

  • Halliday GM, Gai WP, Blessing WW, Geffen LB (1990) Substance P-containing neurons in the pontomesencephalic tegmentum of the human brain. Neuroscience 39:81–96

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Macdonald V, Henderson JM (2005) A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson’s disease. Brain 128:2272–2280

    Article  PubMed  Google Scholar 

  • Halliday G, Lees A, Stern M (2011) Milestones in Parkinson’s disease-clinical and pathologic features. Mov Disord 26:1015–1021

    Article  PubMed  Google Scholar 

  • Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willner JC, Maziere M (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53:169–178

    Article  CAS  PubMed  Google Scholar 

  • Harbison RA, Ryan KR, Wilkins HM, Schroeder EK, Loucks FA, Bouchard RJ, Linseman DA (2011) Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons. Neurotox Res 19:374–388

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Rub U, Gangnus D, Jungkunz G, Bauer M, Ulmar G, Bethke B, Schuler M, Bocker F, Eisenmenger W, Gotz M, Strik M (1996) Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington’s disease. Acta Neuropathol 91:161–168

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000a) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123:1410–1421

    Article  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000b) Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47:345–352

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Schleimer SB, Allbutt H, Dabholkar V, Abela D, Jovic J, Quinlivan M (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 162:222–232

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Little MD, Bankiewicz K, Yang SC, Markey SP, Johannessen JN (1991) Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: an in vivo autoradiographic study. Neuroscience 40:133–158

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    Article  CAS  PubMed  Google Scholar 

  • Ilinsky IA, Kultas-Ilinsky K (2002) Motor thalamic circuits in primates with emphasis on the area targeted in treatments of movement disorders. Mov Disord 17(Suppl 3):S9–S14

    Article  PubMed  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543

    Article  CAS  PubMed  Google Scholar 

  • Johannessen JN (1991) A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) within catecholaminergic neurons. Neurotoxicology 12:285–302

    CAS  PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York

    Book  Google Scholar 

  • Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M, Watanabe M, Tsutsui Y, Kobayashi K (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Minamimoto T, Matsumoto N, Hori Y (2004) Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system. Neurosci Res 48:355–360

    Article  PubMed  Google Scholar 

  • Kinomura S, Larsson J, Gulyas J, Roland PR (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515

    Article  CAS  PubMed  Google Scholar 

  • Kliem MA, Pare JF, Khan ZU, Wichmann T, Smith Y (2009) Comparative ultrastructural analysis of D1 and D5 dopamine receptor distribution in the substantia nigra and globus pallidus of monkeys. Adv Behav Biol 58:239–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurlan R, Kim MH, Gash DM (1991) Oral levodopa dose-response study in MPTP-induced hemiparkinsonian monkeys: assessment with a new rating scale for monkey parkinsonism. Mov Disord 6:111–118

    Article  CAS  PubMed  Google Scholar 

  • Kusnoor SV, Parris J, Muly EC, Morgan JI, Deutch AY (2010) Extracerebellar role for Cerebellin 1: modulation of dendritic spine density and synapses in striatal medium spiny neurons. J Comp Neurol 518:2525–2537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusnoor SV, Bubser M, Deutch AY (2012) The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus. Brain Res 1446:46–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanciego JL, Vazquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217:613–666

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin BE, Katzen HL (2005) Early cognitive changes and nondementing behavioral abnormalities in Parkinson’s disease. Adv Neurol 96:84–94

    PubMed  Google Scholar 

  • Liu C, Wang Y, Smallwood PM, Nathans J (2008) An essential role for Frizzled 5 in neuronal survival in the parafascicular nucleus of the thalamus. J Neurosci 28:5641–5653

    Article  CAS  PubMed  Google Scholar 

  • Marien M, Briley M, Colpaert F (1993) Noradrenaline depletion exacerbates MPTP-induced striatal dopamine loss in mice. Eur J Pharmacol 236:487–489

    Article  CAS  PubMed  Google Scholar 

  • Marini AM, Schwartz JP, Kopin IJ (1989) The neurotoxicity of 1-methyl-4-phenylpyridinium in cultured cerebellar granule cells. J Neurosci 9:3665–3672

    CAS  PubMed  Google Scholar 

  • Masilamoni G, Votaw J, Howell L, Villalba RM, Goodman M, Voll RJ, Stehouwer J, Wichmann T, Smith Y (2010) (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp Neurol 226:265–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Yoshida M, Watanabe S, Yamamoto T (2001) Involvement of cholinergic and glutamatergic functions in working memory impairment induced by interleukin-1 beta in rats. Eur J Pharmacol 430:283–288

    Article  CAS  PubMed  Google Scholar 

  • Mennemeier M, Fennell E, Valenstein E, Heilman KM (1992) Contributions of the left intralaminar and medial thalamic nuclei to memory. Comparisons and report of a case. Arch Neurol 49:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Mennemeier M, Crosson B, Williamson DJ, Nadeau SE, Fennell E, Valenstein E, Heilman KM (1997) Tapping, talking and the thalamus: possible influence of the intralaminar nuclei on basal ganglia function. Neuropsychologia 35:183–193

    Article  CAS  PubMed  Google Scholar 

  • Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65:1239–1245

    Article  PubMed  Google Scholar 

  • Nanda B, Galvan A, Smith Y, Wichmann T (2009) Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. Eur J Neurosci 29:588–598

    Article  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  • Raju DV, Shah DJ, Wright TM, Hall RA, Smith Y (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J Comp Neurol 499:231–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  • Rommelfanger KS, Weinshenker D (2007) Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem Pharmacol 74:177–190

    Article  CAS  PubMed  Google Scholar 

  • Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D (2007) Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci USA 104:13804–13809

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Rymar V (2009) The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull 78:122–130

    Article  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS (1990) Chronic exposure to low doses of MPTP. II. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Res 534:25–36

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS (2006) Modeling cognitive deficits associated with parkinsonism in chronic-low-dose MPTP-treated monkey. In: Levin ED, Buccafusco JJ, (eds) Animal models of cognitive impairment. CRC Press, Boca Raton, (Chapter 9, Frontiers in Neuroscience)

  • Schneider JS, Kovelowski CJ 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sedaghat K, Finkelstein DI, Gundlach AL (2009) Effect of unilateral lesion of the nigrostriatal dopamine pathway on survival and neurochemistry of parafascicular nucleus neurons in the rat-evaluation of time-course and LGR8 expression. Brain Res 1271:83–94

    Article  CAS  PubMed  Google Scholar 

  • Shen PJ, Fu P, Phelan KD, Scott DJ, Layfield S, Tregear GW, Bathgate RA, Gundlach AL (2005) Restricted expression of LGR8 in intralaminar thalamic nuclei of rat brain suggests a role in sensorimotor systems. Ann NY Acad Sci USA 1041:510–515

    Article  CAS  Google Scholar 

  • Sidibe M, Smith Y (1996) Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol 365:445–465

    Article  CAS  PubMed  Google Scholar 

  • Sidibe M, Smith Y (1999) Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 89:1189–1208

    Article  CAS  PubMed  Google Scholar 

  • Singer TP, Ramsay RR, McKeown K, Trevor A, Castagnoli NE Jr (1988) Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology 49:17–23

    Article  CAS  PubMed  Google Scholar 

  • Slomianka L, West MJ (2005) Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 136:757–767

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1991) Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labeling study. Neuroscience 44:45–73

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B, Pare JF, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith Y, Surmeier DJ, Redgrave P, Kimura M (2011) Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci 31:16102–16106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T (2004) Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. J Neurosci 24:6417–6426

    Article  CAS  PubMed  Google Scholar 

  • Storey E, Hyman BT, Jenkins B, Brouillet E, Miller JM, Rosen BR, Beal MF (1992) 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 58:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Smith Y (2011) Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 519:989–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villalba RM, Raju DV, Hall RA, Smith Y (2006) GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus. J Comp Neurol 496:269–287

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Lee H, Smith Y (2009) Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol 215:220–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villalba RM, Wichmann T, Smith Y (2011) Neuronal loss in the caudal intralaminar nuclear group, CM/Pf, in MPTP-treated parkinsonian monkeys. Society for Neuroscience (Abstracts)

  • Villalba RM, Wichmann T, Smith Y (2012) Early neuronal loss in the centre median and parafascicular thalamic nuclei prior to the development of parkinsonian motor symptoms in MPTP-treated monkeys. Society for Neuroscience (Abstracts)

  • Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Med Sci Monit 11:RA17–RA23

    CAS  PubMed  Google Scholar 

  • West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, Soares J (2006) Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophysiol 95:2120–2133

    Article  PubMed  Google Scholar 

  • Wichmann T, Kliem MA, DeLong MR (2001) Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp Neurol 167:410–424

    Article  CAS  PubMed  Google Scholar 

  • Williams-Gray CH, Foltynie T, Lewis SJ, Barker RA (2006) Cognitive deficits and psychosis in Parkinson’s disease: a review of pathophysiology and therapeutic options. CNS Drugs 20:477–505

    Article  CAS  PubMed  Google Scholar 

  • Xuereb JH, Perry RH, Candy JM, Perry EK, Marshall E, Bonham JR (1991) Nerve cell loss in the thalamus in Alzheimer’s disease and Parkinson’s disease. Brain 114:1363–1379

    Article  PubMed  Google Scholar 

  • Zackheim J, Abercrombie ED (2005) Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum. Neuroscience 131:423–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jean-Francois Pare and Susan Jenkins for technical assistance. Thanks are also due to Dr. Gunasingh Masilamoni and the Yerkes Center Animal Resources Division for the MPTP-treatment and care of the monkeys. The authors also thank to Dr. Adriana Galvan for critical reading of the manuscript. Special thanks are due to Professor Carlos Avendaño (Anatomy Department of the School of Medicine, University Autonoma in Madrid, Spain) for his generous help with the initial design of stereological analysis. This work was supported by research grants from the National Institutes of Health/National Institute of Neurological Disorders and Stroke Grants R01NS062876 and P50-NS071669 (TW), and by funding from the National Center for Research Resources P51RR000165 and the Office of Research Infrastructure Programs/OD P51OD011132 to the Yerkes National Primate Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Villalba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalba, R.M., Wichmann, T. & Smith, Y. Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219, 381–394 (2014). https://doi.org/10.1007/s00429-013-0507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0507-9

Keywords

Navigation