Skip to main content

Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 18

Abstract

Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

ASF-CM:

Ameloblast serum-free conditioned medium

a-TDM:

Autoclaved treated dentin matrix

BMPs:

Bone Morphogenetic Proteins

BMSCs:

Bone marrow stromal cells

Ca/P:

Calcium phosphates

CAD:

Computer-aided design

c-Myc:

Myelocytomatosis oncogene

CT:

Computerized tomography

DFSCs:

Dental follicle stem cells

DP-MSCs:

Dental pulp mesenchymal stem cells

DPSCs:

Dental pulp stem cells

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony-stimulating factor

GTR:

Guided tissue regeneration

HA:

Hydroxyapatite

HDPC:

Human dental pulp cell

IFN-γ:

Interferon-gamma

IGF:

Insulin-like growth factor

iPSCs:

Induced pluripotent stem cells

Klf4:

Kruppel-like factor 4

MAPK:

Mitogen-activated protein kinase

mESCs:

Murine embryonic stem cells

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NF-κB:

Nuclear factor kappa B

NGF:

Nerve growth factor

Oct4:

Octamer-binding transcription factor 4

PDGF:

Platelet-derived growth factor

PDL:

Periodontal ligament

PDLSCs:

Periodontal ligament stem cells

PEG:

Polyethylene glycol

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly-L-lactic acid

PRHds:

Platelet-rich hemoderivatives

RP:

Rapid prototyping

SCAP:

Stem cells from apical papilla

SHED:

Stem cells from human exfoliated deciduous teeth

Sox2:

Sex-determining region Y-Box 2

ß –TCP:

ß-tricalcium phosphate

TGF-ß:

Transforming growth factor-beta

TLR4:

Toll-like receptor-4

VEGF:

Vascular epithelial growth factor

References

  • Abdal-Wahab M, Abdel Ghaffar KA, Ezzatt OM, Hassan AAA, El Ansary MMS, Gamal AY (2020) Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J Periodontal Res 55(3):441–452

    Article  CAS  PubMed  Google Scholar 

  • Abou Neel EA, Chrzanowski W, Salih VM, Kim H-W, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42(8):915–928

    Article  CAS  PubMed  Google Scholar 

  • Acri TM, Shin K, Seol D, Laird NZ, Song I, Geary SM et al (2019) Tissue engineering for the temporomandibular joint. Adv Healthc Mater 8(2):e1801236

    Article  PubMed  Google Scholar 

  • Aghayan HR, Hosseini MS, Gholami M, Mohamadi-Jahani F, Tayanloo-Beik A, Alavi-Moghadam S et al (2021) Mesenchymal stem cells’ seeded amniotic membrane as a tissue-engineered dressing for wound healing. Drug Deliv Transl Res 12(3):538–549

    Google Scholar 

  • Ahmad P, Della Bella E, Stoddart MJ (2020) Applications of bone morphogenetic proteins in dentistry: a bibliometric analysis. Biomed Res Int 2020:5971268

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed GM, Abouauf EA, AbuBakr N, Dörfer CE, El-Sayed KF (2020) Tissue engineering approaches for enamel, dentin, and pulp regeneration: an update. Stem Cells Int 2020:5734539

    Article  PubMed  PubMed Central  Google Scholar 

  • Aimetti M, Ferrarotti F, Gamba MN, Giraudi M, Romano F (2018) Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: a 1-year follow-up case series. Int J Periodontics Restorative Dent 38(1):51–58

    Article  PubMed  Google Scholar 

  • Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS (2019) Stem cell therapy for neurological disorders. S Afr Med J 109(8b):70–77

    Article  CAS  PubMed  Google Scholar 

  • AlKudmani H, Al Jasser R, Andreana S (2017) Is bone graft or guided bone regeneration needed when placing immediate dental implants? A systematic review. Implant Dent 26(6):936–944

    Article  PubMed  Google Scholar 

  • Alraies A, Waddington RJ, Sloan AJ, Moseley R (2020) Evaluation of dental pulp stem cell heterogeneity and behaviour in 3D type I collagen gels. Biomed Res Int 2020:3034727

    Article  PubMed  PubMed Central  Google Scholar 

  • Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés M (2019) Regeneration of periodontal bone defects with dental pulp stem cells grafting: systematic review. J Clin Exp Dent 11(4):e373–ee81

    PubMed  PubMed Central  Google Scholar 

  • Anitua E, Troya M, Zalduendo M (2018) Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 20(4):479–498

    Article  PubMed  Google Scholar 

  • Arjmand B, Goodarzi P, Mohamadi-Jahani F, Falahzadeh K, Larijani B (2017) Personalized regenerative medicine. Acta Med Iran 55:144–149

    PubMed  Google Scholar 

  • Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K et al (2020) Prospect of stem cell therapy and regenerative medicine in osteoporosis. Front Endocrinol 11:430

    Article  Google Scholar 

  • Arthur A, Gronthos S (2020) Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci 21(24):9759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf R, Sofi HS, Beigh MA, Majeed S, Arjamand S, Sheikh FA (2018) Prospects of natural polymeric scaffolds in peripheral nerve tissue-regeneration. Adv Exp Med Biol 1077:501–525

    Article  CAS  PubMed  Google Scholar 

  • Baba S, Yamada Y, Komuro A, Yotsui Y, Umeda M, Shimuzutani K et al (2016) Phase I/II trial of autologous bone marrow stem cell transplantation with a three-dimensional woven-fabric scaffold for periodontitis. Stem Cells Int 2016:6205910

    Article  PubMed  PubMed Central  Google Scholar 

  • Babo PS, Reis RL, Gomes ME (2017) Periodontal tissue engineering: current strategies and the role of platelet rich hemoderivatives. J Mater Chem B 5(20):3617–3628

    Article  CAS  PubMed  Google Scholar 

  • Baier RV, Contreras Raggio JI, Giovanetti CM, Palza H, Burda I, Terrasi G et al (2021) Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Mater Sci Eng C Mater Biol Appl 112540

    Google Scholar 

  • Bakhtiar H, Mazidi SA, Mohammadi Asl S, Ellini MR, Moshiri A, Nekoofar MH et al (2018) The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 7(4):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar JK, Lis-Nawara A, Grelewski PG (2021) Dental pulp stem cell-derived secretome and its regenerative potential. Int J Mol Sci 22(21):12018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baradaran-Rafii A, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Aghayan HR et al (2020) Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank:1–9

    Google Scholar 

  • Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E (2013) Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater 8(4):045011

    Article  CAS  PubMed  Google Scholar 

  • Benatti BB, Silvério KG, Casati MZ, Sallum EA, Nociti FH Jr (2007) Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J Biosci Bioeng 103(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Bhuptani RS, Patravale VB (2016) Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. Int J Pharm 515(1–2):555–564

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  CAS  PubMed  Google Scholar 

  • Boda SK, Almoshari Y, Wang H, Wang X, Reinhardt RA, Duan B et al (2019) Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomater 85:282–293

    Article  CAS  PubMed  Google Scholar 

  • Boda SK, Wang H, John JV, Reinhardt RA, Xie J (2020) Dual delivery of alendronate and E7-BMP-2 peptide via calcium chelation to mineralized nanofiber fragments for alveolar bone regeneration. ACS Biomater Sci Eng 6(4):2368–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y et al (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92(11):963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering–a brief overview. Artif Organs 30(10):785–792

    Article  CAS  PubMed  Google Scholar 

  • Bousnaki M, Bakopoulou A, Pich A, Papachristou E, Kritis A, Koidis P (2021) Mapping the secretome of dental pulp stem cells under variable microenvironmental conditions. Stem Cell Rev Rep 18:1372–1407

    Article  PubMed  Google Scholar 

  • Brizuela C, Meza G, Urrejola D, Quezada MA, Concha G, Ramírez V et al (2020) Cell-based regenerative endodontics for treatment of periapical lesions: a randomized, controlled phase I/II clinical trial. J Dent Res 99(5):523–529

    Article  CAS  PubMed  Google Scholar 

  • Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Slavkin HC (2003) Prospects for tooth regeneration in the 21st century: a perspective. Microsc Res Tech 60(5):469–479

    Article  PubMed  Google Scholar 

  • Chandrahasa S, Murray PE, Namerow KN (2011) Proliferation of mature ex vivo human dental pulp using tissue engineering scaffolds. J Endod 37(9):1236–1239

    Article  PubMed  Google Scholar 

  • Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. IntechOpen, London

    Book  Google Scholar 

  • Chang CC, Lin TA, Wu SY, Lin CP, Chang HH (2020) Regeneration of tooth with allogenous, autoclaved treated dentin matrix with dental pulpal stem cells: an in vivo study. J Endod 46(9):1256–1264

    Article  PubMed  Google Scholar 

  • Chen F, Shi S (2014) Principles of tissue engineering. Elsevier, New York

    Google Scholar 

  • Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY et al (2018) Correction to: treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 9(1):260

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Chen Y, Hou Y, Song P, Zhou M, Nie M et al (2019) Modulation of proliferation and differentiation of gingiva-derived mesenchymal stem cells by concentrated growth factors: potential implications in tissue engineering for dental regeneration and repair. Int J Mol Med 44(1):37–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chen J, Huang W, Li C, Luo H, Xue Z et al (2022) Exosomes from human induced pluripotent stem cells derived mesenchymal stem cells improved myocardial injury caused by severe acute pancreatitis through activating Akt/Nrf2/HO-1 axis. Cell Cycle:1–12

    Google Scholar 

  • Chisini LA, Conde MCM, Grazioli G, Martin ASS, Carvalho RV, Sartori LRM et al (2019) Bone, periodontal and dental pulp regeneration in dentistry: a systematic scoping review. Braz Dent J 30(2):77–95

    Article  PubMed  Google Scholar 

  • Chiu YC, Larson JC, Isom A Jr, Brey EM (2010) Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Tissue Eng Part C Methods 16(5):905–912

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Kim CK, Cho KS, Huh JS, Sorensen RG, Wozney JM et al (2002) Effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol 73(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C et al (2018) Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 13(2):207–218

    Article  Google Scholar 

  • Demarco FF, Casagrande L, Zhang Z, Dong Z, Tarquinio SB, Zeitlin BD et al (2010) Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. J Endod 36(11):1805–1811

    Article  PubMed  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:290602

    Article  Google Scholar 

  • Dhote R, Charde P, Bhongade M, Rao J (2015) Stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with recombinant human platelet-derived growth factor – BB (rh-PDGF-BB) for the treatment of human infrabony defects. J Stem Cells 10(4):243–254

    CAS  PubMed  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  • Dobie K, Smith G, Sloan AJ, Smith AJ (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43(2–3):387–390

    Article  CAS  PubMed  Google Scholar 

  • Dorri M, Martinez-Zapata MJ, Walsh T, Marinho VC, Sheiham Deceased A, Zaror C (2017) Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries. Cochrane Database Syst Rev 12(12):Cd008072

    PubMed  Google Scholar 

  • Douthwaite H, Arteagabeitia AB, Mukhopadhyay S (2022) Differentiation of human induced pluripotent stem cell into macrophages. Bio Protoc 12(6):e4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M et al (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5(9):e12743

    Article  PubMed  PubMed Central  Google Scholar 

  • Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019:3429527

    Article  Google Scholar 

  • Eramo S, Natali A, Pinna R, Milia E (2018) Dental pulp regeneration via cell homing. Int Endod J 51(4):405–419

    Article  CAS  PubMed  Google Scholar 

  • Fawzy El-Sayed KM, Doerfer CE (2017) Animal models for periodontal tissue engineering: a knowledge-generating process. Tissue Eng Part C Methods 23(12):900–925

    Article  PubMed  Google Scholar 

  • Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH et al (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16(1):20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarotti F, Romano F, Gamba MN, Quirico A, Giraudi M, Audagna M et al (2018) Human intrabony defect regeneration with micrografts containing dental pulp stem cells: a randomized controlled clinical trial. J Clin Periodontol 45(7):841–850

    Article  CAS  PubMed  Google Scholar 

  • Galler KM, D’Souza RN (2011) Tissue engineering approaches for regenerative dentistry. Regen Med 6(1):111–124

    Article  CAS  PubMed  Google Scholar 

  • Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN (2012) A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A 18(1–2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Gaur S, Agnihotri R (2021) Application of adipose tissue stem cells in regenerative dentistry: a systematic review. J Int Soc Prev Community Dent 11(3):266–271

    PubMed  PubMed Central  Google Scholar 

  • Genc B, Bozan HR, Genc S, Genc K (2019) Stem cell therapy for multiple sclerosis. Adv Exp Med Biol 1084:145–174

    Article  CAS  PubMed  Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannobile WV (1996) Periodontal tissue engineering by growth factors. Bone 19(1 Suppl):23s–37s

    Article  CAS  PubMed  Google Scholar 

  • Giannobile WV, Lee CS, Tomala MP, Tejeda KM, Zhu Z (2001) Platelet-derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering. J Periodontol 72(6):815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goiato MC, Santos MR, Pesqueira AA, Moreno A, dos Santos DM, Haddad MF (2011) Prototyping for surgical and prosthetic treatment. J Craniofac Surg 22(3):914–917

    Article  PubMed  Google Scholar 

  • Gong T, Heng BC, Lo ECM, Zhang C (2016) Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int 2016:9204574

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E (2022) Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 172:41–52

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi P, Aghayan HR, Soleimani M, Norouzi-Javidan A, Mohamadi-Jahani F, Jahangiri S et al (2014) Stem cell therapy for treatment of epilepsy. Acta Med Iran 52:651–655

    PubMed  Google Scholar 

  • Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour A-R, Sahebjam M et al (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran 29:168

    PubMed  PubMed Central  Google Scholar 

  • Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B et al (2018a) Tissue engineered skin substitutes. Cell Biol Transl Med 3:143–188

    Google Scholar 

  • Goodarzi P, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Mohamadi-Jahani F, Ranjbaran N et al (2018b) Mesenchymal stem cells-derived exosomes for wound regeneration. Cell Biol Transl Med 4:119–131

    Google Scholar 

  • Goodarzi P, Alavi-Moghadam S, Sarvari M, Beik AT, Falahzadeh K, Aghayan H et al (2018c) Adipose tissue-derived stromal cells for wound healing. In: Cell biology and translational medicine, vol 4. Springer, Cham, pp 133–149

    Google Scholar 

  • Goodarzi P, Payab M, Alavi-Moghadam S, Larijani B, Rahim F, Bana N et al (2019) Development and validation of Alzheimer’s disease animal model for the purpose of regenerative medicine. Cell Tissue Bank 20(2):141–151

    Article  PubMed  Google Scholar 

  • Granz CL, Gorji A (2020) Dental stem cells: the role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 12(9):897–921

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Sun Y, Shujaat S, Braem A, Politis C, Jacobs R (2022) 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. J Orthop Surg Res 17(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadjichristou C, Koidis P, Bakopoulou A (2021) Advanced in vitro experimental models for tissue engineering-based reconstruction of a 3D dentin/pulp complex: a literature review. Stem Cell Rev Rep 17(3):785–802

    Article  PubMed  Google Scholar 

  • Han J, Menicanin D, Gronthos S, Bartold PM (2014) Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 59(Suppl 1):117–130

    Article  PubMed  Google Scholar 

  • Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA (2017) Tissue engineering: dentin – pulp complex regeneration approaches (a review). Tissue Cell 49(5):552–564

    Article  CAS  PubMed  Google Scholar 

  • He W, Wang Z, Luo Z, Yu Q, Jiang Y, Zhang Y et al (2015) LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway. J Cell Physiol 230(3):554–561

    Article  CAS  PubMed  Google Scholar 

  • He X, Jiang W, Luo Z, Qu T, Wang Z, Liu N et al (2017) IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling. Sci Rep 7(1):40681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A, Ledesma-Martínez E, Mendoza-Núñez VM (2018) Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: a mini-review. Int J Mol Sci 19(4):944

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I (2017) The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int 2017:2582080

    Article  PubMed  PubMed Central  Google Scholar 

  • Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin 56(3):495–520

    Google Scholar 

  • Hu C, Zhao L, Zhang L, Bao Q, Li L (2020) Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 11(1):377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GT-J, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS et al (2010) Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16(2):605–615

    Article  CAS  PubMed  Google Scholar 

  • Huang GTJ, Al-Habib M, Gauthier P (2013) Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective. Endod Top 28(1):51–60

    Article  Google Scholar 

  • Hynes K, Menichanin D, Bright R, Ivanovski S, Hutmacher DW, Gronthos S et al (2015) Induced pluripotent stem cells: a new frontier for stem cells in dentistry. J Dent Res 94(11):1508–1515

    Article  CAS  PubMed  Google Scholar 

  • Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T et al (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci 106(32):13475–13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inanç B, Elçin AE, Elçin YM (2009) In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces. Tissue Eng Part A 15(11):3427–3435

    Article  PubMed  Google Scholar 

  • Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK et al (2009) Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod 35(6):858–865

    Article  PubMed  Google Scholar 

  • Iwata T, Yamato M, Washio K, Yoshida T, Tsumanuma Y, Yamada A et al (2018) Periodontal regeneration with autologous periodontal ligament-derived cell sheets – a safety and efficacy study in ten patients. Regen Ther 9:38–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain KK (2002) Ethical and regulatory aspects of embryonic stem cell research. Expert Opin Biol Ther 2(8):819–826

    Article  PubMed  Google Scholar 

  • Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L (2020) Polymeric scaffolds for dental pulp tissue engineering: a review. Dent Mater 36(2):e47–e58

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Ni L, Sloan A, Song B (2015) Tissue engineering and regenerative medicine, from and beyond the dentistry. Dentistry 5(6):1

    Google Scholar 

  • Kaigler D, Cirelli JA, Giannobile WV (2006) Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv 3(5):647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Gu B, Sone PP, Zaw SYM, Murano H, Zaw ZCT et al (2018) Dental pulp tissue engineering using mesenchymal stem cells: a review with a protocol. Stem Cell Rev Rep 14(5):668–676

    Article  CAS  PubMed  Google Scholar 

  • Kanimozhi K, Basha SK, Kumari VS, Kaviyarasu K (2018) Development of biomimetic hybrid porous scaffold of chitosan/polyvinyl alcohol/carboxymethyl cellulose by freeze-dried and salt leached technique. J Nanosci Nanotechnol 18(7):4916–4922

    Article  CAS  PubMed  Google Scholar 

  • Karakaya I, Ulusoy N (2018) Basics of dentin-pulp tissue engineering. AIMS Bioeng 5(3):162–178

    Article  CAS  Google Scholar 

  • Kawai M, Kataoka Y, Sonobe J, Yamamoto H, Maruyama H, Yamamoto T et al (2018) Analysis of mineral apposition rates during alveolar bone regeneration over three weeks following transfer of BMP-2/7 gene via in vivo electroporation. Eur J Histochem 62(3):2947

    PubMed  PubMed Central  Google Scholar 

  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8):2480–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H, Zamiri B, Omidi M (2018) Tissue engineering in maxillary bone defects. World J Plast Surg 7(1):3–11

    PubMed  PubMed Central  Google Scholar 

  • Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M et al (2010) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16(10):3023–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Shin SJ, Song Y, Kim E (2015) In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediat Inflamm 2015:409347

    Article  Google Scholar 

  • Kim SK, Cho TH, Han JJ, Kim IS, Park Y, Hwang SJ (2016) Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng Regen Med 13(2):171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King WJ, Krebsbach PH (2012) Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev 64(12):1239–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura C, Nishihara T, Terashita M, Tabata Y, Jimi E, Washio A et al (2011) Regeneration approaches for dental pulp and periapical tissues with growth factors, biomaterials, and laser irradiation. Polymers 3(4):1776–1793

    Article  CAS  Google Scholar 

  • Koosha F, Alimohammadi N, Rafeian-Kopaei M (2021) The exosomes: staring biomarkers and novel therapeutic strategies. Curr Pharm Des 27(35):3714–3721

    Article  CAS  PubMed  Google Scholar 

  • Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83-A Suppl 1(Pt 2):S105–S115

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Larijani B, Ghahari A, Warnock GL, Aghayan HR, Goodarzi P, Falahzadeh K et al (2015a) Human fetal skin fibroblasts: extremely potent and allogenic candidates for treatment of diabetic wounds. Med Hypotheses 84(6):577–579

    Article  CAS  PubMed  Google Scholar 

  • Larijani B, Aghayan H, Goodarzi P, Mohamadi-Jahani F, Norouzi-Javidan A, Dehpour AR et al (2015b) Clinical grade human adipose tissue-derived mesenchymal stem cell banking. Acta Med Iran 53(9):540–546

    PubMed  Google Scholar 

  • Larijani B, Foroughi Heravani N, Alavi-Moghadam S, Goodarzi P, Rezaei-Tavirani M, Payab M et al (2020) Cell therapy targets for autism spectrum disorders: hopes, challenges and future directions. In: Cell biology and translational medicine, vol 13. Springer, Cham, pp 107–124

    Google Scholar 

  • Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:2041731417752766

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X (2017) Tissue repair: reinforced scaffolds. Springer, Singapore, pp 1–304

    Google Scholar 

  • Li Y, Fan P, Ding XM, Tian XH, Feng XS, Yan H et al (2017a) Polyglycolic acid fibrous scaffold improving endothelial cell coating and vascularization of islet. Chin Med J 130(7):832–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, He L, Pan S, Zhang L, Zhang W, Yi H et al (2017b) Three-dimensional simulated microgravity culture improves the proliferation and odontogenic differentiation of dental pulp stem cell in PLGA scaffolds implanted in mice. Mol Med Rep 15(2):873–878

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cao T (2010) Dental application potential of mesenchymal stromal cells and embryonic stem cells. Chin J Dent Res 13(2):95–103

    PubMed  Google Scholar 

  • Liu J, Jin T, Chang S, Ritchie HH, Smith AJ, Clarkson BH (2007) Matrix and TGF-beta-related gene expression during human dental pulp stem cell (DPSC) mineralization. In Vitro Cell Dev Biol Anim 43(3–4):120–128

    Article  CAS  PubMed  Google Scholar 

  • Liu HC, Ling-Ling E, Wang DS, Su F, Wu X, Shi ZP et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17(19–20):2417–2433

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Yang LP, Zhao L (2020a) Stem cell therapy for Alzheimer’s disease. World J Stem Cells 12(8):787–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu H, Lu F, Li Q, Xu Z (2020b) Fabrication of porous bovine pericardium scaffolds incorporated with bFGF for tissue engineering applications. Xenotransplantation 27(1):e12568

    Article  PubMed  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Chen X, Xing J, Lian M, Huang D, Lu Y et al (2019) miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway. Stem Cell Res Ther 10(1):226

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundquist P (2002) Odontoblast phosphate and calcium transport in dentinogenesis. Swed Dent J Suppl 154:1–52

    Google Scholar 

  • Lymperi S, Ligoudistianou C, Taraslia V, Kontakiotis E, Anastasiadou E (2013) Dental stem cells and their applications in dental tissue engineering. Open Dent J 7:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Tomokiyo A, Fujii S, Wada N, Akamine A (2011) Promise of periodontal ligament stem cells in regeneration of periodontium. Stem Cell Res Ther 2(4):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Man RC, Sulaiman N, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD (2019) Insights into the effects of the dental stem cell secretome on nerve regeneration: towards cell-free treatment. Stem Cells Int 2019:4596150

    Article  PubMed  PubMed Central  Google Scholar 

  • Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y (2019) Applications of 3D printing on craniofacial bone repair: a systematic review. J Dent 80:1–14

    Article  PubMed  Google Scholar 

  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536

    Article  CAS  PubMed  Google Scholar 

  • Miyaji H, Sugaya T, Ibe K, Ishizuka R, Tokunaga K, Kawanami M (2010) Root surface conditioning with bone morphogenetic protein-2 facilitates cementum-like tissue deposition in beagle dogs. J Periodontal Res 45(5):658–663

    Article  CAS  PubMed  Google Scholar 

  • Monteiro N, Yelick PC (2017) Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 11(9):2443–2461

    Article  CAS  PubMed  Google Scholar 

  • Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Moussa DG, Aparicio C (2019) Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 13(1):58–75

    CAS  PubMed  Google Scholar 

  • Müller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48(6):2607–2655

    Article  PubMed  Google Scholar 

  • Murphy CM, O’Brien FJ, Little DG, Schindeler A (2013) Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 26:120–132

    Article  CAS  PubMed  Google Scholar 

  • Murray PE (2012) Constructs and scaffolds employed to regenerate dental tissue. Dent Clin 56(3):577–588

    Google Scholar 

  • Nada OA, El Backly RM (2018) Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol 6:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima M (2005) Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 16(3):369–376

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31(10):711–718

    Article  PubMed  Google Scholar 

  • Nam Y, Yoon J, Park T (2000) A novel fabrication method for macroporous scaffolds using gas foaming salt as Porogen additive. J Biomed Mater Res 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Needleman I, Worthington HV, Giedrys-Leeper E, Tucker R (2019) Withdrawn: guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev 5(5):Cd001724

    PubMed  Google Scholar 

  • Nevins ML, Reynolds MA (2011) Tissue engineering with recombinant human platelet-derived growth factor BB for implant site development. Compend Contin Educ Dent 32(2):18, 20–27. quiz 8, 40

    Google Scholar 

  • Ning F, Guo Y, Tang J, Zhou J, Zhang H, Lu W et al (2010) Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochem Biophys Res Commun 394(2):342–347

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Morimoto S (2022) iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 29(2):189–208

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SM, Santo VE, Gomes ME, Reis RL, Mano JF (2015) Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials 48:56–65

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Oshima M, Ogawa M, Sonoyama W, Hara ES, Oida Y et al (2017) Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep 7(1):44522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsini G, Ruggeri A, Mazzoni A, Nato F, Manzoli L, Putignano A et al (2009) A review of the nature, role, and function of dentin non-collagenous proteins. Part 1: proteoglycans and glycoproteins. Endod Top 21:1–18

    Article  Google Scholar 

  • Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I (2018) Pulp regeneration concepts for nonvital teeth: from tissue engineering to clinical approaches. Tissue Eng Part B Rev 24(6):419–442

    Article  PubMed  Google Scholar 

  • Oshima M, Tsuji T (2015) Whole tooth regeneration as a future dental treatment. In: Engineering mineralized and load bearing tissues. Springer, Cham, pp 255–269

    Chapter  Google Scholar 

  • Ozeki N, Hase N, Higuchi N, Hiyama T, Yamaguchi H, Kawai R et al (2017) Gelatin scaffold combined with bone morphogenetic protein-4 induces odontoblast-like cell differentiation involving integrin profile changes, autophagy-related gene 10, and Wnt5 sequentially in human induced pluripotent stem cells. Differentiation 93:1–14

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Park CH, Yi T, Kim SN, Iwata T, Yun JH (2020) rhBMP-2 pre-treated human periodontal ligament stem cell sheets regenerate a mineralized layer mimicking dental cementum. Int J Mol Sci 21(11):3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payab M, Goodarzi P, Heravani NF, Hadavandkhani M, Zarei Z, Falahzadeh K et al (2018) Stem cell and obesity: current state and future perspective. In: Cell biology and translational medicine, vol 2. Springer, Cham, pp 1–22

    Google Scholar 

  • Peters OA, Paranjpe A, Gaudin A (2021) Dentine–pulp complex regeneration. In: Regenerative approaches in dentistry. Springer, Cham, pp 35–62

    Chapter  Google Scholar 

  • Piva E, Tarlé SA, Nör JE, Zou D, Hatfield E, Guinn T et al (2017) Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod 43(4):568–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J et al (2020) Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem Cell Res Ther 11(1):1–15

    Article  Google Scholar 

  • Radwan IA, Rady D, Abbass MMS, El Moshy S, AbuBakr N, Dörfer CE et al (2020) Induced pluripotent stem cells in dental and nondental tissue regeneration: a review of an unexploited potential. Stem Cells Int 2020:1941629

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahim F, Arjmand B, Shirbandi K, Payab M, Larijani B (2018) Stem cell therapy for patients with diabetes: a systematic review and meta-analysis of metabolomics-based risks and benefits. Stem Cell Investig 5:40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan A, Eubanks E, Edwards S, Aronovich S, Travan S, Rudek I et al (2014) Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy. Stem Cells Transl Med 3(12):1495–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangasami VK, Nawale G, Asawa K, Kadekar S, Samanta S, Nilsson B et al (2021) Pluronic micelle-mediated tissue factor silencing enhances hemocompatibility, stemness, differentiation potential, and paracrine signaling of mesenchymal stem cells. Biomacromolecules 22(5):1980–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindran S, George A (2015) Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration. Front Physiol 6:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizk A, Rabie AB (2013) Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering. Cytotherapy 15(6):712–725

    Article  CAS  PubMed  Google Scholar 

  • Rolph DN, Deb M, Kanji S, Greene CJ, Das M, Joseph M et al (2020) Ferutinin directs dental pulp-derived stem cells towards the osteogenic lineage by epigenetically regulating canonical Wnt signaling. Biochim Biophys Acta (BBA) Mol Basis Dis 1866(4):165314

    Article  CAS  Google Scholar 

  • Rosa AR, Steffens D, Santi B, Quintiliano K, Steffen N, Pilger DA et al (2017) Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering. Braz J Med Biol Res 50(9):e5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva S, Saluja H, Mani A, Phadnaik MB, Palekar U (2021) Tissue engineering in periodontics- a demystifying review. J Cell Biotechnol 7:19–23

    Article  Google Scholar 

  • Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nör JE (2011) Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res 23(3):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez N, Fierravanti L, Núñez J, Vignoletti F, González-Zamora M, Santamaría S et al (2020) Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: a 12-month quasi-randomized controlled pilot clinical trial. J Clin Periodontol 47(11):1391–1402

    Article  PubMed  Google Scholar 

  • Sengupta D, Heilshorn SC (2010) Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng Part B Rev 16(3):285–293

    Article  CAS  PubMed  Google Scholar 

  • Shimabukuro Y, Ueda M, Ozasa M, Anzai J, Takedachi M, Yanagita M et al (2009) Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod 35(11):1529–1535

    Article  PubMed  Google Scholar 

  • Shinmura Y, Tsuchiya S, Hata K, Honda MJ (2008) Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol 217(3):728–738

    Article  CAS  PubMed  Google Scholar 

  • Sismanoglu S, Ercal P (2020) Dentin-pulp tissue regeneration approaches in dentistry: an overview and current trends. In: Cell biology and translational medicine, Volume 10: stem cells in tissue regeneration. Springer, Cham, pp 79–103

    Chapter  Google Scholar 

  • Smith EE, Yelick PC (2016) Progress in bioengineered whole tooth research: from bench to dental patient chair. Curr Oral Health Rep 3(4):302–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Chen Z, Murillo LL, Tang D, Meng C, Zhong X et al (2021) Hierarchical porous silk fibroin/poly(L-lactic acid) fibrous membranes towards vascular scaffolds. Int J Biol Macromol 166:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Stevens LR, Gilmore KJ, Wallace GG, In Het Panhuis M (2016) Tissue engineering with gellan gum. Biomater Sci 4(9):1276–1290

    Article  CAS  PubMed  Google Scholar 

  • Su J, Hua S, Chen A, Chen P, Yang L, Yuan X et al (2021) Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Mater Sci Eng C Mater Biol Appl 133:112595

    Google Scholar 

  • Subramanian A, Krishnan UM, Sethuraman S (2011) 14 – skin tissue regeneration. In: Bosworth LA, Downes S (eds) Electrospinning for tissue regeneration. Woodhead Publishing, Oxford, pp 298–316

    Chapter  Google Scholar 

  • Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME (2019) Dental pulp stem cells: novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol 7(1):1–19

    Article  Google Scholar 

  • Sunil PM (2016) Induced pluripotent stem cells in dentistry. J Pharm Bioallied Sci 8(Suppl 1):S23–Ss7

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanikawa DYS, Pinheiro CCG, Almeida MCA, Oliveira C, Coudry RA, Rocha DL et al (2020) Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020:6234167

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatullo M, Spagnuolo G, Codispoti B, Zamparini F, Zhang A, Esposti MD et al (2019) PLA-based mineral-doped scaffolds seeded with human periapical cyst-derived MSCs: a promising tool for regenerative healing in dentistry. Materials (Basel) 12(4):597

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Mikkola M (2002) The role of growth factors in tooth development. Int Rev Cytol 217:93–135

    Article  CAS  PubMed  Google Scholar 

  • Tobita M, Uysal AC, Ogawa R, Hyakusoku H, Mizuno H (2008) Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng Part A 14(6):945–953

    Article  CAS  PubMed  Google Scholar 

  • Tomokiyo A, Wada N, Maeda H (2019) Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev 28(15):974–985

    Article  PubMed  Google Scholar 

  • Vagropoulou G, Trentsiou M, Georgopoulou A, Papachristou E, Prymak O, Kritis A et al (2021) Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization. Dent Mater 37(1):e23–e36

    Article  CAS  PubMed  Google Scholar 

  • Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Vaseenon S, Chattipakorn N, Chattipakorn SC (2020) The possible role of basic fibroblast growth factor in dental pulp. Arch Oral Biol 109:104574

    Article  CAS  PubMed  Google Scholar 

  • Wan PX, Wang BW, Wang ZC (2015) Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J Stem Cells 7(2):448–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu X, Jin X, Ma H, Hu J, Ni L et al (2010) The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 6(10):3856–3863

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Tang W, Zeng Q, Miao S, Pi C, Li Y et al (2022a) Generation of induced pluripotent stem cell line (FMCPGHi001-a) from a 25-year-old Chinese Han healthy male donor. Stem Cell Res 60:102735

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang D, Zhu Y, Mo X, McHugh PC, Tong Q (2022b) Astragalus and human mesenchymal stem cells promote wound healing by mediating immunomodulatory effects through paracrine signaling. Regen Med 17(4):219–232

    Article  PubMed  Google Scholar 

  • Woo KM, Chen VJ, Jung HM, Kim TI, Shin HI, Baek JH et al (2009) Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 15(8):2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Qin K, Wang D, Xiang K, Peng J, Guo J et al (2022) Ultrasound-guided induced pluripotent stem cell-derived cardiomyocyte implantation in myocardial infarcted mice. J Vis Exp 181

    Google Scholar 

  • Yamada Y, Ueda M, Hibi H, Baba S (2006) A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent 26(4):363–369

    PubMed  Google Scholar 

  • Yamamiya K, Okuda K, Kawase T, Hata K, Wolff LF, Yoshie H (2008) Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. J Periodontol 79(5):811–818

    Article  PubMed  Google Scholar 

  • Yao L, Flynn N (2018) Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J 18(6):1070–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao S, Norton J, Wise GE (2004) Stability of cultured dental follicle cells. Cell Prolif 37(3):247–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen AH-H, Sharpe PT (2008) Stem cells and tooth tissue engineering. Cell Tissue Res 331(1):359–372

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Zhang W, Zhang Z, Jiang X (2019) Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater 8(10):e1801433

    Article  PubMed  Google Scholar 

  • Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81(10):695–700

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Zhou SY, Chen XS (2017) Rapid prototyping technology and its application in bone tissue engineering. J Zhejiang Univ Sci B 18(4):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Xing K, Hsu HY (2018) Trinity of three-dimensional (3D) scaffold, vibration, and 3D printing on cell culture application: a systematic review and indicating future direction. Bioengineering (Basel) 5(3):57

    Article  CAS  PubMed  Google Scholar 

  • ZbaÅ„ska J, Herman K, Kuropka P, DobrzyÅ„ski M (2021) Regenerative endodontics as the future treatment of immature permanent teeth. Appl Sci 11(13):6211

    Article  Google Scholar 

  • Zhai Q, Dong Z, Wang W, Li B, Jin Y (2019) Dental stem cell and dental tissue regeneration. Front Med 13(2):152–159

    Article  PubMed  Google Scholar 

  • Zhang Y, Chen Y (2014) Bioengineering of a human whole tooth: progress and challenge. Cell Regen 3(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA (2006) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27(33):5658–5668

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA (2008) Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 14(2):285–294

    Article  PubMed  Google Scholar 

  • Zhang L, Morsi Y, Wang Y, Li Y, Ramakrishna S (2013) Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev 49(1):14–26

    Article  Google Scholar 

  • Zhang F, Song J, Zhang H, Huang E, Song D, Tollemar V et al (2016) Wnt and BMP signaling crosstalk in regulating dental stem cells: implications in dental tissue engineering. Genes Dis 3(4):263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, Somerman MJ (2004) Cementoblast delivery for periodontal tissue engineering. J Periodontol 75(1):154–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Liu Y, Li D, Jin Y (2013) Somatic stem cell biology and periodontal regeneration. Int J Oral Maxillofac Implants 28(6):e494–e502

    Article  PubMed  Google Scholar 

  • Zi Z (2019) Molecular engineering of the TGF-β signaling pathway. J Mol Biol 431(15):2644–2654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Mohsen khorshidi and Mrs. Shokouh Salimi for their kind support.

Funding

None.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Arjmand or Bagher Larijani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tayanloo-Beik, A. et al. (2022). Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_734

Download citation

Publish with us

Policies and ethics