Skip to main content

Recent Advances in the Treatment of Parasitic Diseases: Current Status and Future

  • Chapter
  • First Online:
Natural Product Based Drug Discovery Against Human Parasites
  • 170 Accesses

Abstract

As per World Health Organization (WHO), parasitic diseases significantly threaten global health. Diminishing boundaries have contributed to its spread beyond the geographical limits of the tropical and subtropical regions. Additionally, the overuse of conventional antiparasitic drugs has led to a reduction in their effectiveness in the treatment of these diseases. Advances in metabolomics and system biology approaches have led to a better understanding of parasite biology for identifying appropriate drug targets. DNA/RNA-based molecular techniques, Proteomic approaches, Bioinformatics tools, advanced Nano-technological fabrications and Epigenetics based host–pathogen interactions tactics offer new dimensions towards treating parasitic diseases. Drug repurposing is also emerging as an effective alternative in discovering/developing drug molecules with new pharmacological/therapeutic indications. This chapter explores various strategies for assessing and developing new drug discovery patterns. In this chapter, we have emphasized recent technological advances in the treatment of parasitic diseases through the identification of new drug targets, structural genomics, Nanotechnology based therapeutic options (dendrimers, micelles, lipid NPs, capsules etc. as potential delivery systems), Metabolic pathways (Meglumine antimonite, Paromomycin for treating leishmania) and molecular dynamics (MD) with simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeyemi OS, Whiteley CG (2014) Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: thermodynamic and spectrofluorimetric evaluation. Biochim Biophys Acta 1840(1):701–706

    Article  PubMed  CAS  Google Scholar 

  • Agamah FE, Damena D, Skelton M et al (2021) Network-driven analysis of human–Plasmodium falciparum interactome: processes for malaria drug discovery and extracting in silico targets. Malar J 20:421. https://doi.org/10.1186/s12936-021-03955-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Bensaoud C, Mekki I, Rehman MU, Kotsyfakis M (2021) Long non-coding RNAs and their potential roles in the vector–host–pathogen triad. Life 11(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500

    Article  PubMed  CAS  Google Scholar 

  • Almela MJ, Lozano S, Lelièvre J, Colmenarejo G, Coterón JM, Rodrigues J, Gonzalez C, Herreros E (2015) A new set of chemical starting points with Plasmodium falciparum transmission-blocking potential for antimalarial drug discovery. PLoS One 10(8):e0135139

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R (2020) Screening marine natural products for new drug leads against trypanosomatids and malaria. Mar Drugs 18(4):187

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral MS, Maciel LF, Silveira GO, Olberg GG, Leite JV, Imamura LK, Pereira AS, Miyasato PA, Nakano E, Verjovski-Almeida S (2020) Long non-coding RNA levels can be modulated by 5-azacytidine in Schistosoma mansoni. Sci Rep 10(1):1–7

    Article  Google Scholar 

  • Amenga-Etego L, Awandare GA (2020) Highlights on the application of genomics and bioinformatics in the fight against infectious diseases: challenges and opportunities in Africa. Bioinformatics of Genome Regulation and Systems Biology

    Google Scholar 

  • Andrews KT, Haque A, Jones MK (2012) HDAC inhibitors in parasitic diseases. Immunol Cell Biol 90(1):66–77

    Article  PubMed  CAS  Google Scholar 

  • Antony HA, Pathak V, Parija SC, Ghosh K, Bhattacherjee A (2016) Transcriptomic analysis of chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum: toward malaria diagnostics and therapeutics for global health. Omics 20(7):424–432

    Article  PubMed  CAS  Google Scholar 

  • Argüello-García R, Leitsch D, Skinner-Adams T, Ortega-Pierres MG (2020) Drug resistance in giardia: mechanisms and alternative treatments for giardiasis. Adv Parasitol 107:201–282

    Article  PubMed  Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505(7481):50–55

    Article  PubMed  Google Scholar 

  • Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA (2016) Stage-specific proteomes from Onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle. Mol Cell Proteomics 15(8):2554–2575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asgari S (2011) Role of microRNAs in insect host–microorganism interactions. Front Physiol 2:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashok P, Lathiya H, Murugesan S (2015) Manzamine alkaloids as antileishmanial agents: a review. Eur J Med Chem 97:928–936

    Article  PubMed  CAS  Google Scholar 

  • Atan NA, Koushki M, Ahmadi NA, Rezaei-Tavirani M (2018) Metabolomics-based studies in the field of Leishmania/leishmaniasis. Alexandria J Med 54(4):383–390

    Article  Google Scholar 

  • Bah SY, Morang’a CM, Kengne-Ouafo JA, Amenga-Etego L, Awandare GA (2018) Highlights on the application of genomics and bioinformatics in the fight against infectious diseases: challenges and opportunities in Africa. Front Genet 9:575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayer-Santos E, Marini MM, da Silveira JF (2017) Non-coding RNAs in host–pathogen interactions: subversion of mammalian cell functions by protozoan parasites. Front Microbiol 8:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson SD, Bamford JK, Bamford DH, Burnett RM (2004) Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell 16(5):673–685

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Rodríguez-Palenzuela P, García-Olmedo F, Rivas L (2009) Leishmania donovani: thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol 122(3):247–249

    Article  PubMed  CAS  Google Scholar 

  • Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY (2021) Antiparasitic effects of sulfated polysaccharides from marine hydrobionts. Mar Drugs 19(11):637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya A, Leprohon P, Ouellette M (2021) Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 15(4):e0009377

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Rao CM (2018) Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur J Pharmacol 837:8–24

    Article  PubMed  CAS  Google Scholar 

  • Blaazer AR, Orrling KM, Shanmugham A, Jansen C, Maes L, Edink E, Sterk GJ, Siderius M, England P, Bailey D, de Esch IJ (2015) Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits. J Biomol Screen 20(1):131–140

    Article  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35(1):8–53

    Article  PubMed  CAS  Google Scholar 

  • Boitz JM, Gilroy CA, Olenyik TD, Paradis D, Perdeh J, Dearman K, Davis MJ, Yates PA, Li Y, Riscoe MK, Ullman B (2017) Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect Immun 85(1):e00554–e00516

    Article  PubMed  CAS  Google Scholar 

  • Bolaños V, Díaz-Martínez A, Soto J, Marchat LA, Sanchez-Monroy V, Ramírez-Moreno E (2015) Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions. Mol Biochem Parasitol 204(1):16–25

    Article  PubMed  Google Scholar 

  • Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10(10):6225–6245

    Article  Google Scholar 

  • Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC (2015) Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 16(1):1–22

    Article  CAS  Google Scholar 

  • Bunnik EM, Chung DW, Hamilton M, Ponts N, Saraf A, Prudhomme J, Florens L, Le Roch KG (2013) Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum. Genome Biol 14(11):1–8

    Article  Google Scholar 

  • Cabantous S, Hou X, Louis L, He H, Mariani O, Sastre X, Daujat-Chavanieu M, Li Y, Dessein A (2017) Evidence for an important role of host microRNAs in regulating hepatic fibrosis in humans infected with Schistosoma japonicum. Int J Parasitol 47(13):823–830

    Article  PubMed  CAS  Google Scholar 

  • Caro F, Ahyong V, Betegon M, DeRisi JL (2014) Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. elife 3:e04106

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrillo I, Rabelo RA, Barbosa C, Rates M, Fuentes-Retamal S, González-Herrera F, Guzmán-Rivera D, Quintero H, Kemmerling U, Castillo C, Machado FS (2021) Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic Chagas disease. PLoS Negl Trop Dis 15(11):e0009978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, Ashley EA, Melnikov A, Rogov P, Birren BW, Nosten F, Anderson TJC, Neafsey DE (2017) Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18(1):78. https://doi.org/10.1186/s13059-017-1204-4. PMCID: PMC5410087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chávez-Fumagalli MA, Schneider MS, Lage DP, Tavares GD, Mendonça DV, Santos TT, Pádua RM, Machado-de-Ávila RA, Leite JP, Coelho EA (2018) A computational approach using bioinformatics to screening drug targets for Leishmania infantum species. Evid Based Complement Alternat Med 2018:1

    Article  Google Scholar 

  • Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM (2020) Epigenetic inhibitors target multiple stages of plasmodium falciparum parasites. Sci Rep 10(1):1–1

    Article  Google Scholar 

  • Croken MM, Nardelli SC, Kim K (2012) Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 28(5):202–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuesta-Astroz Y, Santos A, Oliveira G, Jensen LJ (2019) Analysis of predicted host-parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism. Front Immunol 10:212. https://doi.org/10.3389/fimmu.2019.00212. PMCID: PMC6381214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J (2020) Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. elife 9:e51850. https://doi.org/10.7554/eLife.51850. PMCID: PMC7419141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahlin JL, Inglese J, Walters MA (2015) Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov 14(4):279–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dallas T, Park AW, Drake JM (2017) Predicting cryptic links in host-parasite networks. PLoS Comput Biol 13(5):e1005557

    Article  PubMed  PubMed Central  Google Scholar 

  • Dans MG, Weiss GE, Wilson DW, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR (2020) Screening the Medicines for Malaria Venture pathogen box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. Int J Parasitol 50(3):235–252. https://doi.org/10.1016/j.ijpara.2020.01.002. Epub 2020 Mar 3

    Article  PubMed  CAS  Google Scholar 

  • Davies-Bolorunduro OF, Osuolale O, Saibu S, Adeleye IA, Aminah NS (2021) Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 7(8):e07710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Sousa CB, Gangadhar KN, Morais TR, Conserva GAA, Vizetto-Duarte C, Pereira H, Laurenti MD, Campino L, Levy D, Uemi M, Barreira L, Custódio L, Passero LFD, Lago JHG, Varela J (2017) Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp Parasitol 174:1–9. https://doi.org/10.1016/j.exppara.2017.01.002

    Article  CAS  Google Scholar 

  • Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549(7671):261–264

    Article  PubMed  CAS  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2009) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15(1):116–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, Song JK, Zhao GH (2020) Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vectors 13(1):1–8

    Article  Google Scholar 

  • Fischer N (2020) Infection-induced epigenetic changes and their impact on the pathogenesis of diseases. Sem Immunopathol 42(2):127–130

    Article  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    Article  CAS  Google Scholar 

  • Fleck K, Nitz M, Jeffers V (2021) “Reading” a new chapter in protozoan parasite transcriptional regulation. PLoS Pathog 17(12):e1010056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M (2021) Application of dendrimers for treating parasitic diseases. Pharmaceutics 13(3):343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox MM, Phoenix KN, Kopsiaftis SG, Claffey KP (2013) AMP-activated protein kinase α 2 isoform suppression in primary breast cancer alters AMPK growth control and apoptotic signaling. Genes Cancer 4(1–2):3–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frade AF, Laugier L, Ferreira LR, Baron MA, Benvenuti LA, Teixeira PC, Navarro IC, Cabantous S, Ferreira FM, da Silva CD, Gaiotto FA (2016) Myocardial infarction–associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic chagas disease. J Infect Dis 214(1):161–165

    Article  PubMed  CAS  Google Scholar 

  • Gallegos DA, Chan U, Chen LF, West AE (2018) Chromatin regulation of neuronal maturation and plasticity. Trends Neurosci 41(5):311–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Hussain S, Makkar H, Mukherjee B (2021) Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics. Nucleus 64(3):401–413

    Article  Google Scholar 

  • Graham S, Burkett-Cadena N, Guyer C, Unnasch T (2009) Nestedness of ectoparasite-vertebrate host networks. PLoS One 4:e7873. https://doi.org/10.1371/journal.pone.0007873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A (2017) Lysine deacetylase inhibitors in parasites: past, present, and future perspectives. J Med Chem 60(12):4780–4804

    Article  PubMed  CAS  Google Scholar 

  • Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13(3):337–343

    Article  PubMed  CAS  Google Scholar 

  • Hoo R, Zhu L, Amaladoss A, Mok S, Natalang O, Lapp SA, Hu G, Liew K, Galinski MR, Bozdech Z, Preiser PR (2016) Integrated analysis of the plasmodium species transcriptome. EBioMedicine 7:255–266

    Article  PubMed  PubMed Central  Google Scholar 

  • J Timson D (2016) Metabolic enzymes of helminth parasites: potential as drug targets. Curr Protein Peptide Sci 17(3):280–295

    Article  Google Scholar 

  • Jenkins AM, Waterhouse RM, Muskavitch MA (2015) Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics 16(1):1–4

    Article  CAS  Google Scholar 

  • Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L (2018) Plasmodium falciparumvar gene is activated by its antisense long noncoding RNA. Front Microbiol 9:3117

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD (2019) Epigenetic therapy in immune-oncology. Nat Rev Cancer 19(3):151–161

    Article  PubMed  CAS  Google Scholar 

  • Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M (2021) Repurposing of drugs: an attractive pharmacological strategy for cancer therapeutics. Sem Cancer Biol 68:258–278

    Article  CAS  Google Scholar 

  • Kollmer CA et al (2020) From elephant to bacterium: microbial culture techniques and chemical orders of nature, 1875–1946 (Doctoral dissertation, Princeton University)

    Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai SR, Krungkrai J (2016) Insights into the pyrimidine biosynthetic pathway of human malaria parasite plasmodium falciparum as chemotherapeutic target. Asian Pac J Trop Med 9(6):525–534

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chugh A (2021) Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. Biochim Biophys Acta Biomembr 1863(8):183629. https://doi.org/10.1016/j.bbamem.2021.183629. Epub 2021 Apr 30

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Gupta PK, Srivastava A (2020) A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev 14(4):569–573

    Article  Google Scholar 

  • Lago TS, Silva JA, Lago EL, Carvalho EM, Zanette DL, Castellucci LC (2018) The miRNA 361-3p, a regulator of gzmb and tnf is associated with therapeutic failure and longer time healing of cutaneous leishmaniasis caused by l.(viannia) braziliensis. Front Immunol 9:2621

    Article  PubMed  PubMed Central  Google Scholar 

  • Laura Sbaraglini M, Cristina Vanrell M, Leticia Bellera C, Benaim G, Carrillo C, Talevi A, Silvia RP (2016) Neglected tropical protozoan diseases: drug repositioning as a rational option. Curr Top Med Chem 16(19):2201–2222

    Article  Google Scholar 

  • Laurent GS, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Article  Google Scholar 

  • Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ (2018) Transcriptomic studies of malaria: a paradigm for investigation of systemic host-pathogen interactions. Microbiol Mol Biol Rev 82(2):e00071–e00017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Gong AY, Zhang XT, Wang Y, Mathy NW, Martins GA, Strauss-Soukup JK, Chen XM (2018) Induction of a long noncoding RNA transcript, NR_045064, promotes defense gene transcription and facilitates intestinal epithelial cell responses against cryptosporidium infection. J Immunol 201(12):3630–3640. https://doi.org/10.4049/jimmunol.1800566. Epub 2018 Nov 16. PMCID: PMC6289618

    Article  PubMed  CAS  Google Scholar 

  • Liao Q, Shen J, Liu J, Sun X, Zhao G, Chang Y, Xu L, Li X, Zhao Y, Zheng H, Zhao Y (2014) Genome-wide identification and functional annotation of Plasmodium falciparum long noncoding RNAs from RNA-seq data. Parasitol Res 113(4):1269–1281

    Article  PubMed  Google Scholar 

  • Lindequist U (2016) Marine-derived pharmaceuticals-challenges and opportunities. Biomol Ther (Seoul) 24(6):561–571

    Article  PubMed  CAS  Google Scholar 

  • Linhares-Lacerda L, Palu CC, Ribeiro-Alves M, Paredes BD, Morrot A, Garcia-Silva MR, Cayota A, Savino W (2015) Differential expression of microRNAs in thymic epithelial cells from Trypanosoma cruzi acutely infected mice: putative role in thymic atrophy. Front Immunol 6:428

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu TL, Fan XC, Li YH, Yuan YJ, Yin YL, Wang XT, Zhang LX, Zhao GH (2018) Expression profiles of mRNA and lncRNA in HCT-8 cells infected with Cryptosporidium parvum IId subtype. Front Microbiol 9:1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, Cai L, Liang S (2018) Microarray analysis of long non-coding RNA expression profiles uncovers a toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors 11(1):1–3

    Article  Google Scholar 

  • Löffler M, Carrey EA, Zameitat E (2015) Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. J Genet Genomics 42(5):207–219

    Article  PubMed  Google Scholar 

  • López-Rosas I, López-Camarillo C, Salinas-Vera YM, Hernández-de la Cruz ON, Palma-Flores C, Chávez-Munguía B, Resendis-Antonio O, Guillen N, Pérez-Plasencia C, Álvarez-Sánchez ME, Ramírez-Moreno E (2019) Entamoeba histolytica up-regulates microRNA-643 to promote apoptosis by targeting XIAP in human epithelial colon cells. Front Cell Infect Microbiol 8:437

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucero L, Ferrero L, Fonouni-Farde C, Ariel F (2021) Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. New Phytol 229(3):1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Malaria GE Plasmodium falciparum Community Project (2016) Genomic epidemiology of artemisinin resistant malaria. eLife 5:e08714

    Article  Google Scholar 

  • Mariconti M, Vola A, Manciulli T, Genco F, Lissandrin R, Meroni V, Rosenzvit M, Tamarozzi F, Brunetti E (2019) Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunol Res 67(1):93–97. https://doi.org/10.1007/s12026-018-9041-4. Erratum in: Immunol Res. 2018 Dec 27

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez JE, Hammoud Z, de Sousa AM et al (2021) Network-based approaches reveal potential therapeutic targets for host-directed Antileishmanial therapy driving drug repurposing. Microbiol Spectr 9(2):e0101821. https://doi.org/10.1128/Spectrum.01018-21

    Article  PubMed  Google Scholar 

  • Menard KL, Bu L, Denkers EY (2021) Transcriptomics analysis of toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics 22(1):1–20

    Article  Google Scholar 

  • Menard KL, Haskins BE, Colombo AP, Denkers EY (2018) Toxoplasma gondii manipulates expression of host long noncoding RNA during intracellular infection. Sci Rep 8(1):1–4

    Article  Google Scholar 

  • Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, Gould K, Mead D, Drury E, O’Brien J, Rubio VR (2016) Indels, structural variation, and recombination drive genomic diversity in plasmodium falciparum. Genome Res 26(9):1288–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mocumbi AO, Stothard JR, Correia-de-Sá P, Yacoub M (2019) Endomyocardial fibrosis: an update after 70 years. Curr Cardiol Rep 21(11):1

    Article  Google Scholar 

  • Movellan J, Urbán P, Moles E, Jesús M, Sierra T, Serrano JL, Fernàndez-Busquets X (2014) Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials 35(27):7940–7950

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Mukherjee N, Gayen P, Roy P, Sinha Babu P, S. (2016) Metabolic inhibitors as antiparasitic drugs: pharmacological, biochemical and molecular perspectives. Curr Drug Metab 17(10):937–970

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LO, Aarestrup FM, Lund O, Alifrangis M (2017) High throughput resistance profiling of plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep 7(1):1–3

    Article  CAS  Google Scholar 

  • Neeraj T, Vinod K, Rao GM, Singh AK, Singh VK, Singh SP, Singh Rakesh K (2017) Identification and characterization of miRNAs in response to Leishmania donovani infection: delineation of their roles in macrophage dysfunction. Front Microbiol 8:314. https://doi.org/10.3389/fmicb.2017.00314

    Article  Google Scholar 

  • Network MG (2019) Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat Commun 10:5732

    Article  Google Scholar 

  • Nsanzabana C (2019) Resistance to artemisinin combination therapies (ACTs): do not forget the partner drug! Trop Med Infect Dis 4(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberstaller J, Otto TD, Rayner JC, Adams JH (2021) Essential genes of the parasitic apicomplexa. Trends Parasitol 37:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olajide JS, Olopade B, Cai J (2021) Functional intricacy and symmetry of long non-coding RNAs in parasitic infections. Front Cell Infect Microbiol:960

    Google Scholar 

  • Olson GS et al (2017) Interferons Shape the Interface Between Macrophages and Mycobacterium Tuberculosis: Lessons from Latency and Metabolic Mechanisms (Doctoral dissertation, University of Washington)

    Google Scholar 

  • Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Böhme U, Lemieux J, Barrell B, Pain A, Berriman M, Newbold C (2010) New insights into the blood-stage transcriptome of plasmodium falciparum using RNA-Seq. Mol Microbiol 76(1):12–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paananen J, Fortino V (2020) An omics perspective on drug target discovery platforms. Brief Bioinform 21(6):1937–1953

    Article  PubMed  CAS  Google Scholar 

  • Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R (2021) Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 33(4):737–745

    Article  PubMed  Google Scholar 

  • Parmar N, Chandrakar P, Kar S (2020) Leishmania donovani subverts host immune response by epigenetic reprogramming of macrophage M (Lipopolysaccharides+ IFN-γ)/M (IL-10) polarization. J Immunol 204(10):2762–2778

    Article  PubMed  CAS  Google Scholar 

  • Pineda E, Encalada R, Vázquez C, González Z, Moreno-Sánchez R, Saavedra E (2015) Glucose metabolism and its controlling mechanisms in Entamoeba histolytica. In Amebiasis. Springer, Tokyo, pp 351–372

    Google Scholar 

  • Raj S, Sasidharan S, Balaji SN, Saudagar P (2020) An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res 119:2025–2037

    Article  PubMed  Google Scholar 

  • Ren GJ, Fan XC, Liu TL, Wang SS, Zhao GH (2018) Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs during Cryptosporidium baileyi infection. BMC Genomics 19(1):1–5

    Article  Google Scholar 

  • Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, Teixeira C, Alves C, Gomes P, Almeida JR (2021) Peptides to tackle Leishmaniasis: current status and future directions. Int J Mol Sci 22(9):4400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rochet E, Appukuttan B, Ma Y, Ashander LM, Smith JR (2019) Expression of long non-coding RNAs by human retinal müller glial cells infected with clonal and exotic virulent toxoplasma gondii. Non-coding RNA 5(4):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudrapal M, Khairnar JS, Jadhav GA (2020) Drug repurposing (DR): an emerging approach in drug discovery. Drug Repurp Hypoth Mol Asp Ther Appl:10

    Google Scholar 

  • Saad AH, Soliman MI, Azzam AM, Mostafa AB (2015) Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. J Egypt Soc Parasitol 45(3):593–602

    PubMed  Google Scholar 

  • Saavedra E, González-Chávez Z, Moreno-Sánchez R, Michels PA (2019) Drug target selection for Trypanosoma cruzi metabolism by metabolic control analysis and kinetic modeling. Curr Med Chem 26(36):6652–6671

    Article  PubMed  CAS  Google Scholar 

  • Sadakierska-Chudy A, Filip M (2015) A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27(2):172–197

    Article  PubMed  CAS  Google Scholar 

  • Salles ÉM, Pizzolante BC, Fonseca DM (2021) Metabolic reprogramming and infectious diseases. In Essential aspects of Immunometabolism in health and disease. Springer, Champions, pp 151–175

    Google Scholar 

  • Saxena S, Durgam L, Guruprasad L (2019) Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). J Biomol Struct Dyn 37(7):1783–1799

    Article  PubMed  CAS  Google Scholar 

  • Scalise ML, Arrúa EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE (2016) Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: in-vitro and in-vivo studies. Am J Trop Med Hyg 95(2):388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma G, Sowpati DT, Singh P, Khan MZ, Ganji R, Upadhyay S, Banerjee S, Nandicoori VK, Khosla S (2016) Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection. Sci Rep 6(1):1–5

    Article  Google Scholar 

  • Shirley DA, Sharma I, Warren CA, Moonah S (2021) Drug repurposing of the alcohol abuse medication disulfiram as an anti-parasitic agent. Front Cell Infect Microbiol 11:165

    Article  Google Scholar 

  • Silva JA, Tunes LG, Coimbra RS, Ascher DB, Pires DE, Monte-Neto RL (2021) Unveiling six potent and highly selective antileishmanial agents via the open source compound collection ‘pathogen box’ against antimony-sensitive and-resistant Leishmania braziliensis. Biomed Pharmacother 133:111049

    Article  Google Scholar 

  • Silva LA, Vinaud MC, Castro AM, Cravo PV, Bezerra JC (2015) In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments. Biomed Res Int 2015:1

    Google Scholar 

  • Simoes-pires C, Hostettmann K, Haouala A (2014) International journal for parasitology: drugs and drug resistance reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana. Int J Parasitol Drugs Drug Resist 4(3):338–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B (2020) Molecular medicines for parasitic diseases. In Methods in molecular medicine. IntechOpen

    Google Scholar 

  • Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD (2015) K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347(6220):428–431

    Article  PubMed  CAS  Google Scholar 

  • Tabrez S, Rahman F, Ali R, Akand SK, Alaidarous MA, Alshehri BM, Banawas S, Dukhyil AA, Rub A (2021) Targeting sterol alpha-14 demethylase of Leishmania donovani to fight against leishmaniasis. J Cell Biochem 122:1037

    Article  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103(33):12481–12486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taki AC, Byrne JJ, Jabbar A, Lum KY, Hayes S, Addison RS, Ramage KS, Hofmann A, Ekins MG, Wang T, Chang BC (2021) High throughput screening of the NatureBank ‘marine collection’ in a haemonchus bioassay identifies anthelmintic activity in extracts from a range of sponges from Australian waters. Molecules 26(19):5846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tetevi GM, Kwain S, Mensah T, Camas AS, Camas M, Dofuor AK, Azerigyik FA, Oluwabusola E, Deng H, Jaspars M, Kyeremeh K (2019) Paenidigyamycin G: 1-Acetyl-2, 4-dimethyl-3-phenethyl-1H-imidazol-3-ium. MolBank 2019(4):M1094

    Article  Google Scholar 

  • Torres FA, Passalacqua TG, Velásquez A, Souza RA, Colepicolo P, Graminha MA (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras 24:265–276

    CAS  Google Scholar 

  • Townsend SD (2021) Call for papers: glycoscience in infectious diseases. ACS Infect Dis 7(11):2946–2947

    Article  PubMed  CAS  Google Scholar 

  • van Loon W, Gai PP, Hamann L, Bedu-Addo G, Mockenhaupt FP (2019) MiRNA-146a polymorphism increases the odds of malaria in pregnancy. Malar J 18(1):1–7

    Google Scholar 

  • Veluchamy A, Rastogi A, Lin X, Lombard B, Murik O, Thomas Y, Dingli F, Rivarola M, Ott S, Liu X, Sun Y (2015) An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biol 16(1):1–8

    Article  CAS  Google Scholar 

  • Vijayan K, Wei L, Glennon EK, Mattocks C, Bourgeois N, Staker B, Kaushansky A (2021) Host-targeted interventions as an exciting opportunity to combat malaria. Chem Rev 121(17):10452–10468

    Article  PubMed  CAS  Google Scholar 

  • Villares M, Berthelet J, Weitzman JB (2020) The clever strategies used by intracellular parasites to hijack host gene expression. Sem Immunopathol 42(2):215–226

    Article  CAS  Google Scholar 

  • Vincent IM, Creek D, Watson DG, Kamleh MA, Woods DJ, Wong PE, Burchmore RJ, Barrett MP (2010) A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog 6(11):e1001204. https://doi.org/10.1371/journal.ppat.1001204. PMCID: PMC2991269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vique-Sánchez JL, Jiménez-Pineda A, Benítez-Cardoza CG (2021) Amoebicidal effect of 5, 5′-[(4-nitrophenyl) methylene] bis-6-hydroxy-2-mercapto-3-methyl-4 (3H)-pyrimidinone, a new drug against Entamoeba histolytica. Arch Pharm 354(2):2000263

    Article  Google Scholar 

  • Vossen LI, Domínguez-Asenjo B, Gutiérrez-Corbo C, Pérez-Pertejo MY, Balaña-Fouce R, Reguera RM, Calderón M (2020) Mannose-decorated dendritic polyglycerol nanocarriers drive antiparasitic drugs to Leishmania infantum-infected macrophages. Pharmaceutics 12(10):915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wardana FY, Sari DK, Adianti M, Permanasari AA, Tumewu L, Nozaki T, Widyawaruyanti A, Hafid AF (2018) Amoebicidal activities of Indonesian medicinal plants in Balikpapan, East Kalimantan. Proc Bromo Conf (BROMO 2018) 1:77–82

    Article  Google Scholar 

  • Westrop GD, Williams RA, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH (2015) Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One 10(9):e0136891

    Article  PubMed  PubMed Central  Google Scholar 

  • Whatley KC, Padalino G, Whiteland H, Geyer KK, Hulme BJ, Chalmers IW, Forde-Thomas J, Ferla S, Brancale A, Hoffmann KF (2019) The repositioning of epigenetic probes/inhibitors identifies new anti-schistosomal lead compounds and chemotherapeutic targets. PLoS Negl Trop Dis 13(11):e0007693

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia T, Giri BR, Liu J, Du P, Li X, Li X, Li S, Cheng G (2020) RNA sequencing analysis of altered expression of long noncoding RNAs associated with Schistosoma japonicum infection in the murine liver and spleen. Parasit Vectors 13(1):1–5

    Article  Google Scholar 

  • Weng HB, Chen HX, Wang MW (2018) Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamagishi J, Asada M, Hakimi H, Tanaka TQ, Sugimoto C, Kawazu SI (2017) Whole-genome assembly of Babesia ovata and comparative genomics between closely related pathogens. BMC Genomics 18(1):1–9

    Article  Google Scholar 

  • Yu A, Wang Y, Yin J, Zhang J, Cao S, Cao J, Shen Y (2018) Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice. Parasit Vectors 11(1):1–9

    Article  Google Scholar 

  • Yunta MJ, Dietrich RC (2019) Tropical and subtropical parasitic diseases: targets for a new approach to virtual screening. Mol Inform 38(11–12):1900052

    Article  CAS  Google Scholar 

  • Zheng W, Sun W, Simeonov A (2018) Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol 175(2):181–191

    Article  PubMed  CAS  Google Scholar 

  • Zheng WB, Zou Y, He JJ, Elsheikha HM, Liu GH, Hu MH, Wang SL, Zhu XQ (2021) Global profiling of lncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection. Int J Parasitol 51(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Zhao J, Kang H, Kong W, Zhao Y, Wu M, Liang H (2016) Modulation of type III secretion system in Pseudomonas aeruginosa: involvement of the PA4857 gene product. Front Microbiol 7:7

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, Kula-Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C (2020) Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 24(11):5937–5954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. A.K. Chauhan, Founder President, Amity University, for his continuous motivation and encouragement and Dr. Balvinder Shukla, Vice Chancellor Amity University and Officiating Director, Amity Institute of Biotechnology, Amity University for providing the supporting infrastructure for preparation of this review chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Avasthi .

Editor information

Editors and Affiliations

Glossary

Antimicrobial peptides

Class of small peptides that widely exist in nature.

Apicomplexa

Are a large phylum of parasitic alveolates.

Artemisinin

A terpene-based antimalarial substance used in Chinese medicine.

Bioprospecting

Exploration of natural sources for small molecules that change into commercially valuable products.

Cytotoxicity

Toxicity caused due to action of chemotherapeutic agents on living cells.

Dendrimers

A synthetic polymer with a structure of repeatedly branching chains.

Drug Repurposing

Drug utilized for treatment for a different diseases from the one it was initially discovered or designed.

Epigenetics

Study of heritable phenotype changes.

Epigenetic landscape

Is concept representing embryonic development.

Etiopathologies

Consideration of the cause of an abnormal state or finding.

Interactome networks

Network that contains ideally all possible PPIs in a specific organism.

Macrolide

Class of natural products that consist of a large macrocyclic lactone ring to which one or more deoxy sugars.

Metabolomics

The scientific study of the set of metabolites presents within an organism, cell, or tissue.

Macrophage

A large phagocytic cell found in stationary form in the tissues.

Microarrays

A set of DNA sequences representing the entire set of genes of an organism.

Miltefosine

Treat leishmaniasis and free-living amoeba infections.

nc RNA

Non-coding RNA.

Nanotechnology

Branch of technology that deals with dimensions and tolerances of less than 100 nanometres.

Natural products

Small molecules produced naturally by any organism.

Parasitic diseases

Any illness that is caused by a parasite, an organism that lives in or on another organism.

Schistosomes

A parasitic flatworm which needs two hosts to complete its life cycle.

Simeprevir

Medication used in combination with other medications for the treatment of hepatitis C.

Terpenoids

Any of a large class of organic compounds including terpenes, diterpenes, and sesquiterpenes.

Theranostics

The combination of using one radioactive drug to diagnose, and a second radioactive drug.

Transcriptome

The sum total of all the messenger RNA molecules expressed from the genes of an organism.

Trypanosomatids

Protozoan parasites.

Vitelline cells

A membrane enclosing an egg that comprises the zona pellucida in mammals.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Deepika, Sharda, S., Avasthi, A. (2023). Recent Advances in the Treatment of Parasitic Diseases: Current Status and Future. In: Singh, A., Rathi, B., Verma, A.K., Singh, I.K. (eds) Natural Product Based Drug Discovery Against Human Parasites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9605-4_13

Download citation

Publish with us

Policies and ethics