Skip to main content

Advertisement

Log in

Progress in Bioengineered Whole Tooth Research: from Bench to Dental Patient Chair

  • Orodental Regenerative Medicine (M Bartold, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Significance

Tooth loss is a significant health issue that affects the physiological and social aspects of everyday life. Missing teeth impair simple tasks of chewing and speaking and can also contribute to reduced self-confidence. An emerging and exciting area of regenerative medicine-based dental research focuses on the formation of bioengineered whole tooth replacement therapies that can provide both the function and sensory responsiveness of natural teeth. This area of research aims to enhance the quality of dental and oral health for those suffering from tooth loss. Current approaches use a combination of dental progenitor cells, scaffolds and growth factors to create biologically based replacement teeth to serve as improved alternatives to currently used artificial dental prosthetics.

Purpose

This article is an overview of current progress, challenges, and future clinical applications of bioengineered whole teeth.

Conclusion

Recent accomplishments suggest that whole tooth bioengineering for human tooth replacement is indeed possible and, in fact, is the future of dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.

    Article  PubMed  Google Scholar 

  2. Greenstein G, Cavallaro J, Romanos G, Tarnow D. Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: a review. J Periodontol. 2008;79:1317–29.

    Article  PubMed  Google Scholar 

  3. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res. 2008;19:119–30.

    Article  PubMed  Google Scholar 

  4. Yen AH, Yelick PC. Dental tissue regeneration—a mini-review. Gerontology. 2011;57:85–94.

    Article  PubMed  Google Scholar 

  5. Lai W-F, Lee J-M, Jung H-S. Molecular and engineering approaches to regenerate and repair teeth in mammals. Cell Mol Life Sci. 2014;71:1691–701.

    Article  CAS  PubMed  Google Scholar 

  6. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003;116:1647–8.

    Article  CAS  PubMed  Google Scholar 

  7. Thesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol. 1996;8:844–50.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005;15:301–16.

    Article  CAS  PubMed  Google Scholar 

  9. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997;67:111–23.

    Article  CAS  PubMed  Google Scholar 

  10. Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A. 2006;140A:2530–5.

    Article  Google Scholar 

  11. Ruch JV, Lesot H, Karcher-Djuricic V, Meyer JM, Olive M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation. 1982;21:7–12.

    Article  CAS  PubMed  Google Scholar 

  12. Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol. 2012;4.

  13. Thesleff I, Vainio S, Jalkanen M. Cell-matrix interactions in tooth development. Int J Dev Biol. 1989;33:91–7.

    CAS  PubMed  Google Scholar 

  14. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5:499–508.

    Article  CAS  PubMed  Google Scholar 

  15. Glasstone S. The development of tooth germs on the chick chorio-allantois. J Anat. 1954;88:392–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32:123–7.

    Article  CAS  PubMed  Google Scholar 

  17. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res. 2004;83:523–8.

    Article  CAS  PubMed  Google Scholar 

  18. Young CS, Abukawa H, Asrican R, Ravens M, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue-engineered hybrid tooth and bone. Tissue Eng. 2005;11.

  19. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res. 2008;87:745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao ZH, Hu L, Liu GL, Wei FL, Liu Y, Liu ZH, Fan ZP, Zhang CM, Wang JS, Wang SL. Bio-Root and implant-based restoration as a tooth replacement alternative. J Dent Res. 2016.

  21. Yang K-C, Kitamura Y, Wu C-C, Chang H-H, Ling T-Y, Kuo T-F. Tooth germ-like construct transplantation for whole-tooth regeneration: an in vivo study in the miniature pig. Artif Organs. 2016;40:E39–50. This recent study is of major importance because it showed the successful generation of erupted bioengineered teeth in a porcine tooth loss model. Implanted tooth buds were composed of gelatin-chrodroitin-hyaluronan scaffolds seeded with differentiated odontoblast and osteoblasts and gingival epithelial cells. This investigation supports the proposal for using adult autologous cells for whole tooth bioengineering in future clinical applications.

    Article  CAS  PubMed  Google Scholar 

  22. Bhoj M, Zhang C, Green DW. A first step in de novo synthesis of a living pulp tissue replacement using dental pulp MSCs and tissue growth factors, encapsulated within a bioinspired alginate hydrogel. J Endod. 2015;41:1100–7.

    Article  PubMed  Google Scholar 

  23. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–9.

    Article  PubMed  Google Scholar 

  26. Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin N Am. 2012;56:549–61.

    Article  PubMed  Google Scholar 

  27. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1, e79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24:155–65.

    Article  CAS  PubMed  Google Scholar 

  29. Guo W, He Y, Zhang X, Lu W, Wang C, Yu H, et al. The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials. 2009;30:6708–23.

    Article  CAS  PubMed  Google Scholar 

  30. Seo B-M, Miura M, Gronthos S, Mark Bartold P, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  31. Shinmura Y, Tsuchiya S, Hata K-i, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol. 2008;217:728–38.

    Article  CAS  PubMed  Google Scholar 

  32. Honda MJ, Shinohara Y, Hata KI, Ueda M. Subcultured odontogenic epithelial cells in combination with dental mesenchymal cells produce enamel–dentin-like complex structures. Cell Transplant. 2007;16:833–47.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Jiang M, Hao W, Liu W, Tang L, Liu H, et al. Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. J Tissue Eng Regen Med. 2013;7:934–43.

    Article  CAS  PubMed  Google Scholar 

  34. Angelova Volponi A, Kawasaki M, Sharpe PT. Adult human gingival epithelial cells as a source for whole-tooth bioengineering. J Dent Res. 2013.

  35. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  36. Karagiannis P, Eto K. Ten years of induced pluripotency: from basic mechanisms to therapeutic applications. Development. 2016;143:2039–43.

    Article  CAS  PubMed  Google Scholar 

  37. Liu P, Zhang Y, Chen S, Cai J, Pei D. Application of iPS cells in dental bioengineering and beyond. Stem Cell Rev Rep. 2014;10:663–70.

    Article  CAS  Google Scholar 

  38. Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, et al. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One. 2010;5, e12743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res. 2011;46:438–47.

    Article  CAS  PubMed  Google Scholar 

  40. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GTJ. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2009;19:469–80.

    Article  Google Scholar 

  41. Liu L, Liu Y-F, Zhang J, Duan Y-Z, Jin Y. Ameloblasts serum-free conditioned medium: bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. J Tissue Eng Regen Med. 2016;10:466–74.

    Article  CAS  PubMed  Google Scholar 

  42. Ozeki N, Mogi M, Kawai R, Yamaguchi H, Hiyama T, Nakata K, et al. Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. PLoS One. 2013;8, e80026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuchler-Bopp S, Bécavin T, Kökten T, Weickert JL, Keller L, Lesot H, et al. Three-dimensional micro-culture system for tooth tissue engineering. J Dent Res. 2016;95:657–64. This recent study is of major importance because it demonstrates that that tooth organogenesis can be achieved by incorporating scaffold free single cell suspensions with the hanging drop method. Since a considerably low amount of cells were used, as compared to traditional hanging drop methods, this approach can be used for high-throughput screening of dental cell sources from normal and even pathologic tissue for tooth development and regenerative medicine studies.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang W, Vázquez B, Yelick PC. Bioengineered post-natal recombinant tooth bud models. J Tissue Eng Regen Med. 2014; n/a-n/a. This study is of major importance because it demonstrated that postnatal tissues from porcine wisdom teeth can be recombined to form bioengineered tooth tissues suggesting that the odontogenic potential was maintained after extraction. These results coincide with earlier work that showed the conserved odontogenic potential of dental postnatal single cell suspensions. In addition, this work supports the possibility of using human dental tissues from unerupted wisdom teeth to generate functional whole replacement teeth.

  45. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  46. Galler KM, D’Souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. J Mater Chem. 2010;20:8730–46.

    Article  CAS  Google Scholar 

  47. Oshima M, Tsuji T. Whole tooth regeneration as a future dental treatment. In: Bertassoni EL, Coelho GP, editors. Engineering mineralized and load bearing tissues. Cham: Springer International Publishing; 2015. p. 255–69.

    Chapter  Google Scholar 

  48. Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med. 2016;n/a-n/a.

  49. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.

    Article  CAS  PubMed  Google Scholar 

  50. Abukawa H, Zhang W, Young CS, Asrican R, Vacanti JP, Kaban LB, et al. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67:335–47.

    Article  PubMed  Google Scholar 

  51. Zhang W, Abukawa H, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue engineered hybrid tooth–bone constructs. Methods. 2009;47:122–8.

    Article  CAS  PubMed  Google Scholar 

  52. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod. 2008;34:421–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang W, Ahluwalia IP, Literman R, Kaplan DL, Yelick PC. Human dental pulp progenitor cell behavior on aqueous and hexafluoroisopropanol (HFIP) based silk scaffolds. J Biomed Mater Res A. 2011;97:414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu W-P, Zhang W, Asrican R, Kim H-J, Kaplan DL, Yelick PC. Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng A. 2008;14:549–57.

    Article  CAS  Google Scholar 

  55. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98:159–61.

    Article  PubMed  Google Scholar 

  56. Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014;39:704–11.

    Google Scholar 

  57. Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9.

    Article  PubMed  Google Scholar 

  59. Fuellhase C, Soler R, Andersson KE, Atala A, Yoo JJ. 264 Generation of organized bladder tisue constructs using a novel hybrid printing system. Eur Urol Suppl. 8:186.

  60. Bartlett S. Printing organs on demand. Lancet Respir Med. 2013;1:684.

    Article  PubMed  Google Scholar 

  61. Chen Y, Bei M, Woo I, Satokata I, Maas R. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development. 1996;122:3035–44.

    CAS  PubMed  Google Scholar 

  62. D’Souza RN, Happonen RP, Ritter NM, Butler WT. Temporal and spatial patterns of transforming growth factor-β1 expression in developing rat molars. Arch Oral Biol. 1990;35:957–65.

    Article  PubMed  Google Scholar 

  63. Thesleff I, Mikkola M. The role of growth factors in tooth development. In Int Rev Cytol Vol. 2002;Volume 217. (Academic Press), pp. 93–135.

  64. Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993;75:45–58.

    Article  CAS  PubMed  Google Scholar 

  65. Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. Wiley Interdiscip Rev: Dev Biol. 2013;2:165–82.

    Article  Google Scholar 

  66. Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–9.

    CAS  PubMed  Google Scholar 

  67. Vaahtokari A, Åberg T, Jernvall J, Keränen S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech Dev. 1996;54:39–43.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X-P, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 2004;7:719–30.

    Article  CAS  PubMed  Google Scholar 

  69. Hosoya A, Kim J-Y, Cho S-W, Jung H-S. BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res. 2008;333:503–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Zhang Y, Jiang T-X, Barlow AJ, St. Amand TR, Hu Y, et al. Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci U S A. 2000;97:10044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol. 2004;274:139–57.

    Article  CAS  PubMed  Google Scholar 

  72. Stock DW, Jackman WR, Trapani J. Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development. 2006;133:3127–37.

    Article  CAS  PubMed  Google Scholar 

  73. Li Y, Lü X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch Oral Biol. 2011;56:1221–9.

    Article  CAS  PubMed  Google Scholar 

  74. Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of aliginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res. 2002;43:387–90.

    Article  CAS  PubMed  Google Scholar 

  75. Unda FJ, Martín A, Hernandez C, Pérez-Nanclares G, Hilario E, Aréchaga J. FGFs-1 and -2, and TGFβ 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res. 2001;15:34–8.

    Article  CAS  PubMed  Google Scholar 

  76. He H, Yu J, Liu Y, Lu S, Liu H, Shi J, et al. Effects of FGF2 and TGFβ1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int. 2008;32:827–34.

    Article  CAS  PubMed  Google Scholar 

  77. Štembírek J, Kyllar M, Putnová I, Stehlík L, Buchtová M. The pig as an experimental model for clinical craniofacial research. Lab Anim. 2012;46:269–79.

    Article  CAS  PubMed  Google Scholar 

  78. Štembírek J, Buchtová M, Král T, Matalová E, Lozanoff S, Míšek I. Early morphogenesis of heterodont dentition in minipigs. Eur J Oral Sci. 2010;118:547–58.

    Article  PubMed  Google Scholar 

  79. Nait Lechguer A, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of engineered teeth. J Dent Res. 2008;87:1138–43.

    Article  CAS  PubMed  Google Scholar 

  80. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, et al. The development of a bioengineered organ germ method. Nat Methods. 2007;4:227–30.

    Article  CAS  PubMed  Google Scholar 

  81. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci. 2009;106:13475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oshima M, Inoue K, Nakajima K, Tachikawa T, Yamazaki H, Isobe T, et al. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy. Sci Rep. 2014;4:6044. This investigation is of importance because it demonstrates that a bio-hybrid design can be used as a possible alternative to whole tooth bioengineering. This bio-hybrid tooth root approach resulted in an implant that was supported by regenerated periodontal tissues formation and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela C. Yelick.

Ethics declarations

Conflict of Interest

Elizabeth E. Smith declares that she has no conflict of interest.

Pamela C. Yelick reports that she has two patents pending, one relevant to the field of study, and one that is not.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Orodental Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E.E., Yelick, P.C. Progress in Bioengineered Whole Tooth Research: from Bench to Dental Patient Chair. Curr Oral Health Rep 3, 302–308 (2016). https://doi.org/10.1007/s40496-016-0110-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-016-0110-2

Keywords

Navigation