Skip to main content

Advertisement

Log in

Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp Complex: a Literature Review

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Objective

Experimental procedures have been used to monitor cellular responses at the dentin/pulp interface. Aiming to divert from in vivo studies and oversimplified two-dimensional assays, three-dimensional (3D) models have been developed. This review provides an overview of existing literature, regarding 3D in vitro dentin/pulp reconstruction.

Material & Methods

PubMed, Scopus, Cochrane Library and Web of Science- were systematically searched for attributes between 1998 and 2020. The search focused on articles on the development of three-dimensional tools for the reconstruction of a dentin/pulp complex under in vitro conditions, which were then screened and qualitatively assessed. Article grouping according to mode of implementation, resulted in five categories: the customised cell perfusion chamber (CPC) (n = 8), the tooth bud model (TBM) (n = 3), the 3D dentin/pulp complex manufactured by tissue engineering (DPC) (n = 6), the entire tooth culture (ETC) (n = 4) and the tooth slice culture model (TSC) (n = 5).

Results

A total of 26 publications, applying nine and eight substances for pulp and dentin representation respectively, were included. Natural materials and dentin components were the most widely utilized. The most diverse category was the DPC, while the CPC group was the test with the highest longevity. The most consistent categories were the ETC and TSC models, while the TBM presented as the most complete de novo approach.

Conclusions

All studies presented with experimental protocols with potential upgrades. Solving the limitations of each category will provide a complete in vitro testing and monitoring tool of dental responses to exogenous inputs.

Clinical Relevance

The 3D dentin/pulp complexes are valid supplementary tools for in vivo studies and clinical testing.

Graphical Abstract

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goldberg, M., & Hirata, A. (2017). The dental pulp: composition, properties and functions. JSM Dentistry , 5, 1–10.

    Google Scholar 

  2. Mjör, I. A. (2009). Dentin permeability: The basis for understanding pulp reactions and adhesive technology. The Brazilian Dental Journal, 20, 3–16. https://doi.org/10.1590/S0103-64402009000100001

    Article  PubMed  Google Scholar 

  3. Yu, C., & Abbott, P. V. (2007). An overview of the dental pulp: Its functions and responses to injury. The Australian Dental Journal, 52, S4–S6. https://doi.org/10.1111/j.1834-7819.2007.tb00525.x

    Article  CAS  PubMed  Google Scholar 

  4. Bakopoulou, A., Papadopoulos, T., & Garefis, P. (2009). Molecular toxicology of substances released from resin-based dental restorative materials. International Journal of Molecular Sciences, 10, 3861–3899. https://doi.org/10.3390/ijms10093861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hume, W. R. (1985). A new technique for screening chemical toxicity to the pulp from dental restorative materials and procedures. Journal of DentalResearch, 64, 1322–1325.

  6. Tyas, M. J. (1977). A method for the in vitro toxicity testing of dental restorative materials. Journal of Dental Research, 56, 1285–1290. https://doi.org/10.1177/00220345770560103401

    Article  CAS  PubMed  Google Scholar 

  7. Meryon, S. D., & Jakeman, K. J. (1986). An in vitro study of the role of dentine in moderating the cytotoxicity of zinc oxide eugenol cement. Biomaterials, 7, 459–462. https://doi.org/10.1016/0142-9612(86)90035-9.

    Article  CAS  PubMed  Google Scholar 

  8. Hanks, C. T., Diehl, M. L., Craig, R. G., Makinen, P.-K., & Pashley, D. H. (1989). Characterization of the “in vitro pulp chamber” using the cytotoxicity of phenol. Journal of Oral Pathology & Medicine, 18, 97–107. https://doi.org/10.1111/j.1600-0714.1989.tb00744.x

    Article  CAS  Google Scholar 

  9. Fitzgerald, K. A., Malhotra, M., Curtin, C. M., O’Brien, F. J., & O’Driscoll, C. M. (2015). Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release, 215, 39–54. https://doi.org/10.1016/j.jconrel.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  10. Schmalz, G., Schuster, U., Nuetzel, K., & Schweikl, H. (1999). An in vitro pulp chamber with three-dimensional cell cultures. Journal of Endodontic, 25, 24–29. https://doi.org/10.1016/S0099-2399(99)80394-X

    Article  CAS  Google Scholar 

  11. Schuster, U., Schmalz, G., Thonemann, B., Mendel, N., & Metzl, C. (2001). Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. Journal of Endodontic, 27, 259–265. https://doi.org/10.1097/00004770-200104000-00004

    Article  CAS  Google Scholar 

  12. Galler, K., Hiller, K. A., Ettl, T., & Schmalz, G. (2005). Selective influence of dentin thickness upon cytotoxicity of dentin contacting materials. Journal of Endodontic, 31, 396–399. https://doi.org/10.1097/01.don.0000145428.26880.e5

    Article  Google Scholar 

  13. Van Landuyt, K. L., Krifka, S., Hiller, K. A., Bolay, C., Waha, C., Van Meerbeek, B., et al. (2015). Evaluation of cell responses toward adhesives with different photoinitiating systems. Dental Materials, 31, 916–927. https://doi.org/10.1016/j.dental.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  14. Téclès, O., Laurent, P., Zygouritsas, S., Burger, A. S., Camps, J., Dejou, J., et al. (2005). Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Archives of Oral Biology, 50, 103–108. https://doi.org/10.1016/j.archoralbio.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Téclès, O., Laurent, P., Aubut, V., & About, I. (2008). Human tooth culture: A study model for reparative dentinogenesis and direct pulp capping materials biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterial, 85, 180–187. https://doi.org/10.1002/jbm.b.30933

    Article  CAS  Google Scholar 

  16. Jeanneau, C., Laurent, P., Rombouts, C., Giraud, T., & About, I. (2017). Light-cured tricalcium silicate toxicity to the dental pulp. Journal of Endodontics, 43, 2074–2080. https://doi.org/10.1016/j.joen.2017.07.010

    Article  PubMed  Google Scholar 

  17. Pedano, M. S., Li, X., Jeanneau, C., Ghosh, M., Yoshihara, K., Van Landuyt, K., et al. (2019). Survival of human dental pulp cells after 4-week culture in human tooth model. Journal of Dentistry, 86, 33–40. https://doi.org/10.1016/j.jdent.2019.05.023

    Article  PubMed  Google Scholar 

  18. Nakao, K., Morita, R., Saji, Y., Ishida, K., Tomita, Y., Ogawa, M., et al. (2007). The development of a bioengineered organ germ method. Nature Methods, 4, 227–230. https://doi.org/10.1038/nmeth1012

    Article  CAS  PubMed  Google Scholar 

  19. Monteiro, N., Smith, E. E., Angstadt, S., Zhang, W., Khademhosseini, A., & Yelick, P. C. (2016). Dental cell sheet biomimetic tooth bud model. Biomaterials, 106, 167–179. https://doi.org/10.1016/j.biomaterials.2016.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, E. E., Zhang, W., Schiele, N. R., Khademhosseini, A., Kuo, C. K., & Yelick, P. C. (2017). Developing a biomimetic tooth bud model. Journal of Tissue Engineering and Regenerative Medicine, 11, 3326–3336. https://doi.org/10.1002/term.2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilmer, M. J., Ng, C. P., Lanz, H. L., Vulto, P., Suter-Dick, L., & Masereeuw, R. (2016). Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends in Biotechnology, 34, 156–170. https://doi.org/10.1016/j.tibtech.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  22. Wevers, N. R., Kasi, D. G., Gray, T., Wilschut, K. J., Smith, B., Vught, R., et al. (2018). A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids and Barriers of the CNS, 15, 1–12. https://doi.org/10.1186/s12987-018-0108-3

    Article  CAS  Google Scholar 

  23. Bovard, D., Sandoz, A., Luettich, K., Frentzel, S., Iskandar, A., Marescotti, D., et al. (2018). A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab on a Chip, 18, 3814–3829. https://doi.org/10.1039/c8lc01029c.

    Article  CAS  PubMed  Google Scholar 

  24. Deng, J., Wei, W., Chen, Z., Lin, B., Zhao, W., Luo, Y., et al. (2019). Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review. Micromachines, 10, 1–26. https://doi.org/10.3390/mi10100676.

    Article  Google Scholar 

  25. França, C. M., Tahayeri, A., Rodrigues, N. S., Ferdosian, S., Puppin-Rontani, R., Ferracane, J. L., et al. (2019). The tooth on-a-chip: a microphysiologic model system mimicking the pulp-dentin interface and its interaction with biomaterials. BioRxiv, 748053. https://doi.org/10.1101/748053.

  26. Elliott, N., & Yuan, F. (2011). A review of Three-Dimensional In Vitro Tissue Models for drus discovery and transport studies. Journal of Pharmaceutical Sciences, 100, 59–74. https://doi.org/10.1002/jps

    Article  CAS  PubMed  Google Scholar 

  27. Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19. https://doi.org/10.3390/ijms19010181.

  28. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., et al. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6. https://doi.org/10.1371/journal.pmed.1000097.

  29. Schmalz, G., Gröppel, F., Hiller, K. A., & Galler, K. M. (2014). Trodimenzionalne kulture ljudskih stanica uzgojene radi testiranja citotoksičnosti stomatoloških materijala. The Acta Stomatologica Croatica, 48, 99–108. https://doi.org/10.15644/asc48/2.99

    Article  CAS  PubMed  Google Scholar 

  30. Sloan, A. J., Shelton, R. M., Hann, A. C., Moxham, B. J., & Smith, A. J. (1998). An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Archives of Oral Biology, 43, 421–430. https://doi.org/10.1016/S0003-9969(98)00029-6

    Article  CAS  PubMed  Google Scholar 

  31. Sloan, A. J., & Smith, A. J. (1999). Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1–3 in vitro. Archives of Oral Biology, 44, 149–156. https://doi.org/10.1016/S0003-9969(98)00106-X

    Article  CAS  PubMed  Google Scholar 

  32. Dobie, K., Smith, G., Sloan, A. J., & Smith, A. J. (2002). Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro. Connective Tissue Research, 43, 387–390. https://doi.org/10.1080/03008200290000574

    Article  CAS  PubMed  Google Scholar 

  33. Murray, P. E., Windsor, L. J., Smyth, T. W., Hafez, A. A., & Cox, C. F. (2002). Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Critical Reviews in Oral Biology & Medicine, 13, 509–520. https://doi.org/10.1177/154411130201300607

    Article  Google Scholar 

  34. Dhopatkar, A. A., Sloan, A. J., Rock, W. P., Cooper, P. R., & Smith, A. J. (2005). British Orthodontic Society, Chapman Prize Winner 2003: Anovel in vitro culture model to investigate the reaction of the dentine-pulp complex to orthodontic force. Journal of Orthodontics, 32, 122–132. https://doi.org/10.1179/146531205225020979

    Article  CAS  PubMed  Google Scholar 

  35. Hadjichristou, C., Papachristou, E., Bonovolias, I., & Bakopoulou, A. (2019). Dentin / Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dental Materials, 1–20. https://doi.org/10.1016/j.dental.2019.11.013.

  36. Aksel, H., & Huang, G. T. J. (2017). Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro. Journal of Endodontics, 43, 930–935. https://doi.org/10.1016/j.joen.2017.01.036

    Article  PubMed  Google Scholar 

  37. Seang, S., Pavasant, P., & Limjeerajarus, C. N. (2018). Iloprost induces dental pulp angiogenesis in a growth factor–free 3-dimensional organ culture system. Journal of Endodontics, 44, 759-764.e2. https://doi.org/10.1016/j.joen.2018.02.001

    Article  PubMed  Google Scholar 

  38. Jiang, R. D., Lin, H., Zheng, G., Zhang, X. M., Du, Q., & Yang, M. (2017). In vitro dentin barrier cytotoxicity testing of some dental restorative materials. Journal of Dentistry, 58, 28–33. https://doi.org/10.1016/j.jdent.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Sengun, A., Yaln, M., Lker, H. E., Ztrk, B., & Hakk, S. S. (2011). Cytotoxicity evaluation of dentin bonding agents by dentin barrier test on 3-dimensional pulp cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 112, 83–88. https://doi.org/10.1016/j.tripleo.2011.02.023

  40. Ulker, H. E., & Sengun, A. (2009). Cytotoxicity evaluation of self adhesive composite resin cements by dentin barrier test on 3D pulp cellss. European Journal of Dentistry, 03, 120–126. https://doi.org/10.1055/s-0039-1697418

    Article  Google Scholar 

  41. Schmalz, G., Schuster, U., Koch, A., & Schweikl, H. (2002). Cytotoxicity of low pH dentin-bonding agents in a dentin barrier test in vitro. Journal of Endodontics, 28, 188–192. https://doi.org/10.1097/00004770-200203000-00011

    Article  PubMed  Google Scholar 

  42. Schuster, U., Schmalz, G., Thonemann, B., & Mendel, N. M. C. (2001). Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. Journal of Endodontics, 27, 259–265. https://doi.org/10.1097/00004770-200104000-00004

    Article  CAS  PubMed  Google Scholar 

  43. da Silva, J. M. F., Rodrigues, J. R., Camargo, C. H. R., Fernandes, V. V. B., Hiller, K. A., Schweikl, H., et al. (2014). Effectiveness and biological compatibility of different generations of dentin adhesives. Clinical Oral Investigations, 18, 607–613. https://doi.org/10.1007/s00784-013-1000-9

    Article  PubMed  Google Scholar 

  44. Laurent, P., Camps, J., & About, I. (2012). Biodentine TM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International Endodontic Journal, 45, 439–448. https://doi.org/10.1111/j.1365-2591.2011.01995.x

    Article  CAS  PubMed  Google Scholar 

  45. Qu, T., Jing, J., Ren, Y., Ma, C., Feng, J. Q., Yu, Q., et al. (2015). Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomaterialia, 16, 60–70. https://doi.org/10.1016/j.actbio.2015.01.029

    Article  CAS  PubMed  Google Scholar 

  46. Murray, P. E., Lumley, P. J., Ross, H. F., & Smith, A. J. (2000). Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomaterials, 21, 1711–1721. https://doi.org/10.1016/S0142-9612(00)00056-9.

    Article  CAS  PubMed  Google Scholar 

  47. Han, J., Kim, D. S., Jang, H., Kim, H. R., & Kang, H. W. (2019). Bioprinting of three-dimensional dentin–pulp complex with local differentiation of human dental pulp stem cells. Journal of Tissue Engineering, 10. https://doi.org/10.1177/2041731419845849.

  48. Bhattacharya, S., Zhang, Q., Carmichael, P. L., Boekelheide, K., & Andersen, M. E. (2011). Toxicity testing in the 21st century: Defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One, 6. https://doi.org/10.1371/journal.pone.0020887.

  49. Schmalz, G., Hiller, K. A., Nunez, L. J., Stoll, J., & Weis, K. (2001). Permeability characteristics of bovine and human dentin under different pretreatment conditions. J Endod, 27, 23–30. https://doi.org/10.1097/00004770-200101000-00007.

    Article  CAS  PubMed  Google Scholar 

  50. ISO 7405: International Organization for Standardization, ISO 7405:2018 Dentistry— Evaluation of Biocompatibility of Medical Devices Used in Dentistry, ISO, Geneva 2018. http://www.iso.org/iso/store.htm. ISO 7405:2018 Dentistry— Evaluation of Biocompatibility ofMedical Devices Used in Dentistry, ISO,. ISO, Geneva 2018:7. http://www.iso.org/iso/store.htm.

Download references

Funding

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 99344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Hadjichristou.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Ethical Approval

This article does not contain any studies with human participants or animals.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjichristou, C., About, I., Koidis, P. et al. Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp Complex: a Literature Review. Stem Cell Rev and Rep 17, 785–802 (2021). https://doi.org/10.1007/s12015-020-10069-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10069-8

Keywords

Navigation