Skip to main content

Role of Silver Nitrate and Silver Nanoparticles on Tissue Culture Medium and Enhanced the Plant Growth and Development

  • Chapter
  • First Online:
In vitro Plant Breeding towards Novel Agronomic Traits

Abstract

The objective of this review is to critically study the role of silver nitrate (AgNO3) and silver nanoparticles (Ag NPs) in changing plant growth and development. In recent years, basic studies on ethylene regulation opened novel outlooks for applied research in the field of micropropagation, somatic embryogenesis, and secondary metabolites production. Silver nitrate has evidenced to be a very effective inhibitor of ethylene action and is widely used in plant tissue culture. Nanotechnology opens a large scope of novel application in the field of biotechnology and agricultural, because nanoparticles (NPs) have unique physicochemical properties. Plant tissue cultures are the core of plant biology, which is important for conservation, mass propagation, genetic manipulation, bioactive compounds production, and plant improvement. Nowadays, the application of silver nanoparticles (Ag NPs) has successfully controlled the microbial contaminants from explants and proved the positive role of Ag NPs in callus induction, organogenesis, somatic embryogenesis, somaclonal variation, genetic transformation, and secondary metabolites production. Therefore, the present chapter highlights the significant role of AgNO3 and Ag NPs in plant growth and development. Also, nanoscience contributes new ideas leading us to understand the suitable mode of action of nanoparticles in plants which lead to better plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714

    Article  CAS  Google Scholar 

  • Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2,4-D and silver nitrate containing media. Plant Cell Tissue Organ Cult 133:39–49

    Article  CAS  Google Scholar 

  • Aghdaei M, Sarmast MK, Salehi H (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb.) Seem. micropropagation. Adv Hortic Sci 26:21–24

    Google Scholar 

  • Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321

    Article  CAS  Google Scholar 

  • Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G × N15 (hybrid of almond×peach) rootstock. J Genet Eng Biotechnol 12:103–110

    Article  Google Scholar 

  • Bais HP, Sudha GS, Ravishankar GA (2001) Influence of putrescine AgNO3 and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Cichorium intybus and their regenerants. Plant Cell Rep 20:547–555

    Article  CAS  Google Scholar 

  • Balkhande S, Kure SR, Surwase BS (2013) Influence of silver nitrate on shoot regeneration from excised meristems of Momordica cymbalaria Hook.: a diminishing species. Res J Biotech 8:42–47

    CAS  Google Scholar 

  • Bansal YK, Gokhale M (2012) Effect of additives on micropropagation of an endangered medicinal tree Oroxylum indicum L. Vent. In: Recent advances in plant in vitro culture. Intech, Rijeka, pp 183–196

    Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:1–16

    Article  Google Scholar 

  • Bora G, Gogoi HK, Handique PJ (2018) Callus mediated in vitro regeneration of Naga chilli (Capsicum chinense Jacq.): the fiery pepper from North East India. Int J Curr Microbiol App Sci 7:1312–1324

    Article  CAS  Google Scholar 

  • Chi GL, Barfield DG, Sim GE, Pua EC (1990) Effect of AgNO3 and Aminoethoxyvinylglycine on in vitro shoot organogenesis from seedling explants of recalcitrant brassica genotypes. Plant Cell Rep 9:195–198

    Article  CAS  PubMed  Google Scholar 

  • Chongjin JG, Siewkeng N, Prakash L, Chiangshong Goh CJ, Ng SK, Loh CS (1997) The role of ethylene on direct shoot bud regeneration from mangosteen (Garcinia mangostana L.) leaves cultured in vitro. Plant Sci 124:193–202

    Article  Google Scholar 

  • Dang W, Wei ZM (2009) High frequency plant regeneration from the cotyledonary node of common bean. Biol Plant 53:312–316

    Article  CAS  Google Scholar 

  • Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493

    Article  CAS  Google Scholar 

  • Eapen S, George L (1997) Plant regeneration from peduncle segments of oil seed brassica species: influence of AgNO3 and silver thiosulphate. Plant Cell Tissue Organ Cult 51:229–232

    Article  CAS  Google Scholar 

  • Ewais EA, Desouky SA, Elshazly EH (2015) Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanosci Nanotechnol 5:45–56

    Google Scholar 

  • Fakhrfeshani M, Bagheri A, Sharifi A (2012) Disinfecting effects of nano silver fluids in Gerbera (Gerbera jamesonii) capitulum tissue culture. J Biol Environ Sci 6:121–127

    Google Scholar 

  • Fuentes SR, Calheiros MB, Manettiflho J, Vieira LG (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult 60:5–13

    Article  CAS  Google Scholar 

  • Geetha G, Harathi K, Naidu CV (2016) Role of silver nitrate on in vitro flowering and shoot regeneration of Solanum nigrum (L.)—an important multipurpose medicinal plant. Am J. Plant Sci 7:1021

    CAS  Google Scholar 

  • Giridhar P, Reddy OB, Ravishankar GA (2001) Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Curr Sci 81:1166–1170

    CAS  Google Scholar 

  • Giridhar P, Indu EP, Vijaya Ramu D, Ravishankar GA (2003) Effect of silver nitrate on in vitro shoot growth of Coffee. Trop Sci 43:144–146

    Article  Google Scholar 

  • Giridhar P, Indu EP, Vinod K, Chandrashekar A, Ravishankar GA (2004) Direct somatic embryogenesis from Coffea arabica L and Coffea canephora P ex Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305

    Article  CAS  Google Scholar 

  • Gouran A, Jirani M, Mozafari AA, Saba MK, Ghaderi N, Zaheri S (2014) Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. In: 2nd National conference on nanotechnology from theory to application, Isfahan, Iran, pp 1–6

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys, Jeju, Korea, pp 6–11

    Google Scholar 

  • Gutiérrez-Miceli FA, Arias L, Juarez-Rodríguez N, Abud-Archila M, Amaro-Reyes A, Dendooven L (2010) Optimization of growth regulators and silver nitrate for micropropagation of Dianthus caryophyllus L. with the aid of a response surface experimental design. In Vitro Cell Dev Biol Plant 46:57–63

    Article  CAS  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8:37–45

    Article  CAS  Google Scholar 

  • Haque M, Siddique AB, Shahinul Islam SM (2015) Effect of silver nitrate and amino acids on high frequency plants regeneration in barley (Hordeum vulgare L.). Plant Tissue Cult Biotechnol 25:37–50

    Article  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    Article  CAS  PubMed  Google Scholar 

  • Kalsaitkar P, Tanna J, Kumbhare A, Akre S, Warade C, Gandhare N (2014) Silver nanoparticles induced effect on in-vitro callus production in Bacopa monnieri. Asian J Biol Life Sci 3:167–172

    CAS  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Baskar TB, Park SU (2016) Silver nitrate and putrescine enhance in vitro shoot organogenesis in Polygonum tinctorium. Biosci Biotechnol Res Asia 13:53–58

    Article  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Kumar S, Sarkar AK, Kuhikannan C (1998) Regeneration of plants from leaflet explants of tissue culture raised Safed Siris (Albizia procera) Plant Cell Tissue Organ Cult 54:137–143

    Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3: a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:8–9

    Article  CAS  Google Scholar 

  • Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nanotoxicity assays in plant models. In: Nanotoxicity. Humana Press, Totowa, pp 399–410

    Chapter  Google Scholar 

  • Leifert C, Morris CE, Waites WM (1994) Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problems in vitro. Crit Rev Plant Sci 13:139–183

    Article  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mahendran D, Kavi Kishor PB, Geetha N, Venkatachalam P (2018a) Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J Appl Phycol 30:1425–1436

    Article  CAS  Google Scholar 

  • Mahendran D, Kavi Kishor PB, Sreeramanan S, Venkatachalam P (2018b) Enhanced biosynthesis of colchicine and thiocolchicoside contents in cell suspension cultures of Gloriosa superba L. exposed to ethylene inhibitor and elicitors. Ind Crop Prod 120:123–130

    Article  CAS  Google Scholar 

  • Mahna N, Vahed SZ, Khani S (2013) Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechnol 4:1

    Article  CAS  Google Scholar 

  • Nhut DT, Tam HT, HIen NTT, Cuong LK, Luan VQ, Nam NB et al (2014) Effects of nanosilver on growth of Chrysanthemum sp., Fragaria sp. and Gerbera sp. cultured in vitro. J Biotechnol 12:103–111

    Google Scholar 

  • Nghia LT, Tung HT, Huy NP, Luan VQ, Nhut DT (2017) The effects of silver nanoparticles on growth of Chrysanthemum morifolium Ramat. cv. “Jimba” in different cultural systems. Vietnam J Sci Technol 55:503

    Article  Google Scholar 

  • Nor AA, Jainol JE, Aziah MY, Mihdzar AK (2008) Defoliation of in vitro shootlets of Azadirachta excelsa (Jack) M. Jacobs-a possible solution. Malaysian Forester 71:37–44

    Google Scholar 

  • Panigrahi J, Dholu P, Shah TJ, Gantait S (2018) Silver nitrate-induced in vitro shoot multiplication and precocious flowering in Catharanthus roseus (L.) G. Don, a rich source of terpenoid indole alkaloids. Plant Cell Tissue Organ Cult 132:579–584

    Article  CAS  Google Scholar 

  • Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878

    Article  CAS  PubMed  Google Scholar 

  • Prem Kumar G, Sivakumar S, Siva G, Vigneswaran M, Senthil Kumar T, Jayabalan N (2016) Silver nitrate promotes high-frequency multiple shoot regeneration in cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. In Vitro Cellular & Developmental Biology - Plant 52(4):408–418

    Article  CAS  Google Scholar 

  • Rajinikanth M, Mahitha B, Rama Swamy N (2015) Influence of silver nitrate on leaflet based direct regeneration in Arachis hypogaea L. Vegetos 28:63–69

    Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 1:517–522

    Google Scholar 

  • Rostami AA, Shahsavar A (2009) Olive “Mission” explants. Asian J Plant Sci 8:505–509

    Article  Google Scholar 

  • Safavi K (2012) Evaluation of using nanomaterial in tissue culture media and biological activity. In: 2nd International conference on ecological, environmental and biological sciences (EEBS’ 2012), Bali, Indonesia, pp 5–8

    Google Scholar 

  • Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Asgari MJ (2011) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373

    Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Sarmast M, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 62:477–484

    Article  CAS  PubMed  Google Scholar 

  • Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2015) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tissue Organ Cult 121:227–236

    Article  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2:2

    Google Scholar 

  • Selivanov NY, Selivanova OG, Sokolov OI, Sokolova MK, Sokolov AO, Bogatyrev VA, Dykman LA (2017) Effect of gold and silver nanoparticles on the growth of the Arabidopsis thaliana cell suspension culture. Nanotechnol Russ 12:116–124

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shokri S, Babaei A, Ahmadian M, Hessami S, Arab MM (2014) The effects of different concentrations of nano silver on elimination of bacterial contaminations and phenolic exudation of Rose (Rosa hybrida L.) in vitro culture. Int J Farm Allied Sci 3:50–54

    Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207

    Article  CAS  Google Scholar 

  • Taghizadeh M, Solgi M (2014) The application of essential oils and silver nanoparticles for sterilization of Bermuda grass explants in in vitro culture. Int J Horticult Sci Technol 1:131–140

    CAS  Google Scholar 

  • Venkatachalam P, Malar S, Thiyagarajan M, Indiraarulselvi P, Geetha N (2017a) Effect of phycochemical coated silver nanocomplexes as novel growth-stimulating compounds for plant regeneration of Alternanthera sessilis L. J Appl Phycol 29:1095–1106

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jinu U, Gomathi M, Mahendran D, Ahmad N, Geetha N, Sahi SV (2017b) Role of silver nitrate in plant regeneration from cotyledonary nodal segment explants of Prosopis cineraria (L.) Druce.: a recalcitrant medicinal leguminous tree. Biocatal Agric Biotechnol 12:286–291

    Article  Google Scholar 

  • Vildová A, Hendrychová H, Kubeš J, Tůmová L (2016) Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of Silybum marianum (L.) Gaertn. World Acad Sci Eng Technol Int J Biol Biomol Agric Food Biotechnol Eng 8:959–962

    Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2010) Lithospermic acid B is more responsive to silver ion (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Biosci Rep 30:33–40

    Article  CAS  Google Scholar 

  • Yan Q, Hu ZD, Wu JY (2006) Synergistic effects of biotic and abiotic elicitors on the production of tanshinones in Salvia miltiorrhiza hairy root culture. Chinese Tradit Herbal Drugs 31:188–191

    Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:1–7

    Article  Google Scholar 

  • Zhang P, Phansiri S, Puanti-Kaerlas J (2001) Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tissue Organ Cult 67:47–54

    Article  CAS  Google Scholar 

  • Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci 9:363–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahendran, D., Geetha, N., Venkatachalam, P. (2019). Role of Silver Nitrate and Silver Nanoparticles on Tissue Culture Medium and Enhanced the Plant Growth and Development. In: Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N. (eds) In vitro Plant Breeding towards Novel Agronomic Traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_4

Download citation

Publish with us

Policies and ethics