Skip to main content

Enhancement of Plant Secondary Metabolites by Genetic Manipulation

  • Chapter
  • First Online:
Genetic Manipulation of Secondary Metabolites in Medicinal Plant

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

  • 178 Accesses

Abstract

Secondary metabolites comprise the large repository of biomolecules, which are biosynthesized by bacteria, plants, and microorganisms. The metabolites necessary to perform day-to-day routine activities are termed primary metabolites and are the outcome of primary metabolism. Secondary metabolism forms more diverse and complex biomolecules termed as secondary metabolites; these are the end product of secondary metabolism. Depending upon the diverse functional group or basic carbon skeleton, secondary metabolites are categorized as terpenes, phenolics, and alkaloids. All the secondary metabolites are biosynthesized in either one of the shikimic acid, malonic acid, mevalonic acid, and methylerythritol phosphate pathways. These secondary metabolites enable the plant’s survival in different habitats and fluctuating environment conditions. The secondary metabolites are more economical and have lesser side effects as compared to chemical drugs, therefore an indispensable part of the traditional healthcare system. They are also useful in food, aroma, spices, and perfume industry. Owing to their diverse and multiple uses, there exists a huge gap between their production and demand. Due to the uniqueness and complexity in the chemical structures of secondary metabolites, often complete plants/organisms are used for harvesting secondary metabolites. The production of secondary metabolite in their native systems has the problems, such as low yield, tissue- and organ-specific compartmentalization, and accumulation in response to specific growth or environmental and geographical conditions. Moreover, harvesting secondary metabolites from the wild or native stage is often not a sustainable way, as this might result in the overharvesting of concerned plant as well as to deterioration of biodiversity. Apart from this, the pharmaceutical industry demands homogeneous samples having uniform compositions of the bioactive principles that is difficult to be achieved when harvesting, or collection is done randomly from the wild. The practices, such as cultivation, culturing, and domestication of the source organism, might be a valuable alternative, providing more uniform conditions and delivering homogenous composition of desired valuable secondary metabolites. But in most of the cases, the feasibility of this approach is limited because of various reasons. To overcome these hurdles concerning to the low synthesis, heterogeneity in composition, and accumulation in response to specific cues or specific stage of secondary metabolites, genetic manipulation of host organism seems to be a viable option. The research related to secondary metabolism through genetic manipulation is expanding at a fast pace and is challenging in molecular biology and biotechnology, holding unlimited opportunities. New advents in molecular biology, functional genomics, metabolomics, and proteomics are expanding our understanding of the pathways, networks, genes, and enzymes involved in the synthesis of secondary metabolites. These inputs from different dimensions of genetic manipulations are contributing determinant role in developing efficient strategies for targeted biosynthesis of valuable secondary metabolites. With the ever-increasing demand for novel drugs related to recently identified molecular targets, genetic manipulation will likely become more and more relevant. The lucrative economic aspects of commercial and industrial production of secondary metabolite related to pharmaceuticals, food, nutraceutical, aromatic, and perfume industries could magnetize investments and interest and build up new opportunities in this promising research field. This chapter discusses the various approaches and strategies used for the genetic manipulation of secondary metabolites and manipulation of the biosynthetic pathway of secondary metabolite products, leading to an improved quantity of secondary metabolites or more valuable and desired biomolecules. The various examples concerned with each approach have been also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrin S, Huang JJ, Luo ZY (2015) JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull 60(12):1062–1072

    Article  CAS  Google Scholar 

  • Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavanol accumulation in transgenic tobacco. Plant J 28:319–332

    Article  CAS  Google Scholar 

  • Ahmad N, Michoux F, Nixon PJ (2012) Investigating the production of foreign membraneproteins in tobacco chloroplasts: expression of an algal plastid terminaloxidase. PLoS One 7:e41722

    Article  CAS  Google Scholar 

  • Ahmad N, Michoux F, McCarthy J, Nixon PJ (2012a) Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts. Planta 235:863–871

    Article  CAS  Google Scholar 

  • Ahmad N, Michoux F, Nixon PJ (2012b) Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. PloS One 7:e41722

    Article  CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012c) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    Article  CAS  Google Scholar 

  • Ahn SY, Kim SA, Cho KS, Yun HK (2014) Expression of genes related to flavonoid and stilbene synthesis as affected by signaling chemicals and Botrytis cinerea in grapevines. Biol Plant 58(4):758–767

    Article  CAS  Google Scholar 

  • Alagoz Y, Gurkok T, Zhang B et al (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910. https://doi.org/10.1038/srep30910

    Article  CAS  Google Scholar 

  • Antonio C, Mustafa NR, Osorio S, Tohge T, Giavalisco P, Willmitzer L, Rischer H, Oksman-Caldentey K-M, Verpoorte R, Fernie AR (2013) Analysis of the interface between primary and secondary metabolism in Catharanthus roseus cell cultures using 13C-stable isotope feeding and coupled mass spectrometry. Mol Plant 6:581–584

    Article  CAS  Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  CAS  Google Scholar 

  • Arakawa T, Chong DKK, Lawrence Merritt J, Langridge WHR (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6:403–413

    Article  CAS  Google Scholar 

  • Arya SS, Rookes JE, Cahill DM, Lenka SK (2020) Next generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol Adv 45:107635

    Article  CAS  Google Scholar 

  • Asai T, Yamamoto T, Oshima Y (2011) Histone deacetylase inhibitor induced the production of three novel prenylated tryptophan analogs in the entomopathogenic fungus, Torrubiella luteorostrata. Tetrahedron Lett 52:7042–7045

    Article  CAS  Google Scholar 

  • Asai T, Chung YM, Sakurai H, Ozeki T, Chang FR, Yamashita K et al (2012) Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org Lett 14:513–515. https://doi.org/10.1021/ol203097b

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29(3):162–190

    Article  CAS  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563. https://doi.org/10.3390/molecules190913541

    Article  CAS  Google Scholar 

  • Baltz RH (2011a) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38:657–666

    Article  CAS  Google Scholar 

  • Baltz RH (2011b) Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 38:1747–1760

    Article  CAS  Google Scholar 

  • Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  CAS  Google Scholar 

  • Baltz RH (2014a) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–759

    Article  CAS  Google Scholar 

  • Baltz RH (2014b) MbtH homology codes to identify gifted microbes for genome mining. J Ind Microbiol Biotechnol 41:357–369

    Article  CAS  Google Scholar 

  • Baltz RH (2014c) Spontaneous and induced mutations to rifampicin, streptomycin, and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiot 67:619–624

    Article  CAS  Google Scholar 

  • Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem 2(12):1072–1095

    Article  CAS  Google Scholar 

  • Benedetti I, Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118

    Article  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 2007(45):399–436. PMID: 17506648. https://doi.org/10.1146/annurev.phyto.45.062806.094427

    Article  CAS  Google Scholar 

  • Birky CWJ (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci U S A 92:11331–11338

    Article  CAS  Google Scholar 

  • Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF et al (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5(7):462–464

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    Article  CAS  Google Scholar 

  • Bowles D, Lim E-K, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  CAS  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32. Chicago

    Article  CAS  Google Scholar 

  • Bravo R, Matito S, Cubero J, Paredes SD, Franco L, Rivero M, Rodríguez AB, Barriga C (2013) Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 35:1277. https://doi.org/10.1007/s11357-012-9419-5

    Article  CAS  Google Scholar 

  • Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The c-glycosylation of flavonoids in cereals. J Biol Chem 2009(284):17926–17934

    Article  Google Scholar 

  • Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4(2):136–142

    Article  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B et al (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 269(2):173–179

    Article  CAS  Google Scholar 

  • Bulger M (2005) Hyperacetylated chromatin domains: lessons from heterochromatin. J Biol Chem 280:21689–21692. https://doi.org/10.1074/jbc.R500004200

    Article  CAS  Google Scholar 

  • Burow M, Wittstock U, Gershenzon J (2008) Sulfur-containing secondary metabolites and their role in plant defense. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Advances in photosynthesis and respiration, vol 27. Springer, Dordrecht

    Google Scholar 

  • Buttner-Mainik A, Parsons J, Jerome H, Hartmann A, Lamer S, Schaaf A, Schlosser A, Zipfel PF, Reski R, Decker EL (2011) Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol J 9:373–383

    Article  Google Scholar 

  • Cao S, Cai Y, Yang Z, Joyce DC, Zheng Y (2014) Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chem 145:86–89

    Article  CAS  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304. https://doi.org/10.1038/nrg2540

    Article  CAS  Google Scholar 

  • Chaudhary S, Chikara SK, Sharma MC, Chaudhary A, Alam Syed B, Chaudhary PS, Mehta A, Patel M, Ghosh A, Iriti M (2015) Elicitation of diosgenin production in Trigonella foenum-graecum (fenugreek) seedlings by methyl jasmonate. Int J Mol Sci 16:29889

    Article  CAS  Google Scholar 

  • Cheng J, Wei G, Zhou H, Gu C, Vimolmangkang S, Liao L, Han Y (2014) Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol 166:1044–1058

    Article  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105. https://doi.org/10.1093/nar/gku241

    Article  CAS  Google Scholar 

  • Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22. https://doi.org/10.1039/b920860g

    Article  CAS  Google Scholar 

  • Cimermancic P, Medema MH, Claesen J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421

    Article  CAS  Google Scholar 

  • Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41:469–477

    Article  CAS  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728

    Article  CAS  Google Scholar 

  • Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134

    Article  CAS  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2021) Tryptophan: a precursor of signaling molecules in higher plants. In: Gupta DK, Corpas FJ (eds) Hormones and plant response. Plant in challenging environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_11

    Chapter  Google Scholar 

  • Correa SM, Alseekh S, Atehortu AL, Brotman Y, Rios-Estepa R, Fernie AR, Nikoloski Z (2020) Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. Plant J 104:76–95

    Article  CAS  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009. https://doi.org/10.1006/jmbi.2001.4921

    Article  CAS  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52(4):455–463

    Article  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25(6):549–565

    Article  CAS  Google Scholar 

  • Ding Z, Zhou H, Wang X, Huang H, Wang H, Zhang R et al (2020) Deletion of histone deacetylase HadA in endophytic fungus Penicillium chrysogenum FES1701 induces the complex response of multiple bioactive secondary metabolite production and relevant gene cluster expression. Molecules 25:3657. https://doi.org/10.3390/molecules25163657

    Article  CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a goldmine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  CAS  Google Scholar 

  • Dixon RA, Bailey JA, Bell JN, Bolwell GP, Cramer CL et al (1986) Rapid changes in gene expression in response to microbial elicitation. Philos Trans R Soc B 314(1166)

    Google Scholar 

  • Donaldson ME, Saville BJ (2012) Natural antisense transcripts in fungi. Mol Microbiol 85:405–417. https://doi.org/10.1111/j.1365-2958.2012.08125.x

    Article  CAS  Google Scholar 

  • Dučaiová Z, Sajko M, Mihaličová S, Repčák M (2016) Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul 79:81–94

    Article  Google Scholar 

  • Duda K, Lonowski LA, Kofoed-Nielsen M, Ibarra A, Delay CM, Kang Q, Yang Z, Pruett-Miller SM, Bennett EP, Wandall HH, Davis GD, Hansen SH, Frödin M (2014) High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Res 2:e84. https://doi.org/10.1093/nar/gku251

    Article  CAS  Google Scholar 

  • Dwiecki K, Neunert G, Polewski P, Polewski K (2009) Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. J Photochem Photobiol B Biol 96(3):242–248

    Article  CAS  Google Scholar 

  • Efferth TJE (2019) Biotechnology applications of plant callus cultures. Engineering 5:50–59

    Article  CAS  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, Garcia-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  Google Scholar 

  • Falcone Ferreyra ML, Rodriguez E, Casas MI, Labadie G, Grotewold E, Casati P (2013) Identification of a bifunctional maize C- and O-glucosyltransferase. J Biol Chem 288:31678–31688

    Article  Google Scholar 

  • Ferrari S (2010) Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceutics. Adv Exp Med Biol 698:152–166. https://doi.org/10.1007/978-1-4419-7347-4_12. PMID: 21520710

    Article  CAS  Google Scholar 

  • Figueroa-Pérez MG, Gallegos-Corona MA, Ramos-Gomez M, Reynoso-Camacho R (2015) Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions. Food Funct 6(6):1865–1874

    Article  Google Scholar 

  • Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 2001(12):155–160

    Article  Google Scholar 

  • Freestone TS, Ju KS, Wang B, Zhao H (2017) Discovery of a Phosphonoacetic acid derived natural product by pathway refactoring. ACS Synth Biol 6(2):217–223

    Article  CAS  Google Scholar 

  • Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5:e13664. https://doi.org/10.7554/eLife.13664

    Article  Google Scholar 

  • Gacek A, Strauss J (2012) The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 95:1389–1404. https://doi.org/10.1007/s00253-012-4208-8

    Article  CAS  Google Scholar 

  • Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci 10:542–549

    Article  CAS  Google Scholar 

  • Gandikota M, de Kochko A, Chen L, Ithal N, Fauquet C, Reddy AR (2001) Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breed 7:73–83

    Article  CAS  Google Scholar 

  • García-Estrada C, Ullan RV, Albillos SM, Fernandez-Bodega MA, Durek P, Dohren H et al (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512. https://doi.org/10.1016/j.chembiol.2011.08.012

    Article  CAS  Google Scholar 

  • Geller-Mcgrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M (2023a) Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 14:656. https://doi.org/10.1038/s41467-023-36026-w

    Article  CAS  Google Scholar 

  • Geller-McGrath D, Mara P, Taylor GT et al (2023b) Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic genome editing. Trends Plant Sci 22:550–553

    Google Scholar 

  • Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tiss Org Cult 126:1–18. https://doi.org/10.1007/s11240-016-0985-6

    Article  CAS  Google Scholar 

  • Gnanasekaran T, Karcher D, Nielsen AZ, Martens HJ, Ruf S, Kroop X, Olsen CE, Motawie MS, Pribil M, Møller BL (2016) Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J Exp Bot 67(8):2495

    Article  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci U S A 100(14):8595–8600

    Article  CAS  Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates R, Wei-Ting L, Gerwick WH (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PloS One 6:e18565

    Article  CAS  Google Scholar 

  • Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, St Clair G, Bowen B (1998) Engineering secondary metabolism in maize cells ectopic expression of transcription factors. Plant Cell 10:721–740

    Article  CAS  Google Scholar 

  • Gutmann A, Nidetzky B (2013) Enzymatic C-glycosylation: Insights from the study of a complementary pair of plant O- and C-glucosyltransferases. Pure Appl Chem 85:1865–1877

    Article  CAS  Google Scholar 

  • Hadden WL, Watkins RH, Levy LW et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47(10):4189–4194

    Article  CAS  Google Scholar 

  • Harada H, Maoka T, Osawa A, Hattan J, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23:303–315. https://doi.org/10.1007/s11248-013-9750-3

    Article  CAS  Google Scholar 

  • Hawary EI, Sayed SS, Mohammed AM, Hassan R, Zaki HM, Rateb MA et al (2018) Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Mar Drugs 16:253. https://doi.org/10.3390/md16080253

    Article  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. NatBiotechnol 22:1415–1422

    CAS  Google Scholar 

  • Herrmann S, Siegl T, Luzhetska M et al (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812

    Article  CAS  Google Scholar 

  • Hibberd JM, Furbank RT (2016) In retrospect: fifty years of C4 photosynthesis. Nature 538:177–179. https://doi.org/10.1038/538177b

    Article  CAS  Google Scholar 

  • Ho TT, Murthy HN, Park SY (2020) Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int J Mol Sci 21(3):716

    Article  CAS  Google Scholar 

  • Holopainen JK, Heijari J, Nerg AM, Vuorinen M, Kainulainen P (2009) Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open For Sci J 2:17–24

    CAS  Google Scholar 

  • Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464. https://doi.org/10.1093/nar/gku241

    Article  CAS  Google Scholar 

  • Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243

    Article  CAS  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq J DNA Seq Mapp 5:41–49

    Article  CAS  Google Scholar 

  • Hussain S, Fareed S, Ansari S, Rahman A, Iffat-Zareen A, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) CRISPR-assisted editing of bacterial genomes. Nat Biotechnol 31:233–239

    Article  CAS  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    Article  CAS  Google Scholar 

  • Jin-Hee S, Kyu-Jung V, Moon-Young K, Suk-Ha L (2006) Gene structure and characterization of lipoxygenase-2 gene (Lx2) in soybean. In: Proceedings of the Korean Crop Society Conference, 2006, pp 80–81

    Google Scholar 

  • Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63

    Article  CAS  Google Scholar 

  • Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  CAS  Google Scholar 

  • Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2004) Distinct functional properties of the alpha subunits OASA1 and OASA2. Plant Mol Biol 54:11–23

    Article  CAS  Google Scholar 

  • Kanno T, Komatsu A, Kasai K, Dubouzet JG, Sakurai M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2005) Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway. Plant Physiol 138:2260–2268

    Article  CAS  Google Scholar 

  • Kellogg EA (2013) C4 photosynthesis. Curr Biol 23:R594–R599

    Article  CAS  Google Scholar 

  • Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59:39–52

    Article  CAS  Google Scholar 

  • Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anticancer drugs. Am J Transl Res 3:166–179

    CAS  Google Scholar 

  • Kim HS, Kim BG, Sung S, Kim M, Mok H, Chong Y, Ahn JH (2013) Engineering flavonoid glycosyltransferases for enhanced catalytic efficiency and extended sugar-donor selectivity. Planta 238:683–693

    Article  CAS  Google Scholar 

  • Kim EM, Eom JH, Um Y, Kim Y, Woo HM (2015) Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63(18):4606–4612

    Article  CAS  Google Scholar 

  • Kim EM et al (2022) Changes in secondary metabolites in soybean (Glycine max L.) roots by salicylic acid treatment and their anti-LDL oxidation effects. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.1000705

  • Komatsu M, Uchiyama T, Ōmura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651

    Article  CAS  Google Scholar 

  • Kowalczyk T, Wieczfinska J, Skała E, Sliwinski T, Sitarek P (2020) Transgenesis as a tool for the efficient production of selected secondary metabolites from in vitro plant cultures. Plants (Basel) 9:132

    Article  CAS  Google Scholar 

  • Kren V, Thiem J (1997) Glycosylation employing bio-systems: From enzymes to whole cells. Chem Soc Rev 26:463–473

    Article  CAS  Google Scholar 

  • Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28

    Article  CAS  Google Scholar 

  • Kumar D, Tannous J, Sionov E, Keller N, Prusky D (2018) Apple intrinsic factors modulating the global regulator, LaeA, the patulin gene cluster and patulin accumulation during fruit colonization by Penicillium expansum. Front Plant Sci 9:1094. https://doi.org/10.3389/fpls.2018.01094

    Article  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  Google Scholar 

  • Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:127

    Google Scholar 

  • Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790. https://doi.org/10.1016/j.fgb.2009.06.007

    Article  CAS  Google Scholar 

  • Lee YS, Ju HK, Kim YJ, Lim TG, Uddin MR, Kim YB, Yang TJ et al (2013) Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation. PloS One 8(12):e82479

    Article  Google Scholar 

  • Leegood RC (2013) Strategies for engineering C(4) photosynthesis. J Plant Physiol 170:378–388. https://doi.org/10.1016/j.jplph.2012.10.011

    Article  CAS  Google Scholar 

  • Li L, Guo J, Wen Y, Chen Z, Song Y, Li J (2010) Overproduction of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 37:673–679

    Article  CAS  Google Scholar 

  • Li XR, Tian GQ, Shen HJ, Liu JZ (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J Ind Microbiol Biotechnol 42:627

    Article  CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  Google Scholar 

  • Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z (2015) Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ Microbiol 17:4615–4630. https://doi.org/10.1111/1462-2920.12993

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  Google Scholar 

  • Longoni P, Leelavathi S, Doria E, Reddy VS, Cella R (2015) Production by tobacco transplastomic plants of recombinant fungal and bacterial cell-wall degrading enzymes to be used for cellulosic biomass saccharification. Biomed Res Int 2015:289759. https://doi.org/10.1155/2015/289759

    Article  CAS  Google Scholar 

  • Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    Article  Google Scholar 

  • Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    Article  Google Scholar 

  • Lucchesini M, Monteforti G, Mensuali-Sodi A, Serra G (2006) Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Biol Plant 50:161–168

    Article  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:623–632. https://doi.org/10.1073/pnas.1216898110

    Article  Google Scholar 

  • Luo Y, Zhang L, Barton KW, Zhao H (2015) Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol 4:1001. https://doi.org/10.1021/acssynbio.5b00016

    Article  CAS  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  Google Scholar 

  • Mao XM, Xu W, Li D, Yin WB, Chooi YH, Li YQ et al (2015) Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem Int Ed 54:7592–7596. https://doi.org/10.1002/anie.201502452

    Article  CAS  Google Scholar 

  • Martınez-Garcıa E, Benedetti I, Hueso A, Lorenzo V (2015) Mining environmental plasmids for synthetic biology parts and devices. Microbiol Spectr 3(1):PLAS-0033-2014

    Article  Google Scholar 

  • Martins Dos Santos VAP, Heim S, Moore ERB, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6(12):1264–1286

    Article  Google Scholar 

  • Masada S, Terasaka K, Mizukami H (2007) A single amino acid in the PSPG-box plays an important role in the catalytic function of CaUGT2 (Curcumin glucosyltransferase), a Group D Family 1 glucosyltransferase from Catharanthus roseus. FEBS Lett 581:2605–2610

    Article  CAS  Google Scholar 

  • McMurry JE (2015) Organic chemistry with biological applications. In: Secondary metabolites: an introduction to natural products chemistry. Cengage Learning, Stamford, pp 1016–1046

    Google Scholar 

  • Mejía-Teniente L, Torres-Pacheco I, González-Chavira MM, Ocampo-Velazquez RV, Herrera-Ruiz G, Chapa-Oliver AM, Guevara-González RG (2010) Use of elicitors as an approach for sustainable agriculture. Afr J Biotechnol 9(54):9155–9162

    Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251. https://doi.org/10.1007/BF02257529

    Article  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, Van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruits containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  Google Scholar 

  • Mun BG, Kim HH, Yuk HJ, Hussain A, Loake GJ, Yun BW (2021) A potential role of coumestrol in soybean leaf senescence and its interaction with phytohormones. Front Plant Sci 12(756):308

    Google Scholar 

  • Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762. https://doi.org/10.1093/nar/gku305

    Article  CAS  Google Scholar 

  • Myronovskyi M, Rozenkränzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98:4557–4570

    Article  CAS  Google Scholar 

  • Nabi N, Singh S, Saffeullah P (2021) Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review. In Vitro Cell Dev Biol Plant 57:341–355

    Article  CAS  Google Scholar 

  • Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85:148–160. https://doi.org/10.1111/tpj.13098

    Article  CAS  Google Scholar 

  • Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  CAS  Google Scholar 

  • Onrubia M, Cusidó RM, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 20(7):880–891

    CAS  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112(2015):8529–8536. https://doi.org/10.1073/pnas.1424031112

    Article  CAS  Google Scholar 

  • Osmani SA, Bak S, Møller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347

    Article  CAS  Google Scholar 

  • Palonen EK, Raina S, Brandt A, Meriluoto J, Keshavarz T, Soini JT (2017) Transcriptomic complexity of Aspergillus terreus velvet gene family under the influence of butyrolactone I. Microorganisms 5:12. https://doi.org/10.3390/microorganisms5010012

    Article  CAS  Google Scholar 

  • Pan Y, Lu C, Dong H, Yu L, Liu G, Tan H (2013) Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Microb Cell Fact 12:65

    Article  CAS  Google Scholar 

  • Park SJ, Kim EY, Noh W et al (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 36:885

    Article  CAS  Google Scholar 

  • Park G, Baek S, Kim JE, Lim TG, Lee CC, Yang H, Lee KW et al (2015) Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging. Biochem Pharmacol 98(3):473–483

    Article  CAS  Google Scholar 

  • Parsaeimehr A, Sargsyan E, Vardanyan A (2011) Expression of secondary metabolites in plants and their useful perspective in animal health. ABAH Bioflux 3:115–124

    CAS  Google Scholar 

  • Parthasarathy R, Shanmuganathan R, Pugazhendhi A (2020) Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal Biochem 593:113530

    Article  CAS  Google Scholar 

  • Pasoreck EK, Su J, Silverman IM, Gosai SJ, Gregory BD, Yuan JS, Daniell H (2016) Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. Plant Biotechnol J:1–12

    Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14(2):87–91

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    Article  CAS  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011

    Article  CAS  Google Scholar 

  • Rahimi S, Kim YJ, Sukweenadhi J, Zhang D, Yang DC (2016) PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. J Exp Bot 67:6007–6019

    Article  CAS  Google Scholar 

  • Ram M, Prasad KV, Singh SK, Hada BS, Kumar S (2013) Influence of salicylic acid and methyl jasmonate elicitation on anthocyanin production in callus cultures of Rosa hybrida L. Plant Cell Tiss Org Cult 113:459–467

    Article  CAS  Google Scholar 

  • Ran F, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y (2013) Double nicking by RNA-guided CRISPRCas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  Google Scholar 

  • Ratnadewi D (2017) Alkaloids in plant cell cultures. In: Alternatives in synthesis, modification and application. Intech Open, London

    Google Scholar 

  • Ren H, Hu P, Zhao H (2017) A plug-and-play pathway refactoring workflow for natural product research in Escherichia coli and Saccharomyces cerevisiae. Biotechnol Bioeng 114(8):1847–1854

    Article  CAS  Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395

    Article  CAS  Google Scholar 

  • Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N et al (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446. https://doi.org/10.1016/s0092-8674(02)00746-8

    Article  CAS  Google Scholar 

  • Rolando M, Sanulli S, Rusniok C, Gomez-Valero L, Bertholet C, Sahr T et al (2013) Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13:395–405. https://doi.org/10.1016/j.chom.2013.03.004

    Article  CAS  Google Scholar 

  • Rolland V, Badger MR, Price GD (2016) Redirecting the cyanobacterial bicarbonate transporters BicA and SbtA to the chloroplast envelope: soluble and membrane cargos need different chloroplast targeting signals in plants. Front Plant Sci 7:185. https://doi.org/10.3389/fpls.2016.00185

    Article  Google Scholar 

  • Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV et al (2011) Willow volatiles influences growth, development and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92:359–370. https://doi.org/10.1007/s00253-011-3339-7

    Article  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  Google Scholar 

  • Saeed S, Ali H, Khan T, Kayani W, Khan MA (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23:229–237

    Article  CAS  Google Scholar 

  • Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2012) Changes in primary and secondary metabolite levels in response to gene targeting-mediated site-directed mutagenesis of the anthranilate synthase gene in rice. Metabolites 2:1123–1138

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. Comp Rev Food Sci Food Saf 7(1):29–49

    Article  CAS  Google Scholar 

  • Sanzani SM, Reverberi M, Punelli M, Ippolito A, Fanelli C (2012) Study on the role of patulin on pathogenicity and virulence of Penicillium expansum. Int J Food Microbiol 153:323–331. https://doi.org/10.1016/j.ijfoodmicro

    Article  CAS  Google Scholar 

  • Saxena B, Subramaniyan M, Malhotra K, Bhavesh NS, Potlakayala SD, Kumar S (2014) Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J Biosci 39:33–41

    Article  CAS  Google Scholar 

  • Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    Article  CAS  Google Scholar 

  • Sharwood RE, Ghannoum O, Whitney SM (2016) Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr Opin Plant Biol 31:135–142

    Article  CAS  Google Scholar 

  • Shih PM (2018) Towards a sustainable bio-based economy: redirecting primary metabolism to new products with plant synthetic biology. Plant Sci 273:84–91

    Article  CAS  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664. https://doi.org/10.1128/EC.00186-07

    Article  CAS  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sensibility to motility. Mol Microbiol 53(4):1123–1134

    Article  CAS  Google Scholar 

  • Singh S, Zafar A, Khan S, Naseem I (2017) Towards therapeutic advances in melanoma management: an overview. Life Sci 174:50–58

    Article  CAS  Google Scholar 

  • Skinnider MA, Johnston CW, Gunabalasingam M et al (2020) Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat Commun 11:6058. https://doi.org/10.1038/s41467-020-19986-1

    Article  CAS  Google Scholar 

  • Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff L, Gian noukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241–1249

    Article  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  Google Scholar 

  • Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(6):1448S

    Article  CAS  Google Scholar 

  • Soda N, Verma L, Giri J (2017) CRISPR-Cas9-based plant genome editing: Significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11

    Article  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100

    Article  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  Google Scholar 

  • Tanaka Y, Komatsu M, Okamoto S, Tokuyama S, Kaji A, Ikeda H, Ochi K (2009) Antibiotic overproduction by rpsL and rpsG mutants of various actinomycetes. Appl Environ Microbiol 75:4919–4922

    Article  CAS  Google Scholar 

  • Tiwari R, Rana CS (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3(5):661–670

    Google Scholar 

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020. https://doi.org/10.1021/acssynbio.5b00038

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343

    Article  CAS  Google Scholar 

  • Vitale DC, Piazza C, Melilli B, Drago F, Salomone S (2013) Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38:15–25

    Article  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  CAS  Google Scholar 

  • Wang X, Filho JGS, Hoover AR, King JB, Ellis TK, Powell DR et al (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an Atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948. https://doi.org/10.1021/np100142h

    Article  CAS  Google Scholar 

  • Wang G, Zhang H, Wang Y, Liu F, Li E, Ma J et al (2019) Requirement of LaeA, VeA, and VelB on sexual development, ochratoxin A biosynthesis, and fungal virulence in Aspergillus ochraceus. Front Microbiol 10:2759. https://doi.org/10.3389/fmicb.2019.02759

    Article  Google Scholar 

  • Wang Y, Lu Z, Sun K, Zhu W (2011) Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans. Mar Drugs 9(4):535–542. https://doi.org/10.3390/md9040535. Epub 2011 Mar 31. PMID: 21731548; PMCID: PMC3124971

    Article  CAS  Google Scholar 

  • Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33:15–26

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Tech. Rep. DOE/GO-102004-1992

    Google Scholar 

  • Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV (2015) Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillaryRAF1 chaperone. Proc Natl Acad Sci 112:3564–3569. https://doi.org/10.1073/pnas.1420536112

    Article  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153:1123–1134

    Article  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  Google Scholar 

  • Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid c-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29

    Article  CAS  Google Scholar 

  • Xu YW, Lv SS, Zhao D, Chen JW, Yang WT, Wu W (2012) Effects of salicylic acid on monoterpene production and antioxidant systems in Houttuynia cordata. Afr J Biotechnol 11(6):1364–1372

    CAS  Google Scholar 

  • Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tiss Org Cult 122:197–211

    Article  CAS  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    Article  CAS  Google Scholar 

  • Yang XL, Awakawa T, Wakimoto T, Abe I (2013) Induced biosynthesis of a novel butyrophenone and two aromatic polyketides in the plant pathogen Stagonospora nodorum. Nat Prod Bioprospect 3:141–144

    Article  CAS  Google Scholar 

  • Yang K, Zhuang Z, Zhang F, Song F, Zhong H, Ran F et al (2014a) Inhibition of aflatoxin metabolism and growth of Aspergillus flavus in liquid culture by a DNA methylation inhibitor. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:554–563. https://doi.org/10.1080/19440049.2014.972992

    Article  CAS  Google Scholar 

  • Yang X, Huang L, Ruan XL (2014b) Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis. J Asian Nat Prod Res 16:412–417. https://doi.org/10.1080/10286020.2014.881356

    Article  CAS  Google Scholar 

  • Yeoman MM, Yeoman CL (1996) Tansley review no. 90, manipulating secondary metabolism in cultured plant cells. New Phytol 134:553–569

    Article  CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–793

    Article  CAS  Google Scholar 

  • Yu J, Han H, Zhang X, Ma C, Sun C, Che Q et al (2019) Discovery of two new sorbicillinoids by overexpression of the global regulator LaeA in a marine-derived fungus Penicillium dipodomyis YJ-11. Mar Drugs 17:446. https://doi.org/10.3390/md17080446

    Article  CAS  Google Scholar 

  • Yuk HJ, Song YH, Curtis-Long MJ, Kim DW, Woo SG, Lee YB, Park KH et al (2016) Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J Agric Food Chem 64(39):7315–7324

    Article  CAS  Google Scholar 

  • Zaidi AE, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–553. https://doi.org/10.1016/j.tplants.2017.05.001

    Article  CAS  Google Scholar 

  • Zhang J, Kao E, Wang G, Baidoo EEK, Chen M, Keasling JD (2016) Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. Metab Eng Commun 3:1–7

    Article  Google Scholar 

  • Zhang Y, Ma X, Xie X, Liu YG (2017) CRISPR/Cas9-based genome editing in plants. Prog Mol Biol Transl Sci 149:133–150. https://doi.org/10.1016/bs.pmbts.2017.03.008

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  CAS  Google Scholar 

  • Zhi QQ, He L, Li JY, Li J, Wang ZL, He GY, He M (2019) The kinetochore protein spc105, a novel interaction partner of LaeA, regulates development and secondary metabolism in Aspergillus flavus. Front Microbiol 10:1881

    Article  Google Scholar 

  • Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z (2012) Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 333:169–179

    Article  CAS  Google Scholar 

  • Zhou P, Yang J, Zhu J, He S, Zhang W, Yu R, Huang X et al (2015) Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99:7035–7045

    Article  CAS  Google Scholar 

  • Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4):441–449

    Article  Google Scholar 

  • Ziegler J, Diaz-Chávez ML, Kramell R, Ammer C, Kutchan TM (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an Omethyltransferase involved in benzylisoquinoline biosynthesis. Planta 222:458–471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsharan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H. (2023). Enhancement of Plant Secondary Metabolites by Genetic Manipulation. In: Singh, R., Kumar, N. (eds) Genetic Manipulation of Secondary Metabolites in Medicinal Plant. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-4939-7_4

Download citation

Publish with us

Policies and ethics