Skip to main content

Heavy Metal Waste Management to Combat Climate Crisis: An Overview of Plant-Based Strategies and Its Current Developments

  • Chapter
  • First Online:
Integrated Waste Management
  • 56 Accesses

Abstract

Environmental pollution caused by heavy metals is currently a serious global problem. These deleterious heavy metal pollutants quickly build up in the environment causing a critical concern for agricultural production and food safety. An efficient and sustainable waste management system to remediate heavy metals in the environment is crucial for the survival of any ecosystem. Management of heavy metal contamination has so far been accomplished using a variety of physical, chemical, and biological approaches. Physical and chemical approaches typically have several drawbacks, e.g., they are high in cost they are labor intensive, they render irreversible changes to soil quality and they disrupt the native soil flora. Chemical approaches also have the potential to produce secondary pollution problems and are non-sustainable. Therefore, research to develop waste management methods that are affordable, efficient, and advantageous to the environment is in the spotlight. In this review, an age-old plant-based method of heavy metal waste management, called phytoremediation, has been described. At this point, the various strategic methods applied by hyperaccumulator plants have been summarized. The current developments of phytotechnology, involving the use of cutting-edge biotechnological tools in enhancing the scope and relevance of phytoremediation, have been described including the development of transgenics, the use of nanoparticles, earthworms, and microorganisms. We highlight the lacuna in the current information and suggest a desirable way ahead in the context of climate action. Furthermore, this green solution to heavy metal waste management has tremendous potential that all stakeholders of environmental management have heavily counted on, given the unprecedented battle against pollution in times of global climate change.

Swagata Karak and Garima have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10

    CAS  Google Scholar 

  2. Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41(10):2031–2037. https://doi.org/10.1016/j.soilbio.2009.04.026

    Article  CAS  Google Scholar 

  3. Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Res 43:55–61. https://doi.org/10.1007/BF00747683

    Article  Google Scholar 

  4. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107. https://doi.org/10.1016/j.microc.2009.09.014

    Article  CAS  Google Scholar 

  5. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  Google Scholar 

  6. Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Environ Pollut 87:51–59. https://doi.org/10.1016/S0269-7491(99)80007-4

    Article  CAS  Google Scholar 

  7. Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86. https://doi.org/10.1016/j.envint.2012.12.009

    Article  CAS  Google Scholar 

  8. Akhtar FZ, Archana KM, Krishnaswamy VG, Rajagopal R (2020) Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: A novel approach. SN App Sci 2:1–14

    Google Scholar 

  9. Dixit R, Wasiullah X, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  10. Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168

    Article  CAS  Google Scholar 

  11. Simmer RA, Schnoor JL (2022) Phytoremediation, bioaugmentation, and the plant microbiome. Environ Sci Technol 56(23):16602–16610. https://doi.org/10.1021/acs.est.2c05970

    Article  CAS  Google Scholar 

  12. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  13. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS USA 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  Google Scholar 

  14. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

    Article  CAS  Google Scholar 

  15. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, pp 71–88

    Google Scholar 

  16. Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Environ Health 14(3):235–239

    CAS  Google Scholar 

  17. LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520. https://doi.org/10.1007/s10295-005-0227-0

    Article  CAS  Google Scholar 

  18. Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20(2):231–236. https://doi.org/10.1016/j.copbio.2009.01.011

    Article  CAS  Google Scholar 

  19. Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50(5):686–701. https://doi.org/10.1023/A:1025604627496

    Article  CAS  Google Scholar 

  20. De Rosa A, McGaughey S, Magrath I, Byrt C (2023) Molecular membrane separation: plants inspire new technologies. New Phytol 238(1):33–54. https://doi.org/10.1111/nph.18762

    Article  Google Scholar 

  21. Settle DM, Patterson CC (1980) Lead in albacore: guide to lead pollution in Americans. Science 207:1167–1176. https://doi.org/10.1126/science.6986654

    Article  CAS  Google Scholar 

  22. Vareda JP, Valente AJ, Durães L (2019) Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage 246:101–118

    Article  CAS  Google Scholar 

  23. Kruckeberg AR (2004) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press

    Google Scholar 

  24. Gupta A (2020) Effects of climate change on heavy metals and their toxicity on freshwater organisms, 1st ed. CRC Press

    Google Scholar 

  25. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  26. Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 53:2316–2321. https://doi.org/10.1021/jf040436o

    Article  CAS  Google Scholar 

  27. Liu J, Liu YJ, Liu Y, Liu Z, Zhang AN (2018) Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: a case study of Yulin, China. Ecotoxicol Environ Saf 164:261–269. https://doi.org/10.1016/j.ecoenv.2018.08.030

    Article  CAS  Google Scholar 

  28. Dockery D, Pope A (1996) Epidemiology of acute health effects: summary of time-series studies. In: Wilson R, Spengler JD (eds) Particles in our air. Harvard University Press, pp 123–147

    Google Scholar 

  29. Mudipalli A (2008) Metals (micro nutrients or toxicants) and global health. Indian J Med Res 128:331–334

    Google Scholar 

  30. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128:412–425

    CAS  Google Scholar 

  31. Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, Babula P, Opatrilova R, Adam V, Kizek R (2009) Sunflower plants as bioindicators of environmental pollution with lead (II) Ions. Sensors 9:5040–5058. https://doi.org/10.3390/s90705040

    Article  CAS  Google Scholar 

  32. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  33. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  Google Scholar 

  34. Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S (2018) Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav 13(8):e1460048

    Google Scholar 

  35. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology, volume 3: environmental toxicology. 133–164

    Google Scholar 

  36. Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792

    Article  CAS  Google Scholar 

  37. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4. PMID: 21541849

    Article  CAS  Google Scholar 

  38. Sharma P, Dubey RS (2006) Cadmium uptake and its toxicity in higher plants. Cadmium toxicity and tolerance in plants. Narosa Publishing House, New Delhi, pp 63–86

    Google Scholar 

  39. Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Cadmium: from toxicity to essentiality. pp 1–29

    Google Scholar 

  40. Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC et al (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 75(2):257–263

    Google Scholar 

  41. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  42. Muro-González DA, Mussali-Galante P, Valencia-Cuevas L, Flores-Trujillo K, Tovar-Sánchez E (2020) Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environ Sci Pollut Res 27:40187–40204

    Article  Google Scholar 

  43. Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    CAS  Google Scholar 

  44. Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M (2023) Effects of cadmium stress on carbon sequestration and oxygen release characteristics in A landscaping hyperaccumulator—Lonicera japonica Thunb. Plants 12:2689. https://doi.org/10.3390/plants12142689

    Article  CAS  Google Scholar 

  45. Nissim WG, Labrecque M (2021) Reclamation of urban brownfields through phytoremediation: implications for building sustainable and resilient towns. Urban For Urban Green 65:127364. https://doi.org/10.1016/j.ufug.2021.127364

    Article  Google Scholar 

  46. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley

    Google Scholar 

  47. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  48. Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant 105:39–44. https://doi.org/10.1034/j.1399-3054.1999.105107.x

    Article  CAS  Google Scholar 

  49. Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285. https://doi.org/10.1046/j.1469-8137.2003.00743.x

    Article  CAS  Google Scholar 

  50. Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143. https://doi.org/10.1016/j.chemosphere.2006.11.014

    Article  CAS  Google Scholar 

  51. Adki VS, Jadhav JP, Bapat VA (2013) Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180. https://doi.org/10.1007/s11356-012-1125-4

    Article  CAS  Google Scholar 

  52. Ghosh M, Paul J, Jana A, De A, Mukherjee A (2015) Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecol Eng 74:258–265. https://doi.org/10.1016/j.ecoleng.2014.10.011

    Article  Google Scholar 

  53. Moray C, Goolsby EW, Bromham L (2016) The phylogenetic association between salt tolerance and heavy metal hyperaccumulation in angiosperms. Evol Biol 43:119–130. https://doi.org/10.1007/s11692-015-9355-2

    Article  Google Scholar 

  54. Chaudhary K, Agarwal S, Khan S (2018) Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. In: Mycoremediation and environmental sustainability. Springer, pp 39–60. https://doi.org/10.1007/978-3-319-77386-5_2

  55. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175. https://doi.org/10.1007/s11356-008-0079-z

    Article  CAS  Google Scholar 

  56. Sharma JK, Kumar N, Singh NP, Santal AR (2023) Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front Plant Sci 14:1076876. https://doi.org/10.3389/fpls.2023.1076876

    Article  Google Scholar 

  57. Chia J-C (2021) Phytochelatin synthase in heavy metal detoxification and xenobiotic metabolism. In: Mendes R, Sousa De K, Mielke C (eds) Biodegradation technology of organic and inorganic pollutants (1–18). IntechOpen. https://doi.org/10.5772/intechopen.99077

  58. Freisinger E (2008) Plant MTs—long neglected members of the metallothionein superfamily. Dalton Trans 47:6663–6675. https://doi.org/10.1039/b809789e

    Article  CAS  Google Scholar 

  59. Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Plant metal interaction. Elsevier, pp 239–261

    Google Scholar 

  60. Luo J-S, Zhang Z (2021) Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J 9:521–529. https://doi.org/10.1016/j.cj.2021.02.001

    Article  Google Scholar 

  61. Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176. https://doi.org/10.1046/j.1365-313X.2003.01790.x

    Article  CAS  Google Scholar 

  62. Adiloğlu S, Açikgöz FE, Gürgan M (2021) Use of phytoremediation for pollution removal of hexavalent chromium-contaminated acid agricultural soils. Glob Nest J 23:400–406. https://doi.org/10.30955/gnj.003433

  63. Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front Plant Sci 9:1476. https://doi.org/10.3389/fpls.2018.01476

    Article  Google Scholar 

  64. Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri HA (2022) Understanding the phytoremediation mechanisms of potentially toxic elements: a proteomic overview of recent advances. Front Plant Sci 13:881242. https://doi.org/10.3389/fpls.2022.881242

    Article  Google Scholar 

  65. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    Article  CAS  Google Scholar 

  66. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

    Article  CAS  Google Scholar 

  67. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 13:468–474. https://doi.org/10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  68. Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300. https://doi.org/10.1093/jexbot/52.365.2291

    Article  Google Scholar 

  69. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167. https://doi.org/10.1104/pp.105.076232

    Article  CAS  Google Scholar 

  70. Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439. https://doi.org/10.1111/j.1365-313X.2004.02143.x

    Article  CAS  Google Scholar 

  71. Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138. https://doi.org/10.1021/acs.est.7b03028

    Article  CAS  Google Scholar 

  72. Cao Y, Sun D, Chen JX, Mei H, Ai H, Xu G, Chen Y, Ma LQ (2018) Phosphate transporter PvPht1; 2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environ Sci Technol 52:3975–3981. https://doi.org/10.1021/acs.est.7b06674

    Article  CAS  Google Scholar 

  73. Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219. https://doi.org/10.5511/plantbiotechnology.14.0421a

    Article  CAS  Google Scholar 

  74. Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733. https://doi.org/10.1016/j.molp.2015.01.005

    Article  CAS  Google Scholar 

  75. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. https://doi.org/10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  76. Suthar V, Memon KS, Mahmood-ul-Hassan M (2014) EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and Sesbania. Environ Monit Assess 186:3957–3968. https://doi.org/10.1007/s10661-014-3671-3

    Article  CAS  Google Scholar 

  77. Luo J, Qi S, Gu XWS, Wang J, Xie X (2016) An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicology 25:646–654. https://doi.org/10.1007/s10646-016-1623-0

    Article  CAS  Google Scholar 

  78. Herzig R, Nehnevajova E, Pfistner C, Schwitzguebel JP, Ricci A, Keller C (2014) Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five-and one-year field-scale experiments in Switzerland. Int J Phytoremediation 16:735–754. https://doi.org/10.1080/15226514.2013.856846

    Article  CAS  Google Scholar 

  79. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van Der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  80. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654. https://doi.org/10.1080/10643380701798272

    Article  CAS  Google Scholar 

  81. Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185. https://doi.org/10.1016/j.plantsci.2016.11.016

    Article  CAS  Google Scholar 

  82. Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chem Geol 253:130–135. https://doi.org/10.1016/j.chemgeo.2008.05.001

    Article  CAS  Google Scholar 

  83. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    Article  CAS  Google Scholar 

  84. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  85. Cantamessa S, Massa N, Gamalero E, Berta G (2020) Phytoremediation of a highly arsenic polluted site, using Pteris vittata L. and arbuscular mycorrhizal fungi. Plants 9:1211. https://doi.org/10.3390/plants9091211

  86. Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, Lin X (2018) Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci Total Environ 628:282–290. https://doi.org/10.1016/j.scitotenv.2018.01.331

    Article  CAS  Google Scholar 

  87. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Junior MRM (2014) Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62:63–79. https://doi.org/10.1007/s13199-014-0273-3

    Article  CAS  Google Scholar 

  88. Suebrasri T, Harada H, Jogloy S, Ekprasert J, Boonlue S (2020) Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 16:100271. https://doi.org/10.1016/j.rhisph.2020.100271

    Article  Google Scholar 

  89. Gong B, Liu G, Liao R, Song J, Zhang H (2017) Endophytic fungus Purpureocillium sp. A5 protect mangrove plant Kandelia candel under copper stress. Braz J Microbiol 48:530–536. https://doi.org/10.1016/j.bjm.2016.10.027

    Article  CAS  Google Scholar 

  90. Tahir M, Khan MB, Shahid M, Ahmad I, Khalid U, Akram M, Dawood A, Kamran M (2022) Metal-tolerant Pantoea sp. WP-5 and organic manures enhanced root exudation and phytostabilization of cadmium in the rhizosphere of maize. Environ Sci Pollut Res Int 29:6026–6039. https://doi.org/10.1007/s11356-021-16018-3

    Article  CAS  Google Scholar 

  91. Wang J, Lu X, Zhang J, Ouyang Y, Wei G, Xiong Y (2020) Rice intercropping with alligator flag (Thalia dealbata): a novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. J Hazard Mater 394:122505. https://doi.org/10.1016/j.jhazmat.2020.122505

    Article  CAS  Google Scholar 

  92. Mahdavian K, Asadigerkan S, Sangtarash MH, Nasibi F (2022) Phytoextraction and phytostabilization of copper, zinc, and iron by growing plants in Chahar gonbad copper mining area, Iran. Proc Natl Acad Sci India Sect B Biol Sci 92:319–327. https://doi.org/10.1007/s40011-021-01345-9

    Article  CAS  Google Scholar 

  93. Meng D, Xu P, Dong Q, Wang S, Wang Z (2017) Comparison of foliar and root application of potassium dihydrogen phosphate in regulating cadmium translocation and accumulation in tall fescue (Festuca arundinacea). Water Air Soil Pollut 228:118. https://doi.org/10.1007/s11270-017-3304-x

    Article  CAS  Google Scholar 

  94. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: Advances in biodegradation and bioremediation of industrial waste. CRC Press, pp 1–30

    Google Scholar 

  95. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  96. Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962. https://doi.org/10.1007/s11356-014-3635-8

    Article  CAS  Google Scholar 

  97. de Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N (2000) Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol 122:1281–1288. https://doi.org/10.1104/pp.122.4.1281

    Article  Google Scholar 

  98. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432. https://doi.org/10.1146/annurev.arplant.51.1.401

    Article  CAS  Google Scholar 

  99. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217. https://doi.org/10.1038/72678

    Article  CAS  Google Scholar 

  100. Kumar B, Smita K, Cumbal Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342. https://doi.org/10.1016/j.arabjc.2013.08.010

    Article  CAS  Google Scholar 

  101. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    Article  CAS  Google Scholar 

  102. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18

    Google Scholar 

  103. Guarino F, Miranda A, Castiglione S, Cicatelli A (2020) Arsenic phytovolatilization and epigenetic modifications in Arundo donax l. Assisted by a PGPR consortium. Chemosphere 251:126310. https://doi.org/10.1016/j.chemosphere.2020.126310

  104. Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85

    Google Scholar 

  105. Banerjee A, Roychoudhury A (2022) Assessing the rhizofiltration potential of three aquatic plants exposed to fluoride and multiple heavy metal polluted water. Vegetos 35:1158–1164. https://doi.org/10.1007/s42535-022-00405-3

    Article  Google Scholar 

  106. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  107. Singh NP, Santal AR (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. Phytoremediation: Manag Environ Contam 2:115–129

    Google Scholar 

  108. Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 495–529. https://doi.org/10.1016/B978-0-12-814864-8.00020-6

  109. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  110. Benavides LCL, Pinilla LAC, Serrezuela RR, Serrezuela WFR (2018) Extraction in laboratory of heavy metals through rhizofiltration using the plant zea mays (maize). Int J Appl Environ Sci 13:9–26

    Google Scholar 

  111. Clay L, Pichtel J (2019) Treatment of simulated oil and gas produced water via pilot-scale rhizofiltration and constructed wetlands. Int J Environ Res 13:185–198. https://doi.org/10.1007/s41742-018-0165-0

    Article  CAS  Google Scholar 

  112. Yadav BK, Siebel MA, van Bruggen JJ (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. CLEAN–Soil Air Water 39:467–474. https://doi.org/10.1002/clen.201000385

    Article  CAS  Google Scholar 

  113. Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017). Recent advances in phytoremediation technology. In: Kumar R, Sharma, AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, pp 227–241. https://doi.org/10.1007/978-981-10-4041-2_14

  114. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2), Suppl:367–376

    Google Scholar 

  115. Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053

    Article  CAS  Google Scholar 

  116. Woraharn S, Meeinkuirt W, Phusantisampan T, Chayapan P (2021) Rhizofiltration of cadmium and zinc in hydroponic systems. Water Air Soil Pollut 232:1–17. https://doi.org/10.1007/s11270-021-05156-6

    Article  CAS  Google Scholar 

  117. Bezie Y, Taye M, Kumar A (2021) Recent advancement in phytoremediation for removal of toxic compounds. In: Kumar A, Ram C (eds) Nanobiotechnology for green environment. CRC Press, pp 195–228

    Chapter  Google Scholar 

  118. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230. https://doi.org/10.1016/j.copbio.2004.04.006

    Article  CAS  Google Scholar 

  119. Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manage 217:858–870. https://doi.org/10.1016/j.jenvman.2018.04.022

    Article  CAS  Google Scholar 

  120. Panwar R, Mathur J (2023) Microbial-assisted phytodegradation for the amelioration of pyrene-contaminated soil using Pseudomonas aeruginosa and Aspergillus oryzae with alfalfa and sunflower. 3 Biotech 13:251. https://doi.org/10.1007/s13205-023-03664-2

  121. Stando K, Czyż A, Gajda M, Felis E, Bajkacz S (2022) Study of the phytoextraction and phytodegradation of sulfamethoxazole and trimethoprim from water by Limnobium laevigatum. Int J Environ Res Public Health 19:16994. https://doi.org/10.3390/ijerph192416994

    Article  CAS  Google Scholar 

  122. Mishra A, Mishra SP, Arshi A, Agarwal A, Dwivedi SK (2020) Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, pp 415–436

    Chapter  Google Scholar 

  123. Rainbird B, Bentham RH, Soole KL (2018) Rhizoremediation of residual sulfonylurea herbicides in agricultural soils using Lens culinaris and a commercial supplement. Int J Phytoremediation 20(2):104–113. https://doi.org/10.1080/15226514.2017.1337070

    Article  CAS  Google Scholar 

  124. Souto KM, Jacques RJS, de Avila LA, de Oliveira Machado SL, Zanella R, Refatti JP (2013) Biodegradation of the herbicides imazethapyr and imazapic in rhizosphere soil of six plant species/Biodegradacao dos herbicidas imazetapir e imazapique em solo rizosferico de seis especies vegetais. Ciência Rural 43:1790–1796

    Article  CAS  Google Scholar 

  125. Souto KM, Jacques RJS, Zanella R, Machado SLO, Balbinot A, Avila LAD (2020) Phytostimulation of lowland soil contaminated with imidazolinone herbicides. Int J Phytoremediation 22:774–780. https://doi.org/10.1080/15226514.2019.1710814

    Article  CAS  Google Scholar 

  126. Melo CA, Souza WM, Carvalho FP, Massenssini AM, Silva AA, Ferreira LR, Costa MD (2017) Microbial activity of soil with sulfentrazone associated with phytoremediator species and inoculation with a bacterial consortium. Bragantia 76:300–310

    Article  CAS  Google Scholar 

  127. Ortiz-Castro R, López-Bucio J (2019) Review: Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci 284:135–142. https://doi.org/10.1016/j.plantsci.2019.04.010

    Article  CAS  Google Scholar 

  128. Geetha N, Sunilkumar CR, Bhavya G, Nandini B, Abhijith P, Satapute P, Shetty HS, Govarthanan M, Jogaiah S (2023) Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environ Res 216:114498. https://doi.org/10.1016/j.envres.2022.114498

    Article  CAS  Google Scholar 

  129. Nowak J, Frérot H, Faure N, Glorieux C, Liné C, Pourrut B, Pauwels M (2018) Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. J Expl Bot 69:5561–5572. https://doi.org/10.1093/jxb/ery327

    Article  CAS  Google Scholar 

  130. Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176. https://doi.org/10.1007/s11104-007-9240-6

    Article  CAS  Google Scholar 

  131. Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384. https://doi.org/10.1007/BF00324227

    Article  Google Scholar 

  132. Cappa JJ, Yetter C, Fakra S, Cappa PJ, DeTar R, Landes C, Pilon-Smits EAH, Simmons MP (2015) Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis. New Phytol 205:583–595. https://doi.org/10.1111/nph.13071

    Article  CAS  Google Scholar 

  133. Hanikenne M, Talke IN, HaydonMJ, LanzC, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):article 7193. https://doi.org/10.1038/nature06877

  134. Babst-Kostecka AA, Parisod C, Godé C, Vollenweider P, Pauwels M (2014) Patterns of genetic divergence among populations of the pseudometallophyte Biscutella laevigata from southern Poland. Plant Soil 383:245–256. https://doi.org/10.1007/s11104-014-2171-0

    Article  CAS  Google Scholar 

  135. Sobczyk MK, Smith JA, Pollard AJ, Filatov DA (2017) Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity 118:31–41. https://doi.org/10.1038/hdy.2016.93

    Article  CAS  Google Scholar 

  136. Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S (2019) Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Int J Phytoremediation 21(10):1012–1018. https://doi.org/10.1080/15226514.2019.1594683

    Article  CAS  Google Scholar 

  137. Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor JL, Suk WA (2013) Phytotechnologies–preventing exposures, improving public health. Int J Phytoremediation 15(9):889–899. https://doi.org/10.1080/15226514.2012.760521

    Article  CAS  Google Scholar 

  138. Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2(4):178–191

    Google Scholar 

  139. Fulekar MH, SinghA, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4)

    Google Scholar 

  140. Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227. https://doi.org/10.1016/j.tibtech.2008.02.001

    Article  CAS  Google Scholar 

  141. Liu Y, Kang T, Cheng JS, Yi YJ, Han JJ, Cheng HL, Li Q, Tang N, Liang MX (2020) Heterologous expression of the metallothionein PpMT2 gene from Physcomitrella patens confers enhanced tolerance to heavy metal stress on transgenic Arabidopsis plants. Plant Growth Regul 90:63–72. https://doi.org/10.1016/j.envpol.2018.05.054

    Article  CAS  Google Scholar 

  142. Cai H, Xie P, Zeng W, Zhai Z, Zhou W, Tang Z (2019) Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. Mol Breed 39:49. https://doi.org/10.1007/s11032-019-0964-9

    Article  CAS  Google Scholar 

  143. Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10(6):e0128824. https://doi.org/10.1371/journal.pone.0128824

    Article  CAS  Google Scholar 

  144. Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98. https://doi.org/10.1007/s12033-007-9005-8

    Article  CAS  Google Scholar 

  145. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim YP, Liu JR (2011) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Cult 105:85–91. https://doi.org/10.1007/s11240-010-9845-y

    Article  CAS  Google Scholar 

  146. Watanabe M, Shinmachi F, Noguchi A, Hasegawa I (2005) Introduction of yeast metallothionein gene (CUP1) into plant and evaluation of heavy metal tolerance of transgenic plant at the callus stage. Soil Sci Plant Nutr 51:129–133. https://doi.org/10.1111/j.1747-0765.2005.tb00016.x

    Article  CAS  Google Scholar 

  147. Song W-Y, Ju Sohn E, Martinoia E, Jik Lee Y, Yang Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):Article 8. https://doi.org/10.1038/nbt850

  148. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment: proceedings of the XIII international plant nutrition colloquium, Tokyo, Japan. Springer Netherlands, pp 391–395. https://doi.org/10.1007/978-94-009-0047-9_117

  149. Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL (2012) Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol 52:205–216. https://doi.org/10.1007/s12033-011-9487-2

    Article  CAS  Google Scholar 

  150. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Cult 107:69–77. https://doi.org/10.1007/s11240-011-9958-y

    Article  CAS  Google Scholar 

  151. Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77. https://doi.org/10.1016/j.envexpbot.2015.10.002

    Article  CAS  Google Scholar 

  152. Kumar V, AlMomin S, Al-Shatti A, Al-Aqeel H, Al-Salameen F, Shajan AB, Nair SM (2019) Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. Int J Phytoremediation 21:1112–1121

    Article  CAS  Google Scholar 

  153. Zheng S, Liu S, Feng J, Wang W, Wang Y, Yu Q, Liao Y, Mo Y, Xu Z, Li L, Gao X, Jia X, Zhu J, Chen R (2021) Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environ Exp Bot 182:104327. https://doi.org/10.1016/j.envexpbot.2020.104327

    Article  CAS  Google Scholar 

  154. Mekawy AMM, Assaha DVM, Ueda A (2020) Constitutive overexpression of rice metallothionein-like gene OsMT-3a enhances growth and tolerance of Arabidopsis plants to a combination of various abiotic stresses. J Plant Res 133:429–440. https://doi.org/10.1007/s10265-020-01187-y

    Article  Google Scholar 

  155. Wang H, Liu Y, Peng Z, Li J, Huang W, Liu Y, Wang X, Xie S, Sun L, Han E, Wu N, Luo K, Wang B (2019) Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in Arabidopsis thaliana. Int J Mol Sci 20(13) Article 13. https://doi.org/10.3390/ijms20133293

  156. Sharma R, Yeh K-C (2020) The dual benefit of a dominant mutation in arabidopsis IRON DEFICIENCY TOLERANT1 for iron biofortification and heavy metal phytoremediation. Plant Biotech J 18:1200–1210. https://doi.org/10.1111/pbi.13285

    Article  CAS  Google Scholar 

  157. Haris M, Ajmal HMN, Bashir H (2023) Impacts of genetically modified organisms (GMOs) on environment and agriculture: a comprehensive review. Trends Anim Plant Sci 1:92–99

    Google Scholar 

  158. Idris SH, Omar H, Nashir IM (2023) Ethical tools of genetically modified (GM) crops technology for farmers’ protections. In: International conference on mathematical and statistical physics, computational science, education, and communication (ICMSCE 2022), vol 12616. SPIE, pp 267–273

    Google Scholar 

  159. Aziz AA, Mabrouk YM, Essa EM, El-Metainy AY, Abou-Youssef AY (2008) Genetic aspects of heavy metals phytoremediation abilities of sunflower plants. Egypt J Genet Cytol 37(1)

    Google Scholar 

  160. Heikal YM, El-Esawi MA, Naidu R, Elshamy MM (2022) Eco-biochemical responses, phytoremediation potential and molecular genetic analysis of Alhagi maurorum grown in metal-contaminated soils. BMC Plant Biol 22:383. https://doi.org/10.1186/s12870-022-03768-6

    Article  CAS  Google Scholar 

  161. Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front Plant Sci 7:755. https://doi.org/10.3389/fpls.2016.00755

    Article  Google Scholar 

  162. Tang Z, You TT, Li YF, Tang ZX, Bao MQ, Dong G, Xu ZR, Wang P, Zhao FJ (2023) Rapid identification of high and low cadmium (Cd) accumulating rice cultivars using machine learning models with molecular markers and soil Cd levels as input data. Environ Pollut 326:121501. https://doi.org/10.1016/j.envpol.2023.121501

    Article  CAS  Google Scholar 

  163. Abou-Elwafa SF, Amin AEAZ, Shehzad T (2019) Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicol Environ Saf 173:366–372. https://doi.org/10.1016/j.ecoenv.2019.02.022

    Article  CAS  Google Scholar 

  164. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van Der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411. https://doi.org/10.1111/nph.14907

    Article  Google Scholar 

  165. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: Plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. https://doi.org/10.1016/j.copbio.2009.02.012

    Article  CAS  Google Scholar 

  166. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598. https://doi.org/10.1016/j.tibtech.2009.07.006

    Article  CAS  Google Scholar 

  167. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. https://doi.org/10.1016/j.geoderma.2004.01.002

    Article  CAS  Google Scholar 

  168. Guzmán-Cornejo L, Pacheco L, Camargo-Ricalde SL, González-Chávez MDC (2023) Endorhizal fungal symbiosis in lycophytes and metal(loid)-accumulating ferns growing naturally in mine wastes in Mexico. Int J Phytoremediation 25:538–549. https://doi.org/10.1080/15226514.2022.2092060

    Article  Google Scholar 

  169. Zhang Q, Gong M, Liu K, Chen Y, Yuan J, Chang Q (2020) Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Front Microbiol 11:1428. https://www.frontiersin.org/articles/https://doi.org/10.3389/fmicb.2020.01428

  170. Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M, Hussain A (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Saf 142:139–149. https://doi.org/10.1016/j.ecoenv.2017.04.005

    Article  CAS  Google Scholar 

  171. Nedjimi B (2021) Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci 3:286. https://doi.org/10.1007/s42452-021-04301-4

    Article  CAS  Google Scholar 

  172. Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecol Eng 95:64–72

    Article  Google Scholar 

  173. Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D (2016) Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci 23:39–47. https://doi.org/10.1016/j.sjbs.2015.11.007

    Article  CAS  Google Scholar 

  174. Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W (2018) Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with lanthanum and cadmium. Environ Pollut 241:607–615. https://doi.org/10.1016/j.envpol.2018.06.003

    Article  CAS  Google Scholar 

  175. Mishra I, Arora NK (2019) Rhizoremediation: a sustainable approach to improve the quality and productivity of polluted soils. Phyto and rhizo remediation 33–66

    Google Scholar 

  176. Putra R, Müller C (2023) Extending the elemental defence hypothesis in the light of plant chemodiversity. New Phytol 239:1545–1555. https://doi.org/10.1111/nph.19071

    Article  CAS  Google Scholar 

  177. Bruno LB, Anbuganesan V, Karthik C, Kumar A, Banu JR, Freitas H, Rajkumar M (2021) Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. J Environ Manage 289:112553

    Article  CAS  Google Scholar 

  178. Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78

    Article  Google Scholar 

  179. Wang G, Wang L, Ma F, You Y, Wang Y, Yang D (2020) Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. J Hazard Mater 389:121873. https://doi.org/10.1016/j.jhazmat.2019.121873

    Article  CAS  Google Scholar 

  180. Wang G, Wang L, Ma F (2022) Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. Chemosphere 286:131567. https://doi.org/10.1016/j.chemosphere.2021.131567

    Article  CAS  Google Scholar 

  181. Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L (2019) Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ 662:414–421. https://doi.org/10.1016/j.scitotenv.2019.01.234

    Article  CAS  Google Scholar 

  182. Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, Zhang P, Ye S (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49:791–824. https://doi.org/10.1080/10643389.2018.1558891

    Article  Google Scholar 

  183. Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316. https://doi.org/10.1021/acs.est.7b03164

    Article  CAS  Google Scholar 

  184. Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Huang C, Cheng M, Xue W, Wang X, Hu Z (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237. https://doi.org/10.1016/j.ecoenv.2018.01.060

    Article  CAS  Google Scholar 

  185. Ghasemi R, Zare Chavoshi ZZ, Boyd RS, Rajakaruna N (2014) A preliminary study of the role of nickel in enhancing flowering of the nickel hyperaccumulating plant Alyssum inflatum Nyár. (Brassicaceae). S Afr J Bot 92:47–52. https://doi.org/10.1016/j.sajb.2014.01.015

    Article  CAS  Google Scholar 

  186. Jhee EM, Boyd RS, Eubanks MD, Davis MA (2006) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104. https://doi.org/10.1007/s11258-005-9009-z

    Article  Google Scholar 

  187. Meindl GA, Ashman TL (2017) Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant Soil 420:493–503. https://doi.org/10.1007/s11104-017-3425-4

    Article  CAS  Google Scholar 

  188. Lima LW, Castleberry M, Wangeline AL, Aguirre B, Dall’Acqua S, Pilon-Smits EAH, Schiavon M (2022) Hyperaccumulator Stanleya pinnata: In situ fitness in relation to tissue selenium concentration. Plants 11:690. https://doi.org/10.3390/plants11050690

  189. Montanari S, Salinitro M, Simoni A, Ciavatta C, Tassoni A (2023) Foraging for selenium: a comparison between hyperaccumulator and non-accumulator plant species. Sci Rep 13:10661. https://doi.org/10.1038/s41598-023-37249-z

    Article  CAS  Google Scholar 

  190. Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504. https://doi.org/10.1007/s00114-002-0373-4

    Article  CAS  Google Scholar 

  191. Li S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res Int 27:16069–16085. https://doi.org/10.1007/s11356-020-08282-6

    Article  CAS  Google Scholar 

  192. Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858. https://doi.org/10.1016/j.scitotenv.2019.135858

    Article  CAS  Google Scholar 

  193. Paltseva AA, Neaman A (2020) An emerging frontier: metal(loid) soil pollution threat under global climate change. Environ Toxicol Chem 39:1653–1654. https://doi.org/10.1002/etc.4790

    Article  CAS  Google Scholar 

  194. Wu Q, Qi J, Xia X (2017) Long-term variations in sediment heavy metals of a reservoir with changing trophic states: implications for the impact of climate change. Sci Total Environ 609:242–250. https://doi.org/10.1016/j.scitotenv.2017.04.041

    Article  CAS  Google Scholar 

  195. Balbus JM, Boxall AB, Fenske RA, McKone TE, Zeise L (2013) Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 32:62–78. https://doi.org/10.1002/etc.2046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions (for artwork and figure description of Fig. 1 of Suparna Biswas, Anahita Banerjee, and Godhulee Chatterjee, undergraduate students, Botany, Jogamaya Devi College, University of Calcutta, Kolkata. G expresses her sincere gratitude to Prof. Avneesh Mittal (Principal, Bhaskaracharya College of Applied Sciences) and Prof. N. S. Abbas (Teacher-in-Charge, Botany, BCAS) for their motivation and support. AKC is grateful to Prof. Paul Verslues (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan) and Prof. Rajiv Agrawal (Principal, Deshbandhu College, University of Delhi) for their continuous support and for providing a congenial academic environment. EB acknowledges the support of a Maharishi Kanad Postdoctoral Fellowship, Institution of Eminence-Delhi University. AKC acknowledges Academia Sinica and Taiwan Ministry of Science and Technology for support of postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eapsa Berry or Ashish Kumar Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karak, S., Garima, Berry, E., Choudhary, A.K. (2024). Heavy Metal Waste Management to Combat Climate Crisis: An Overview of Plant-Based Strategies and Its Current Developments. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_9

Download citation

Publish with us

Policies and ethics