Skip to main content
Log in

Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Production of camptothecin (CPT), an anticancer compound was enhanced in the cell suspension cultures of Ophiorrhiza mungos Linn. through elicitor treatment. Cell suspension culture was established using the friable callus tissues induced from the field grown leaf explants cultured in MS solid media supplemented with 3 % sucrose, 3 mg L−1 1-Naphthaleneacetic acid (NAA), 1 mg L−1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.5 mg L−1 kinetin (KIN). The callus tissues were used for establishing cell suspension culture in half-strength MS (1/2X MS) liquid media supplemented with the same hormone concentration. NAA was found to be essential for the prolific growth of O. mungos cells in suspension culture. Influence of different elicitors such as yeast extract (YE) and silver nitrate (AgNO3) on cell growth, CPT accumulation and cell viability was studied and found that YE and AgNO3 caused a significant increase in biomass and CPT yield according to their concentration, incubation time and feeding time. A maximum of 13.3-fold increment in CPT production and threefold increase in cell growth were recorded in cell cultures elicited with 50 mg L−1 YE on the 10th day of incubation. Cell growth and CPT level were found to decrease in the cultures treated with high concentration of elicitors. CPT was estimated using high performance liquid chromatography (HPLC). The results obtained in the present investigation suggest the use of elicitation as a promising alternative method to increase CPT production and cell growth in the cell suspension cultures of O. mungos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad S, Garg M, Tamboli ET, Abdin MZ, Ansari SH (2013) In vitro production of alkaloids: factors, approaches, challenges and prospects. Pharmacogn Rev 7:27–33. doi:10.4103/0973-7847.112837

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahmed SA, Baig MMV (2014) Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21:499–504. doi:10.1016/j.sjbs.2013.12.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell Tissue Organ Cult 39:7–12. doi:10.1007/BF00037585

    Article  Google Scholar 

  • Clarke-Pearson DL, Van Le L, Iveson T et al (2001) Oral topotecan as single-agent second-line chemotherapy in patients with advanced ovarian cancer. J Clin Oncol 19:3967–3975

    CAS  PubMed  Google Scholar 

  • Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416. doi:10.1007/s002800050997

    Article  CAS  PubMed  Google Scholar 

  • Di Francesco AM, Riccardi A, Barone G et al (2005) The novel lipophilic camptothecin analogue gimatecan is very active in vitro in human neuroblastoma: a comparative study with SN38 and topotecan. Biochem Pharmacol 70:1125–1136. doi:10.1016/j.bcp.2005.07.009

    Article  PubMed  Google Scholar 

  • Eckardt JR, von Pawel J, Pujol JL et al (2007) Phase III study of oral compared with intravenous topotecan as second-line therapy in small-cell lung cancer. J Clin Oncol 25:2086–2092. doi:10.1200/JCO.2006.08.3998

    Article  CAS  PubMed  Google Scholar 

  • Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152. doi:10.1055/s-2001-11519

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Gügler K, Brodelius P (1987) Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry 26:401–405. doi:10.1016/S0031-9422(00)81421-1

    Article  CAS  Google Scholar 

  • Hahn MG, Albersheim P (1978) Host-pathogen interactions: XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol 62:107–111. doi:10.1104/pp.62.1.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hertzberg RP, Busby RW, Caranfa MJ et al (1990) Irreversible trapping of the DNA-topoisomerase I covalent complex. Affinity labeling of the camptothecin binding site. J Biol Chem 265:19287–19295

    CAS  PubMed  Google Scholar 

  • Higuchi K, Tanabe S, Shimada K et al (2014) Biweekly irinotecan plus cisplatin versus irinotecan alone as second-line treatment for advanced gastric cancer: a randomised phase III trial (TCOG GI-0801/BIRIP trial). Eur J Cancer 50:1437–1445. doi:10.1016/j.ejca.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  • Hombe Gowda HC, Vasudeva R, Mathachen GP, Uma Shaanker R, Ganeshaiah KN (2002) Breeding types in Nothapodytes nimmoniana Graham: an important medicinal tree. Curr Sci 83:1077–1078

    Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  • Huang B, Cheng JK, Wu CY et al (2015) Camptothecin promotes the production of nitric oxide that triggers subsequent S-nitrosoproteome-mediated signaling cascades in endothelial cells. Vascul Pharmacol. doi:10.1016/j.vph.2015.07.014

    Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20. doi:10.4103/0975-7406.92725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jisha KG (2006) A study on the production of camptothecin from Ophiorrhiza mungos and Nothapodytes Foetida using cell and tissue culture. Dissertation, Mahatma Gandhi University

  • Kang SM, Min JY, Kim YD, Karigar CS, Kim SW, Goo GH, Choi MS (2009) Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol 139:84–88. doi:10.1016/j.jbiotec.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  • Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369. doi:10.1007/s11816-012-0270-z

    Article  Google Scholar 

  • Karwasara VS, Jain R, Tomar P, Dixit VK (2010) Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol Plant 46:354–362. doi:10.1007/s11627-010-9278-7

    Article  CAS  Google Scholar 

  • Kubeš J, Tůmová L, Martin J, Vildova A, Hendrychova H, Sojkova K (2014) The production of isoflavonoids in Genista tinctoria L. cell suspension culture after abiotic stressors treatment. Nat Prod Res 28:2253–2263. doi:10.1080/14786419.2014.938336

    Article  PubMed  Google Scholar 

  • Lee-Parsons CW, Ertürk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26:1595–1599. doi:10.1023/B:BILE.0000045825.37395.94

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang W, Northrup K, Zhang D (2014) Distribution of camptotheca decaisne: endangered status. Pharmaceutical Crops 5:135–139. doi:10.2174/2210290601405010135

    Article  Google Scholar 

  • Liu YQ, Li WQ, Morris-Natschke SL et al (2015) Perspectives on biologically active camptothecin derivatives. Med Res Rev 35:753–789. doi:10.1002/med.21342

    Article  PubMed  Google Scholar 

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441. doi:10.1007/s00299-003-0708-4

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Wong H, Teng W (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677. doi:10.1007/s002990100378

    CAS  Google Scholar 

  • Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG (1972) Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 56:95–101

    CAS  PubMed  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Namdeo AG, Priya T, Bhosale BB (2012) Micropropagation and production of camptothecin form in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed 2:S662–S666. doi:10.1016/S2221-1691(12)60292-5

    Article  Google Scholar 

  • Pan XW, Shi YY, Liu X, Gao X, Lu YT (2004) Influence of inorganic microelements on the production of camptothecin with suspension cultures of Camptotheca acuminata. Plant Growth Regul 44:59–63. doi:10.1007/s10725-004-1654-z

    Article  CAS  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258. doi:10.1016/S0141-0229(99)00137-4

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Varghese SC, Kurup R, Gopalakrishnan R, Venkataraman R, Satheeshkumar K, Baby S (2013) Search for Camptothecin-yielding Ophiorrhiza species from southern Western Ghats in India: a HPTLC-densitometry study. Ind Crops Prod 43:472–476. doi:10.1016/j.indcrop.2012.07.054

    Article  CAS  Google Scholar 

  • Rischer H, Häkkinen ST, Ritala A et al (2013) Plant cells as pharmaceutical factories. Curr Pharm Des 19:5640–5660

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Sudo H, Yamasaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271. doi:10.1007/s002990100320

    Article  CAS  Google Scholar 

  • Sakato K, Tanaka H, Mukai N, Misawa M (1974) Isolation and Identification of Camptothecin from Cells of Camptotheca acuminata Suspension Cultures. Agric Biol Chem 38:217–218. doi:10.1080/00021369.1974.10861136

    Article  CAS  Google Scholar 

  • Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P (2005) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119:60–69. doi:10.1016/j.jbiotec.2005.06.012

    Article  PubMed  Google Scholar 

  • Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106:445–454. doi:10.1007/s11240-011-9942-6

    Article  CAS  Google Scholar 

  • Sasaki Y, Hamaguchi T, Arai T et al (2014) Phase I study of combination therapy with irinotecan, leucovorin, and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for advanced colorectal cancer in Japanese patients. Anticancer Res 34:2029–2034

    CAS  PubMed  Google Scholar 

  • Silja PK, Gisha GP, Satheeshkumar K (2014) Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tissue Organ Cult 119:469–477. doi:10.1007/s11240-014-0547-8

    Article  CAS  Google Scholar 

  • Sirikantaramas S, Asano T, Sudo H, Yamasaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    Article  CAS  PubMed  Google Scholar 

  • Song SH, Byun SY (1998) Elicitation of camptothecin production in cell cultures of Camptotheca acuminata. Biotechnol Bioprocess Eng 3:91–95. doi:10.1007/BF02932509

    Article  Google Scholar 

  • Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SP (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908. doi:10.1016/j.bmc.2005.05.066

    Article  CAS  PubMed  Google Scholar 

  • Tafur S, Nelson JD, DeLong DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262

    CAS  PubMed  Google Scholar 

  • Uday Bhanu M, Kondapi AK (2010) Neurotoxic activity of a topoisomerase-I inhibitor, camptothecin, in cultured cerebellar granule neurons. Neurotoxicology 31:730–737. doi:10.1016/j.neuro.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Van Hengel AJ, Harkes MP, Wichers HJ, Hesselink PGM, Buitelaar RM (1992) Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tissue Organ Cult 28:11–18. doi:10.1007/BF00039910

    Article  Google Scholar 

  • Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. R Br Plant Cell Tissue Organ Cult 108:27–35. doi:10.1007/s11240-011-0008-6

    Article  CAS  Google Scholar 

  • Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257. doi:10.1016/j.biortech.2014.12.106

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Pal Bais H, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293. doi:10.1016/S0031-9422(02)00074-2

    Article  CAS  PubMed  Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer AT, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 1,2. J Am Chem Soc 88:3888–3890. doi:10.1021/ja00968a057

    Article  CAS  Google Scholar 

  • Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5. doi:10.1186/s40643-014-0033-5

    Article  Google Scholar 

  • Westover D, Ling X, Lam H et al (2015) FL118, a novel camptothecin derivative, is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance. Mol Cancer 14:92. doi:10.1186/s12943-015-0362-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268. doi:10.1111/j.1467-7652.2011.00664.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wink M, Alfermann W, Franke R et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genetic Resour Charact Util 3:90–100. doi:10.1079/PGR200575

    Article  CAS  Google Scholar 

  • Yan Q, Hu Z, Tan RX, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424. doi:10.1016/j.jbiotec.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  • Yeo CD, Lee SH, Kim JS et al (2013) A multicenter phase II study of belotecan, a new camptothecin analogue, in elderly patients with previously untreated, extensive-stage small cell lung cancer. Cancer Chemother Pharmacol 72:809–814. doi:10.1007/s00280-013-2256-0

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2015) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol. doi:10.3109/07388551.2014.923986

    Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research (CSIR), Government of India for the financial support as research fellowship and the Director of Jawaharlal Nehru Tropical Botanic Garden and Research Institute for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Satheeshkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepthi, S., Satheeshkumar, K. Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn.. Plant Cell Tiss Organ Cult 124, 483–493 (2016). https://doi.org/10.1007/s11240-015-0908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0908-y

Keywords

Navigation