Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.

Graphical Abstract

The potential of utilizing mesenchymal stem cells (MSCs) and their derivatives (MSC-EVs) inserted into the scaffold to regenerate dental diseases is illustrated in this figure. Synthetic and natural scaffolds transport these cells to facilitate their safe and targeted delivery to the intended tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ortiz, G. G. R., et al. (2023). A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Communication and Signaling, 21(1), 1–16.

    Article  Google Scholar 

  2. Faghihkhorasani, A., et al. (2023). The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: A review of virus in cancer stem cells. Cancer Cell International, 23(1), 250.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahjoor, M., et al. (2021). MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line. Life Sciences, 279, 119643.

    Article  CAS  PubMed  Google Scholar 

  4. Andalib, E., et al. (2023). Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: Wound healing and infection recovery. Frontiers in Microbiology, 14, 1251956.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yasamineh, S., et al. (2022). Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Research & Therapy, 13(1), 257.

    Article  CAS  Google Scholar 

  6. Oveili, E., et al. (2023). The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Communication and Signaling, 21(1), 1–26.

    Article  Google Scholar 

  7. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: An update. Cell Transplantation, 25(5), 829–848.

    Article  PubMed  Google Scholar 

  8. Nasiri, K., et al. (2023). Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Communication and Signaling, 21(1), 1–15.

    Article  Google Scholar 

  9. Chalisserry, E. P., et al. (2017). Therapeutic potential of dental stem cells. Journal of Tissue Engineering, 8, 2041731417702531.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Egusa, H., et al. (2012). Stem cells in dentistry–part I: Stem cell sources. Journal of Prosthodontic Research, 56(3), 151–165.

    Article  PubMed  Google Scholar 

  11. Lotfy, A., AboQuella, N. M., & Wang, H. (2023). Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Research & Therapy, 14(1), 1–18.

    Article  Google Scholar 

  12. Estrela, C., et al. (2011). Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Brazilian Dental Journal, 22, 91–98.

    Article  PubMed  Google Scholar 

  13. Potdar, P. D., & Jethmalani, Y. D. (2015). Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells, 7(5), 839.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andrukhov, O., Blufstein, A., & Behm, C. (2021). A review of antimicrobial activity of dental mesenchymal stromal cells: Is there any potential? Front Oral Health, 2, 832976.

    Article  PubMed  Google Scholar 

  15. Mirshekar, M., et al. (2023). Potential antibacterial activity and healing effect of topical administration of bone marrow and adipose mesenchymal stem cells encapsulated in collagen-fibrin hydrogel scaffold on full-thickness burn wound infection caused by Pseudomonas aeruginosa. Burnshttps://pubmed.ncbi.nlm.nih.gov/38042618/

  16. Hosseini-Asl, S.-K., Mehrabani, D., & Karimi-Busheri, F. (2020). Therapeutic effect of mesenchymal stem cells in ulcerative colitis: A review on achievements and challenges. Journal of Clinical Medicine, 9(12), 3922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mehrabani, D., et al. (2022). The ameliorating effect of adipose tissue stem cells on liver function in experimental rats with liver fibrosis. International Journal of Nutrition Sciences, 7(4), 225–232.

    CAS  Google Scholar 

  18. Rodríguez-Lozano, F.-J., et al. (2012). Mesenchymal dental stem cells in regenerative dentistry. Medicina Oral, Patologia Oral y Cirugia Bucal, 17(6), e1062.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jalli, R., et al. (2023). Cell proliferation, viability, differentiation, and apoptosis of iron oxide labeled stem cells transfected with lipofectamine assessed by MRI. Journal of Clinical Medicine, 12(6), 2395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Théry, C., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, M., et al. (2019). Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano, 13(9), 10279–10293.

    Article  CAS  PubMed  Google Scholar 

  22. Yamashita, T., Takahashi, Y., & Takakura, Y. (2018). Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biological and Pharmaceutical Bulletin, 41(6), 835–842.

    Article  CAS  PubMed  Google Scholar 

  23. Casado-Díaz, A., Quesada-Gómez, J. M., & Dorado, G. (2020). Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Frontiers in Bioengineering and Biotechnology, 8, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tatullo, M., et al. (2023). Unlocking the potential of dental-derived mesenchymal stem cells in regenerative medicine. 3804. (MDPI). https://pubmed.ncbi.nlm.nih.gov/37297998/

  25. Stamnitz, S., & Klimczak, A. (2021). Mesenchymal stem cells, bioactive factors, and scaffolds in bone repair: From research perspectives to clinical practice. Cells, 10(8), 1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaikh, F., et al. (2023). Mesenchymal stem cells and tissue engineering in dentistry. https://www.intechopen.com/online-first/1149780

  27. Liu, Z., et al. (2022). Extracellular vesicles: A potential future strategy for dental and maxillofacial tissue repair and regeneration. Frontiers in Physiology, 13, 1012241.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu, X., et al. (2020). Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Research & Therapy, 11(1), 1–16.

    Article  CAS  Google Scholar 

  29. Miceli, V., et al. (2021). Therapeutic properties of mesenchymal stromal/stem cells: The need of cell priming for cell-free therapies in regenerative medicine. International Journal of Molecular Sciences, 22(2), 763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slots, J. (2017). Periodontitis: Facts, fallacies and the future. Periodontology 2000, 75(1), 7–23.

    Article  PubMed  Google Scholar 

  31. Galler, K. (2016). Clinical procedures for revitalization: Current knowledge and considerations. International Endodontic Journal, 49(10), 926–936.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, L., et al. (2021). Clinical cell-based versus cell-free regenerative endodontics: Clarification of concept and term. International Endodontic Journal, 54(6), 887–901.

    Article  CAS  PubMed  Google Scholar 

  33. Nasiri, K., et al. (2023). MicroRNAs function in dental stem cells as a promising biomarker and therapeutic target for dental diseases. Molecular Diagnosis & Therapy, 1–20. https://pubmed.ncbi.nlm.nih.gov/37773247/

  34. Lovelace, T. W., et al. (2011). Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. Journal of Endodontics, 37(2), 133–138.

    Article  PubMed  Google Scholar 

  35. Wang, L.-H., et al. (2022). An up-to-date overview of dental tissue regeneration using dental origin mesenchymal stem cells: Challenges and road ahead. Frontiers in Bioengineering and Biotechnology, 10, 855396.

    Article  PubMed  PubMed Central  Google Scholar 

  36. da Silva, G. S., et al. (2020). Current evidence of tissue engineering for dentine regeneration in animal models: A systematic review. Regenerative Medicine, 15(2), 1345–1360.

    Article  PubMed  Google Scholar 

  37. Nasiri, K., et al. (2023). Recent advances in metal nanoparticles to treat periodontitis. Journal of Nanobiotechnology, 21(1), 283.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gan, L., et al. (2020). Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells International, 2020https://pubmed.ncbi.nlm.nih.gov/32952572/

  39. Shi, S., et al. (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthodontics & Craniofacial Research, 8(3), 191–199.

    Article  CAS  Google Scholar 

  40. Mashimo, T., et al. (2019). Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. Journal of Oral Science, 61(2), 284–293.

    Article  CAS  PubMed  Google Scholar 

  41. Ng, R., et al. (2012). Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Advances, 2(27), 10110–10124.

    Article  CAS  Google Scholar 

  42. Raghav, P. K., et al. (2022). Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. European Journal of Pharmacology, 918, 174657.

    Article  CAS  PubMed  Google Scholar 

  43. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal, 17 Suppl 4(Suppl 4), 467–79.

    Article  CAS  PubMed  Google Scholar 

  44. Hosseinkhani, M., et al. (2014). Tissue engineered scaffolds in regenerative medicine. World Journal of Plastic Surgery, 3(1), 3–7.

    PubMed  PubMed Central  Google Scholar 

  45. Sarkhosh-Inanlou, R., et al. (2021). Applications of scaffold-based advanced materials in biomedical sensing. TrAC Trends in Analytical Chemistry, 143, 116342.

    Article  CAS  PubMed  Google Scholar 

  46. Willerth, S. M., & Sakiyama-Elbert, S. E. (2019). Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemJournal, 1(1), 1–25.

    Article  Google Scholar 

  47. Sakai, S., et al. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371–3377.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.

    Article  CAS  PubMed  Google Scholar 

  49. Singh, M. R., Patel, S., & Singh, D. (2016). Natural polymer-based hydrogels as scaffolds for tissue engineering. Nanobiomaterials in soft tissue engineering (pp. 231–260). Elsevier.

    Chapter  Google Scholar 

  50. Samiei, M., et al. (2021). Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology, 64, 102600.

    Article  CAS  Google Scholar 

  51. Singh, H., et al. (2021). Pulp regeneration in an immature maxillary central incisor using hyaluronic acid hydrogel. Contemporary Clinical Dentistry, 12(1), 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong, X., et al. (2021). Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Biomedical Materials, 16(2), 025012.

    Article  CAS  PubMed  Google Scholar 

  53. Fu, Y., et al. (2021). Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. European Journal of Medicinal Chemistry, 217, 113372.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, A., et al. (2023). Hydrogels for oral tissue engineering: Challenges and opportunities. Molecules, 28(9), 3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pillay, V., et al. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013https://www.hindawi.com/journals/jnm/2013/789289/

  56. Mirjalili, M., & Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, 6, 207–213.

    Article  CAS  Google Scholar 

  57. Zafar, M., et al. (2016). Potential of electrospun nanofibers for biomedical and dental applications. Materials, 9(2), 73.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu, S., et al. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, 1–36.

    Article  Google Scholar 

  59. Chaudhari, A. A., et al. (2016). Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. International Journal of Molecular Sciences, 17(12), 1974.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jun, I., et al. (2018). Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. International Journal of Molecular Sciences, 19(3), 745.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Budai-Szűcs, M., et al. (2021). Electrospun scaffolds in periodontal wound healing. Polymers, 13(2), 307.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu, J., & Hong, Y. (2016). Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 1(1), 56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhu, W., et al. (2015). Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration. PLoS ONE, 10(7), e0134729.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Abbaszadeh, H., et al. (2022). Chronic obstructive pulmonary disease and asthma: Mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Research & Therapy, 13(1), 1–15.

    Article  Google Scholar 

  65. Bellas, E., Marra, K. G., & Kaplan, D. L. (2013). Sustainable three-dimensional tissue model of human adipose tissue. Tissue Engineering Part C: Methods, 19(10), 745–754.

    Article  CAS  PubMed  Google Scholar 

  66. Bellas, E., et al. (2013). Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds. Biomaterials, 34(12), 2960–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, I., & Elisseeff, J. (2014). Biomaterials and tissue engineering for soft tissue reconstruction. Natural and synthetic biomedical polymers (pp. 235–241). Elsevier.

    Chapter  Google Scholar 

  68. Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161, 104849.

    Article  CAS  Google Scholar 

  69. Yang, B., et al. (2010). Preparation and characterization of a novel chitosan scaffold. Carbohydrate Polymers, 80(3), 860–865.

    Article  CAS  Google Scholar 

  70. Wieckiewicz, M., et al. (2017). Clinical application of chitosan in dental specialities. Mini Reviews in Medicinal Chemistry, 17(5), 401–409.

    Article  CAS  PubMed  Google Scholar 

  71. Li, F., et al. (2014). Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dental Materials, 30(2), 172–181.

    Article  PubMed  Google Scholar 

  72. Sukpaita, T., et al. (2021). Chitosan-based scaffold for mineralized tissues regeneration. Marine Drugs, 19(10), 551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Farzin, A., et al. (2020). Scaffolds in dental tissue engineering: A review. Archives of Neuroscience, 7(1). https://brieflands.com/articles/ans-97014

  74. Gathani, K. M., & Raghavendra, S. S. (2016). Scaffolds in regenerative endodontics: A review. Dental Research Journal, 13(5), 379.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Galli, M., et al. (2021). Current and future trends in periodontal tissue engineering and bone regeneration. Plastic and Aesthetic Research, 8https://pubmed.ncbi.nlm.nih.gov/35765666/

  76. Yasamineh, S., et al. (2023). Future prospects of natural polymer-based drug delivery systems in combating lung diseases. Natural polymeric materials based drug delivery systems in lung diseases (pp. 465–482). Springer.

    Chapter  Google Scholar 

  77. Li, R., et al. (2011). Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials, 32(20), 4525–4538.

    Article  CAS  PubMed  Google Scholar 

  78. Moonesi Rad, R., et al. (2019). In vitro performance of a nanobiocomposite scaffold containing boron-modified bioactive glass nanoparticles for dentin regeneration. Journal of Biomaterials Applications, 33(6), 834–853.

    Article  CAS  PubMed  Google Scholar 

  79. Machla, F., et al. (2023). Tissue engineering at the dentin-pulp interface using human treated dentin scaffolds conditioned with DMP1 or BMP2 plasmid DNA-carrying calcium phosphate nanoparticles. Acta Biomaterialia, 159, 156–172.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu, X., et al. (2018). A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentin-like tissue. Tissue Engineering Part C: Methods, 24(2), 108–120.

    Article  CAS  PubMed  Google Scholar 

  81. Hasani-Sadrabadi, M. M., et al. (2020). An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Science Translational Medicine, 12(534), eaay6853.

    Article  CAS  PubMed  Google Scholar 

  82. Sugiaman, V. K., & Jeffrey. (2023). Polymeric scaffolds used in dental pulp regeneration by tissue engineering approach. 15(5). https://pubmed.ncbi.nlm.nih.gov/36904323/

  83. Bakhtiar, H., et al. (2018). The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review. Progress in Biomaterials, 7, 249–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  85. Badylak, S. F. (2007). The extracellular matrix as a biologic scaffold material. Biomaterials, 28(25), 3587–3593.

    Article  CAS  PubMed  Google Scholar 

  86. Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7(5), 30–40.

    Article  CAS  Google Scholar 

  87. Wu, D. T., & Munguia-Lopez, J. G. (2021). Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. 26(22). https://pubmed.ncbi.nlm.nih.gov/34834134/

  88. Li, W.-J., et al. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26(25), 5158–5166.

    Article  CAS  PubMed  Google Scholar 

  89. Koh, B., et al. (2021). Mesenchymal stem cells: A comprehensive methods for odontoblastic induction. 23(1), 18. https://biologicalproceduresonline.biomedcentral.com/articles/10.1186/s12575-021-00155-7

  90. Luo, S., et al. (2017). Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root. Science and Reports, 7, 44635.

    Article  CAS  Google Scholar 

  91. Moshaverinia, A., et al. (2013). Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Journal of Biomedical Materials Research Part A, 101(11), 3285–3294.

    Article  PubMed  Google Scholar 

  92. Lau, C. S., et al. (2022). A porcine model using adipose stem cell-loaded scaffolds for alveolar ridge augmentation. Tissue Engineering Part C: Methods, 28(5), 228–237.

    Article  CAS  PubMed  Google Scholar 

  93. Tan, W. L., et al. (2012). A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clinical Oral Implants Research, 23, 1–21.

    Article  PubMed  Google Scholar 

  94. Kulakov, A., et al. (2017). Modern approaches to dental implants placement in deficient alveolar bone. Stomatologiia, 96(1), 43–45.

    Article  PubMed  Google Scholar 

  95. Almansoori, A. A., et al. (2021). Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. International Journal of Implant Dentistry, 7(1), 1–8.

    Article  Google Scholar 

  96. Vakhrushev, I., et al. (2012). Design of tissue engineering implants for bone tissue regeneration of the basis of new generation polylactoglycolide scaffolds and multipotent mesenchymal stem cells from human exfoliated deciduous teeth (SHED cells). Bulletin of Experimental Biology and Medicine, 153, 143–147.

    Article  CAS  PubMed  Google Scholar 

  97. Marei, M. K., & El Backly, R. M. (2018). Dental mesenchymal stem cell-based translational regenerative dentistry: From artificial to biological replacement. Frontiers in Bioengineering and Biotechnology, 6, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Durmuslar, M. C., et al. (2016). Histological evaluation of the effect of concentrated growth factor on bone healing. Journal of Craniofacial Surgery, 27(6), 1494–1497.

    Article  PubMed  Google Scholar 

  99. Kämmerer, P. W., et al. (2017). Influence of platelet-derived growth factor on osseous remodeling properties of a variable-thread tapered dental implant in vivo. Clinical Oral Implants Research, 28(2), 201–206.

    Article  PubMed  Google Scholar 

  100. Kämmerer, P. W., et al. (2017). Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells International, 2017https://pubmed.ncbi.nlm.nih.gov/28951742/

  101. Ding, L., et al. (2019). Bone regeneration of canine peri-implant defects using cell sheets of adipose-derived mesenchymal stem cells and platelet-rich fibrin membranes. Journal of Oral and Maxillofacial Surgery, 77(3), 499–514.

    Article  PubMed  Google Scholar 

  102. Diniz, I. M., et al. (2016). Gingival mesenchymal stem cell (GMSC) Delivery system based on RGD-coupled alginate hydrogel with antimicrobial properties: A novel treatment modality for peri-implantitis. Journal of Prosthodontics, 25(2), 105–115.

    Article  PubMed  Google Scholar 

  103. Chen, M., et al. (2022). Constructions of ROS-responsive titanium-hydroxyapatite implant for mesenchymal stem cell recruitment in peri-implant space and bone formation in osteoporosis microenvironment. Bioactive Materials, 18, 56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ivica, A., Zehnder, M., & Weber, F. (2021). Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in regenerative endodontics. European Cells and Materials (ECM), 41, 233–244.

    Article  CAS  PubMed  Google Scholar 

  105. Amato, M., et al. (2022). Impact of oral mesenchymal stem cells applications as a promising therapeutic target in the therapy of periodontal disease. International Journal of Molecular Sciences, 23(21), 13419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yamada, Y., et al. (2015). Papilla regeneration by injectable stem cell therapy with regenerative medicine: Long-term clinical prognosis. Journal of Tissue Engineering and Regenerative Medicine, 9(3), 305–309.

    Article  CAS  PubMed  Google Scholar 

  107. Kiarashi, M., et al. (2024). Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. Journal of Nanobiotechnology, 22(1), 1–37.

    Article  Google Scholar 

  108. Liu, J., et al. (2019). Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells, 8(6), 537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cui, D., et al. (2018). The origin and identification of mesenchymal stem cells in teeth: From odontogenic to non-odontogenic. Current Stem Cell Research & Therapy, 13(1), 39–45.

    CAS  Google Scholar 

  110. Leite, YKd. C., et al. (2023). Novel scaffold based on chitosan hydrogels/phthalated cashew gum for supporting human dental pulp stem cells. Pharmaceuticals, 16(2), 266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yan, N., et al. (2022). Stem cell Janus patch for periodontal regeneration. Nano Today, 42, 101336.

    Article  Google Scholar 

  112. Tahlawi, A., & Klontzas M. E. (2019). RGD-functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation. 13(2), 232–243. https://pubmed.ncbi.nlm.nih.gov/30537385/

  113. Ouchi, T., & Nakagawa, T. (2020). Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regenerative Therapy, 14, 72–78.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, F., Du, L., & Ge, S. (2016). PTH/SDF-1α cotherapy induces CD90+ CD34− stromal cells migration and promotes tissue regeneration in a rat periodontal defect model. Scientific Reports, 6(1), 30403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liang, Q., et al. (2021). Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Proliferation, 54(3), e12997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meng, L., et al. (2022). Stem cell homing in periodontal tissue regeneration. Frontiers in Bioengineering and Biotechnology, 10, 1017613.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jung, Y.-H., et al. (2023). Regenerative potential of bone morphogenetic protein 7-engineered mesenchymal stem cells in ligature-induced periodontitis. Tissue Engineering Part A, 29(7–8), 200–210.

    Article  CAS  PubMed  Google Scholar 

  118. Wang, W., et al. (2023). Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomaterials Science & Engineering, 9(4), 1961–1975.

    Article  CAS  Google Scholar 

  119. Moshaverinia, A., et al. (2014). Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Engineering Part A, 20(3–4), 611–621.

    CAS  PubMed  Google Scholar 

  120. Malekahmadi, B., et al. (2022). In vitro study of the recruitment and expansion of mesenchymal stem cells at the interface of a Cu-doped PCL-bioglass scaffold. Biomimetics, 7(1), 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sone, H., et al. (2022). Clumps of mesenchymal stem cells/extracellular matrix complexes directly reconstruct the functional periodontal tissue in a rat periodontal defect model. Journal of Tissue Engineering and Regenerative Medicine, 16(10), 945–955.

    Article  CAS  PubMed  Google Scholar 

  122. Lombardo, G., et al. (2018). IL-3R-alpha blockade inhibits tumor endothelial cell-derived extracellular vesicle (EV)-mediated vessel formation by targeting the β-catenin pathway. Oncogene, 37(9), 1175–1191.

    Article  CAS  PubMed  Google Scholar 

  123. Adamo, A., et al. (2019). Extracellular vesicles mediate mesenchymal stromal cell-dependent regulation of B cell PI3K-AKT signaling pathway and actin cytoskeleton. Frontiers in Immunology, 10, 446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maggio, S., et al. (2019). Signal exchange through extracellular vesicles in neuromuscular junction establishment and maintenance: From physiology to pathology. International Journal of Molecular Sciences, 20(11), 2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Han, M., et al. (2020). Neuroprotective effect of mesenchymal stromal cell-derived extracellular vesicles against cerebral ischemia-reperfusion-induced neural functional injury: A pivotal role for AMPK and JAK2/STAT3/NF-κB signaling pathway modulation. Drug Design, Development and Therapy, 2865–2876. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381771/

  126. Lu, Y., et al. (2022). Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Frontiers in Cell and Developmental Biology, 10, 898394.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tsiapalis, D., & O’Driscoll, L. (2020). Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells, 9(4), 991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liang, X., et al. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23(9), 1045–1059.

    Article  PubMed  Google Scholar 

  129. Jafarinia, M., et al. (2020). Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy. Immunological Investigations, 49(7), 758–780.

    Article  CAS  PubMed  Google Scholar 

  130. Keshtkar, S., Azarpira, N., & Ghahremani, M. H. (2018). Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Research & Therapy, 9, 1–9.

    Article  Google Scholar 

  131. Lei, F., et al. (2022). Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomaterialia, 141, 333–343.

    Article  CAS  PubMed  Google Scholar 

  132. Zhao, Y., et al. (2022). The experimental study of periodontal ligament stem cells derived exosomes with hydrogel accelerating bone regeneration on alveolar bone defect. Pharmaceutics, 14(10), 2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Faghihkhorasani, A., et al. (2023). The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection. Virology Journal, 20(1), 222.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jeske, R., et al. (2023). Upscaling human mesenchymal stromal cell production in a novel vertical-wheel bioreactor enhances extracellular vesicle secretion and cargo profile. Bioactive Materials, 25, 732–747.

    Article  CAS  PubMed  Google Scholar 

  135. Henne, W. M., Buchkovich, N. J., & Emr, S. D. (2011). The ESCRT pathway. Developmental Cell, 21(1), 77–91.

    Article  CAS  PubMed  Google Scholar 

  136. Lui, P. P. Y. (2021). Mesenchymal stem cell-derived extracellular vesicles for the promotion of tendon repair-an update of literature. Stem Cell Reviews and Reports, 17, 379–389.

    Article  CAS  PubMed  Google Scholar 

  137. Li, W., et al. (2018). Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Applied Materials & Interfaces, 10(6), 5240–5254.

    Article  CAS  Google Scholar 

  138. Zhou, H., et al. (2023). Mesenchymal stem cell-derived extracellular vesicles for treatment of bone loss within periodontitis in pre-clinical animal models: A meta-analysis. BMC Oral Health, 23(1), 701.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liu, L., et al. (2021). Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration. Tissue Engineering Part A, 27(13–14), 962–976.

    Article  CAS  PubMed  Google Scholar 

  140. Shi, W., et al. (2020). Small extracellular vesicles from lipopolysaccharide-preconditioned dental follicle cells promote periodontal regeneration in an inflammatory microenvironment. ACS Biomaterials Science & Engineering, 6(10), 5797–5810.

    Article  CAS  Google Scholar 

  141. Diomede, F., Fonticoli, L., & Marconi, G. D. (2022). Decellularized dental pulp, extracellular vesicles, and 5-azacytidine: A new tool for endodontic regeneration. 10(2). https://pubmed.ncbi.nlm.nih.gov/35203612/

  142. Bernardo, M., Pagliara, D., & Locatelli, F. (2012). Mesenchymal stromal cell therapy: A revolution in regenerative medicine? Bone Marrow Transplantation, 47(2), 164–171.

    Article  CAS  PubMed  Google Scholar 

  143. Andrukhov, O., et al. (2019). Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World Journal of Stem Cells, 11(9), 604.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sundelacruz, S., & Kaplan, D. L. (2009). Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Seminars in Cell & Developmental Biology, 20(6), 646–655.

    Article  CAS  Google Scholar 

  145. Zhou, T., et al. (2021). Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology & Oncology, 14(1), 1–24.

    Article  Google Scholar 

  146. Adamo, A., et al. (2019). Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1871(1), 192–198.

    Article  CAS  PubMed  Google Scholar 

  147. Kou, M., et al. (2022). Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool? Cell Death & Disease, 13(7), 580.

    Article  CAS  Google Scholar 

  148. Blando, S., et al. (2022). Can a scaffold enriched with mesenchymal stem cells be a good treatment for spinal cord injury?. 23(14). https://pubmed.ncbi.nlm.nih.gov/35886890/

  149. Brown, C., et al. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1738–1755.

    Article  CAS  PubMed  Google Scholar 

  150. De Luca, M., et al. (2019). Advances in stem cell research and therapeutic development. Nature Cell Biology, 21(7), 801–811.

    Article  PubMed  Google Scholar 

  151. Yu, Y., et al. (2016). Directing immunomodulation using biomaterials for endogenous regeneration. Journal of Materials Chemistry B, 4(4), 569–584.

    Article  CAS  PubMed  Google Scholar 

  152. Leach, D. G., Young, S., & Hartgerink, J. D. (2019). Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomaterialia, 88, 15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Granz, C. L., & Gorji, A. (2020). Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World Journal of Stem Cells, 12(9), 897–921.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to all the scientists and researchers who are concerned about relieving the pain of patients.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., S.S., M.M., K.N., and M.E: Writing – original draft and Conceptualization, Supervision, M.K., H.B., E.E., N.A., Writing – review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kamyar Nasiri, Mahla Esfahaniani or Saman Yasamineh.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All of author are consent for publication.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiarashi, M., Bayat, H., Shahrtash, S.A. et al. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev and Rep 20, 688–721 (2024). https://doi.org/10.1007/s12015-024-10687-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10687-6

Keywords

Navigation