Skip to main content

Advertisement

Log in

Genome-wide identification and functional annotation of Plasmodium falciparum long noncoding RNAs from RNA-seq data

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The life cycle of Plasmodium falciparum is very complex, with an erythrocytic stage that involves the invasion of red blood cells and the survival and growth of the parasite within the host. Over the past several decades, numbers of studies have shown that proteins exported by P. falciparum to the surface of infected red blood cells play a critical role in recognition and interaction with host receptors and are thus essential for the completion of the life cycle of P. falciparum. However, little is known about long noncoding RNAs (lncRNAs). In this study, we designed a computational pipeline to identify new lncRNAs of P. falciparum from published RNA-seq data and analyzed their sequences and expression features. As a result, 164 novel lncRNAs were found. The sequences and expression features of P. falciparum lncRNAs were similar to those of humans and mice: there was a lack of sequence conservation, low expression levels, and high expression coefficient of variance and co-expression with nearby coding sequences in the genome. Next, a coding/noncoding gene co-expression network for P. falciparum was constructed to further annotate the functions of novel and known lncRNAs. In total, the functions of 69 lncRNAs, including 44 novel lncRNAs, were annotated. The main functions of the lncRNAs included metabolic processes, biosynthetic processes, regulation of biological processes, establishment of localization, catabolic processes, cellular component organization, and interspecies interactions between organisms. Our results will provide clues to further the investigation of interactions between human hosts and parasites and the mechanisms of P. falciparum infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A-Elgadir TME, Elbashir MI, Berzins K, Masuadi EM, A-Elbasit IE, ElGhazali G, Giha HA (2008) The profile of IgG-antibody response against merozoite surface proteins 1 and 2 in severe Plasmodium falciparum malaria in Eastern Sudan. Parasitol Res 102(3):401–409. doi:10.1007/s00436-007-0777-3

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi:10.1038/75556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ Jr, Treatman C, Wang H (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37(Database issue):D539–D543. doi:10.1093/nar/gkn814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barfod A, Persson T, Lindh J (2009) In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1. Parasitol Res 105(6):1557–1566. doi:10.1007/s00436-009-1583-x

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, Ehlgen F, Ralph SA, Beeson JG, Cowman AF (2009) Reticulocyte-binding protein homologue 5—an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol 39(3):371–380. doi:10.1016/j.ijpara.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  • Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K, Langhorne J, Preiser PR (2008) Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 76(7):3329–3336. doi:10.1128/IAI.01460-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC, Rinn JL (2011) A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 12(6):R56. doi:10.1186/gb-2011-12-6-r56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson M (2012) GO.db: A set of annotation maps describing the entire Gene Ontology, R package version 2.8.0

  • Chakrabarti K, Pearson M, Grate L, Sterne-Weiler T, Deans J, Donohue JP, Ares M Jr (2007) Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA 13(11):1923–1939. doi:10.1261/rna.751807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    Article  CAS  PubMed  Google Scholar 

  • Cortes GT, Caldas ML, Rahirant SJ (2011) Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC(1)(6) from infected cell membrane to Maurer's clefts. Parasitol Res 109(3):941–947. doi:10.1007/s00436-011-2314-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Date SV, Stoeckert CJ Jr (2006) Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 16(4):542–549. doi:10.1101/gr.4573206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elsheikha HM, Sheashaa HA (2007) Epidemiology, pathophysiology, management and outcome of renal dysfunction associated with plasmodia infection. Parasitol Res 101(5):1183–1190. doi:10.1007/s00436-007-0650-4

    Article  PubMed  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2009) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15(1):116–127. doi:10.1261/rna.1080109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erdmann VA, Szymanski M, Hochberg A, Groot N, Barciszewski J (2000) Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res 28(1):197–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontaine A, Bourdon S, Belghazi M, Pophillat M, Fourquet P, Granjeaud S, Torrentino-Madamet M, Rogier C, Fusai T, Almeras L (2012) Plasmodium falciparum infection-induced changes in erythrocyte membrane proteins. Parasitol Res 110(2):545–556. doi:10.1007/s00436-011-2521-2

    Article  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511. doi:10.1038/nature01097

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510. doi:10.1038/nbt.1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86. doi:10.1126/science.1103717

    Article  CAS  PubMed  Google Scholar 

  • Hassan MA, Melo MB, Haas B, Jensen KD, Saeij JP (2012) De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 13:696. doi:10.1186/1471-2164-13-696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holder AA (1994) Proteins on the surface of the malaria parasite and cell invasion. Parasitology 108(Suppl):S5–S18

    Article  PubMed  Google Scholar 

  • Kadekoppala M, O'Donnell RA, Grainger M, Crabb BS, Holder AA (2008) Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite invasion of erythrocytes. Eukaryot Cell 7(12):2123–2132. doi:10.1128/EC.00274-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp B, Hundt E, Lingelbach KR (1991) Structure and possible function of Plasmodium falciparum proteins exported to the erythrocyte membrane. Parasitol Res 77(4):277–282

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35(Web Server issue):W345–W349. doi:10.1093/nar/gkm391

    Article  PubMed Central  PubMed  Google Scholar 

  • Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A 96(16):9333–9338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559. doi:10.1186/1471-2105-9-559

    Article  Google Scholar 

  • Li F, Sonbuchner L, Kyes SA, Epp C, Deitsch KW (2008) Nuclear non-coding RNAs are transcribed from the centromeres of Plasmodium falciparum and are associated with centromeric chromatin. J Biol Chem 283(9):5692–5698. doi:10.1074/jbc.M707344200

    Article  CAS  PubMed  Google Scholar 

  • Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbo G, Wu Z, Zhao Y (2011a) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39(9):3864–3878. doi:10.1093/nar/gkq1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao Q, Xiao H, Bu D, Xie C, Miao R, Luo H, Zhao G, Yu K, Zhao H, Skogerbo G, Chen R, Wu Z, Liu C, Zhao Y (2011b) ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Res 39(Web Server issue):W118–W124. doi:10.1093/nar/gkr432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mourier T, Carret C, Kyes S, Christodoulou Z, Gardner PP, Jeffares DC, Pinches R, Barrell B, Berriman M, Griffiths-Jones S, Ivens A, Newbold C, Pain A (2008) Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res 18(2):281–292. doi:10.1101/gr.6836108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res 22(12):2529–2540. doi:10.1101/gr.140475.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ocampo M, Rodriguez LE, Curtidor H, Puentes A, Vera R, Valbuena JJ, Lopez R, Garcia JE, Ramirez LE, Torres E, Cortes J, Tovar D, Lopez Y, Patarroyo MA, Patarroyo ME (2005) Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes. Protein Sci 14(2):504–513. doi:10.1110/ps.04883905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915):563–573. doi:10.1038/nature01266

    Article  PubMed  Google Scholar 

  • Oster N, Rohrbach P, Sanchez CP, Andrews KT, Kammer J, Coulibaly B, Stieglbauer G, Becher H, Lanzer M (2010) Apparent bias for P. falciparum parasites carrying the wild-type pfcrt allele in the placenta. Parasitol Res 106(5):1065–1070. doi:10.1007/s00436-010-1756-7

    Article  PubMed  Google Scholar 

  • Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, Lemieux J, Barrell B, Pain A, Berriman M, Newbold C, Llinas M (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76(1):12–24. doi:10.1111/j.1365-2958.2009.07026.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Carver TJ, Cherevach I, Chillingworth T, Clark TG, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S, Meyer IM, Ormond D, Peters N, Sanders M, Sanders S, Sargeant TJ, Simmonds M, Smith F, Squares R, Thurston S, Tivey AR, Walker D, White B, Zuiderwijk E, Churcher C, Quail MA, Cowman AF, Turner CM, Rajandream MA, Kocken CH, Thomas AW, Newbold CI, Barrell BG, Berriman M (2008) The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455(7214):799–803. doi:10.1038/nature07306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, Cao X, Jing X, Wang X, Siddiqui J, Wei JT, Robinson D, Iyer HK, Palanisamy N, Maher CA, Chinnaiyan AM (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749. doi:10.1038/nbt.1914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raabe CA, Sanchez CP, Randau G, Robeck T, Skryabin BV, Chinni SV, Kube M, Reinhardt R, Ng GH, Manickam R, Kuryshev VY, Lanzer M, Brosius J, Tang TH, Rozhdestvensky TS (2010) A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res 38(2):608–617. doi:10.1093/nar/gkp895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riggione F, Pulido M, Noya O (1996) Plasmodium falciparum: surface modifications of infected erythrocytes from clinical isolates. Evidence of antigenic diversity using Venezuelan human malarial sera. Parasitol Res 82(6):490–496

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LE, Curtidor H, Ocampo M, Garcia J, Puentes A, Valbuena J, Vera R, Lopez R, Patarroyo ME (2005) Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Sci 14(7):1778–1786. doi:10.1110/ps.041304505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282(1–2):33–41

    Article  CAS  PubMed  Google Scholar 

  • Sallenave-Sales S, Daubersies P, Mercereau-Puijalon O, Rahimalala L, Contamin H, Druilhe P, Daniel-Ribeiro CT, Ferreira-da-Cruz MF (2000) Plasmodium falciparum: a comparative analysis of the genetic diversity in malaria-mesoendemic areas of Brazil and Madagascar. Parasitol Res 86(8):692–698

    Article  CAS  PubMed  Google Scholar 

  • Sam-Yellowe TY (2009) The role of the Maurer's clefts in protein transport in Plasmodium falciparum. Trends Parasitol 25(6):277–284. doi:10.1016/j.pt.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166. doi:10.1016/j.canlet.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Craig AG (2005) The surface of the Plasmodium falciparum-infected erythrocyte. Curr Issues Mol Biol 7(1):81–93

    PubMed  Google Scholar 

  • Stein WD, Sanchez CP, Lanzer M (2009) Virulence and drug resistance in malaria parasites. Trends Parasitol 25(10):441–443. doi:10.1016/j.pt.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  • Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82(1):89–100

    Article  CAS  PubMed  Google Scholar 

  • Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, Arisue N, Palacpac NM, Honma H, Yagi M, Tougan T, Katakai Y, Kaneko O, Mita T, Kita K, Yasutomi Y, Sutton PL, Shakhbatyan R, Horii T, Yasunaga T, Barnwell JW, Escalante AA, Carlton JM, Tanabe K (2012) Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 44(9):1051–1055. doi:10.1038/ng.2375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • The Universal Protein Resource (UniProt) in 2010 (2010) Nucleic Acids Res 38(Database issue):D142–D148. doi:10.1093/nar/gkp846

    Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. doi:10.1038/nbt.1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tschan S, Mordmuller B, Kun JF (2011) Threonine peptidases as drug targets against malaria. Expert Opin Ther Targets 15(4):365–378. doi:10.1517/14728222.2011.555399

    CAS  PubMed  Google Scholar 

  • Van Dongen S (2000) A new clustering algorithm for graphs. Tech Rep INS-R0010

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504. doi:10.1101/gad.1800909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2010CB530004), National Natural Science Foundation of China (31301084), Natural Science Foundation of Zhejiang Province of China (LQ13C060002), and the K.C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhao or Zhongdao Wu.

Additional information

Qi Liao and Jia Shen contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

Gtf file of 164 novel lncRNA candidates of P. falciparum. (TXT 25 kb)

ESM Table 2

Co-located pairs of novel lncRNAs and protein-coding genes for which the distance between their genomic regions is less than 1 kb. (XLS 22 kb)

ESM Table 3

Specific protein coding genes and lncRNAs. (XLS 18 kb)

ESM Table 4

Predicted functions of lncRNAs by the hub-based method. (XLS 344 kb)

ESM Table 5

Predicted functions of lncRNAs by the module-based method. (XLS 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Q., Shen, J., Liu, J. et al. Genome-wide identification and functional annotation of Plasmodium falciparum long noncoding RNAs from RNA-seq data. Parasitol Res 113, 1269–1281 (2014). https://doi.org/10.1007/s00436-014-3765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3765-4

Keywords

Navigation