Skip to main content

Application of Nanotherapeutics for Combating Human Protozoan Parasitic Infections

  • Chapter
  • First Online:
Emerging Trends in Nanomedicine
  • 235 Accesses

Abstract

Human protozoan parasitic diseases are major issue of concern mainly in the tropical regions of the world. Human protozoan parasitic diseases that have high morbidity and mortality rate include malaria, leishmaniasis, and toxoplasmosis. The convetional treatments involved are not cost-effective and thus can’t be afforded by everyone. Also, vaccinations against these diseases have achieved limited success due to the incredible smartness of these protozoan parasites. Due to this, chemotherapy remains the mainstay for treatment and often high drug doses are administered leading to severe side effects and drug resistance in the parasites. The application of nanotechnology seems to be an attractive alternative approach to the conventional method. Nanoparticles are more effective as they have higher bioavailability, increased clearance rate and they can be engineered to be target-specific wherein they can affect the diseased cells only. This chapter discusses the current treatments used against these protozoan parasites and also their shortcomings. Different types of nanoparticles have been designed to target the parasites such as lipid-based, metallic/inorganic and polymeric based nanoparticles. Since nanoparticles are less toxic and can be engineered to be more effective in controlling and preventing parasitic diseases, it can show the way for future anti-parasitic treatments using nanotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: Synthesis, applications, and properties. Nano Research, 9(1), 247.

    Google Scholar 

  • Acharya, P., Garg, M., Kumar, P., Munjal, A., & Raja, K. J. F. (2017). Host–parasite interactions in human malaria: Clinical implications of basic research. Frontiers in Microbiology, 8, 889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adeyemi, O., & Whiteley, C. G. (2014). Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Biochimica et Biophysica Acta - General Subjects, 1840(1), 701–706.

    Article  CAS  Google Scholar 

  • Aditya, N., Chimote, G., Gunalan, K., Banerjee, R., Patankar, S., & Madhusudhan, B. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental Parasitology, 131(3), 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Aditya, N., Vathsala, P. G., Vieira, V., Murthy, R. S. R., & Souto, E. B. (2013). Advances in nanomedicines for malaria treatment. Advances in Colloid and Interface Science, 201, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Akbari, M., Oryan, A., & Hatam, G. (2017). Application of nanotechnology in treatment of leishmaniasis: A review. Acta Tropica, 172, 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., Baydar, S. Y., Ates, S. C., Kaya, F., et al. (2013). Investigation of antileishmanial activities of Tio2@ Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology, 135(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, K. T., Fisher, G., Skinner-Adams, T. S., & Resistance, D. (2014). Drug repurposing and human parasitic protozoan diseases. International Journal for Parasitology: Drugs and Drug Resistance, 4(2), 95–111.

    PubMed  PubMed Central  Google Scholar 

  • Arias, J. L., Unciti-Broceta, J. D., Maceira, J., del Castillo, T., Hernández-Quero, J., Magez, S., et al. (2015). Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. Journal of Controlled Release, 197, 190–198.

    Article  CAS  PubMed  Google Scholar 

  • Assolini, J. P., Concato, V. M., Gonçalves, M. D., Carloto, A. C. M., Conchon-Costa, I., Pavanelli, W. R., et al. (2017). Nanomedicine advances in toxoplasmosis: Diagnostic, treatment, and vaccine applications. Parasitology Research, 116(6), 1603–1615.

    Article  PubMed  Google Scholar 

  • Auparakkitanon, S., Chapoomram, S., Kuaha, K., Chirachariyavej, T., & Wilairat, P. (2006). Targeting of hematin by the antimalarial pyronaridine. Antimicrobial Agents and Chemotherapy, 50(6), 2197–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babokhov, P., Sanyaolu, A. O., Oyibo, W. A., Fagbenro-Beyioku, A. F., & Iriemenam, N. C. (2013). A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathogens and Global Health, 107(5), 242–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldissera, M. D., Souza, C. F., Boligon, A. A., Grando, T. H., De Sa, M. F., Da Silva, A. S., et al. (2017). Solving the challenge of the blood–brain barrier to treat infections caused by Trypanosoma evansi: Evaluation of nerolidol-loaded nanospheres in mice. Parasitology, 144(11), 1543–1550.

    Article  CAS  PubMed  Google Scholar 

  • Bever, C. S., Dong, J.-X., Vasylieva, N., Barnych, B., Cui, Y., Xu, Z.-L., et al. (2016). VHH antibodies: Emerging reagents for the analysis of environmental chemicals. Analytical and Bioanalytical Chemistry, 408(22), 5985–6002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadra, D., Bhadra, S., & Jain, N. K. (2006). PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharmaceutical Research, 23(3), 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Bhagat, S., Parikh, Y., Singh, S., & Sengupta, S. (2019). A novel nanoliposomal formulation of the FDA approved drug Halofantrine causes cell death of Leishmania donovani promastigotes in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123852.

    Google Scholar 

  • Bornstein, R. S., & Yarbro, J. W. (1970). An evaluation of the mechanism of action of pentamidine isethionate. Journal of Surgical Oncology, 2(4), 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Brisson-NoĂ«l, A., Trieu-Cuot, P., & Courvalin, P. (1988). Mechanism of action of spiramycin and other macrolides. Journal of Antimicrobial Chemotherapy, 22(Supplement_B), 13–23.

    Article  PubMed  Google Scholar 

  • Cameron, P., Gaiser, B. K., Bhandari, B., Bartley, P. M., Katzer, F., & Bridle, H. (2016). Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 82(2), 431–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalheiro, M., Esteves, M. A., Santos-Mateus, D., Lopes, R. M., Rodrigues, M. A., EleutĂ©rio, C. V., et al. (2015). Hemisynthetic trifluralin analogues incorporated in liposomes for the treatment of leishmanial infections. European Journal of Pharmaceutics and Biopharmaceutics, 93, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Chadwick, M., Trewin, H., Gawthrop, F., & Wagstaff, C. (2013). Sesquiterpenoids lactones: Benefits to plants and people. International Journal of Molecular Sciences, 14(6), 12780–12805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chahal, J. S., Khan, O. F., Cooper, C. L., McPartlan, J. S., Tsosie, J. K., Tilley, L. D., et al. (2016). Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences, 113(29), E4133–E4142.

    Article  CAS  Google Scholar 

  • Chakraborty, A. K., & Majumder, H. K. (1988). Mode of action of pentavalent antimonials: Specific inhibition of type I DNA topoisomerase of Leishmaniadonovani. Biochemical and Biophysical Research Communications, 152(2), 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Dahl, E. L., Shock, J. L., Shenai, B. R., Gut, J., DeRisi, J. L., & Rosenthal, P. J. (2006). Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 50(9), 3124–3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho, R. F., Ribeiro, I. F., Miranda-Vilela, A. L., de Souza Filho, J., Martins, O. P., e Silva, D. D. O. C., et al. (2013). Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Experimental Parasitology, 135(2), 217–222.

    Article  PubMed  CAS  Google Scholar 

  • de Souza, A., Marins, D. S. S., Mathias, S. L., Monteiro, L. M., Yukuyama, M. N., Scarim, C. B., et al. (2018). Promising nanotherapy in treating leishmaniasis. International Journal of Pharmaceutics, 547(1–2), 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Dimier-Poisson, I., Carpentier, R., N'Guyen, T. T. L., Dahmani, F., Ducournau, C., & Betbeder, D. (2015). Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection. Biomaterials, 50, 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Dorlo, T. P., Balasegaram, M., Beijnen, J. H., & de Vries, P. J. (2012). Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67(11), 2576–2597.

    Article  CAS  PubMed  Google Scholar 

  • Doroud, D., Zahedifard, F., Vatanara, A., Najafabadi, A. R., Taslimi, Y., Vahabpour, R., et al. (2011). Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. Journal of Controlled Release, 153(2), 154–162.

    Article  CAS  PubMed  Google Scholar 

  • Doumbo, O. K., NiarĂ©, K., Healy, S. A., Sagara, I., & Duffy, P. E. (2018). Malaria transmission-blocking vaccines: Present status and future perspectives. https://doi.org/10.5772/intechopen.77241

  • Ebstie, Y. A., Abay, S. M., Tadesse, W. T., & Ejigu, D. A. (2016). Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: The evidence to date. Drug Design, Development and Therapy, 10, 2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElĂ­as, A. L., Carrero-Sánchez, J. C., Terrones, H., Endo, M., Laclette, J. P., & Terrones, M. (2007). Viability studies of pure carbon-and nitrogen-doped nanotubes with Entamoeba histolytica: From amoebicidal to biocompatible structures. Small, 3(10), 1723–1729.

    Article  PubMed  CAS  Google Scholar 

  • El-Zawawy, L. A., El-Said, D., Mossallam, S. F., Ramadan, H. S., & Younis, S. S. (2015). Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Experimental Parasitology, 149, 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Etewa, S. E., El-Maaty, D. A. A., Hamza, R. S., Metwaly, A. S., Sarhan, M. H., Abdel-Rahman, S. A., et al. (2018). Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. Journal of Parasitic Diseases, 42(1), 102–113.

    Article  PubMed  Google Scholar 

  • Fang, R. H., & Zhang, L. (2016). Nanoparticle-based modulation of the immune system. Annual Review of Chemical and Biomolecular Engineering, 7, 305–326.

    Article  PubMed  Google Scholar 

  • Foley, M., & Tilley, L. (1997). Quinoline antimalarials: Mechanisms of action and resistance. Pharmacology & Therapeutics, 27(2), 231–240.

    CAS  Google Scholar 

  • Fry, M., & Pudney, M. (1992). Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1, 4-naphthoquinone (566C80). Biochemical Pharmacology, 43(7), 1545–1553.

    Article  CAS  PubMed  Google Scholar 

  • Gaafar, M., Mady, R., Diab, R., & Shalaby, T. I. (2014). Chitosan and silver nanoparticles: Promising anti-toxoplasma agents. Experimental Parasitology, 143, 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Gargala, G. (2008). Drug treatment and novel drug target against Cryptosporidium. Parasite, 15, 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Geleta, G., & Ketema, T. (2016). Severe malaria associated with Plasmodium falciparum and P. vivax among children in Pawe Hospital, Northwest Ethiopia. Malaria Research and Treatment, 2016, 1240962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnanadesigan, M., Nandagopalan, V., Kapildev, G., & Gundappa, M. (2019). Nano drugs for curing malaria: The plausibility applications of targeted nano drugs and delivery systems (pp. 451–467). Amsterdam: Elsevier.

    Book  Google Scholar 

  • Han, Y., Zhou, A., Lu, G., Zhao, G., Wang, L., Guo, J., et al. (2017). Protection via a ROM4 DNA vaccine and peptide against Toxoplasma gondii in BALB/c mice. BMC Infectious Diseases, 17(1), 59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hastings, I. M. (2004). The origins of antimalarial drug resistance. Trends in Parasitology, 20(11), 512–518.

    Article  CAS  PubMed  Google Scholar 

  • Kimani, N. M., Backhaus, S., Matasyoh, J. C., Kaiser, M., Herrmann, F. C., Schmidt, T. J., et al. (2019). Preparation of sesquiterpene lactone-loaded PLA nanoparticles and evaluation of their antitrypanosomal activity. Molecules, 24(11), 2110.

    Article  CAS  PubMed Central  Google Scholar 

  • Kroubi, M., Daulouede, S., Karembe, H., Jallouli, Y., Howsam, M., Mossalayi, D., et al. (2010). Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, 21(50), 505102.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R., Ray, P. C., Datta, D., Bansal, G. P., Angov, E., & Kumar, N. J. V. (2015b). Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine, 33(39), 5064–5071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Sahoo, G. C., Pandey, K., Das, V., & Das, P. (2015a). Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Delivery, 22(3), 383–388.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Harwood, M., Girouard, D., Meyers, M. J., Campbell, M. A., Beamer, G., et al. (2017). The therapeutic efficacy of azithromycin and nitazoxanide in the acute pig model of Cryptosporidium hominis. PLoS One, 12(10), e0185906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lell, B., & Kremsner, P. G. (2002). Clindamycin as an antimalarial drug: Review of clinical trials. Antimicrobial Agents and Chemotherapy, 46(8), 2315–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuja, A., Kumar, S., Dilbaghi, N., Bhanjana, G., Chopra, M., Kaur, H., et al. (2014). Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine, 9(11), 1625–1634.

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in Microbiology, 3, 286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintern, J. D., Percival, C., Kamphuis, M. M., Chin, W. J., Caruso, F., & Johnston, A. P. (2013). Targeting dendritic cells: The role of specific receptors in the internalization of polymer capsules. Advanced Healthcare Materials, 2(7), 940–944.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9(4), 53.

    Article  PubMed Central  CAS  Google Scholar 

  • Moon, J. J., Suh, H., Polhemus, M. E., Ockenhouse, C. F., Yadava, A., & Irvine, D. J. (2012). Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One, 7(2), e31472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudshinge, S. R., Deore, A. B., Patil, S., & Bhalgat, C. M. (2011). Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceutical Journal, 19(3), 129–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olenick, J. G., & Hahn, F. E. (1972). Mode of action of primaquine: Preferential inhibition of protein biosynthesis in Bacillus megaterium. Antimicrobial Agents and Chemotherapy, 1(3), 259–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar, R., Chavan, S., & Menon, M. (2016). Development, characterization and evaluation of tinidazole nanosuspension for treatment of amoebiasis. Journal of Nanomedicine and Nanotechnology, 7(6), 1–4.

    Google Scholar 

  • Pinto-Martinez, A. K., Rodriguez-Durán, J., Serrano-Martin, X., Hernandez-Rodriguez, V., & Benaim, G. (2018). Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrobial Agents and Chemotherapy, 62(1), e01614–e01617.

    Article  PubMed  Google Scholar 

  • Qiu, L., Jing, N., & Jin, Y. (2008). Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. International Journal of Pharmaceutics, 361(1–2), 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Rahimi, M. T., Sarvi, S., Sharif, M., Abediankenari, S., Ahmadpour, E., Valadan, R., et al. (2017). Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the toxoplasma gondii RH strain in BALB/c mice. Parasitology Research, 116(2), 609–616.

    Article  PubMed  Google Scholar 

  • Rahman, K., Khan, S. U., Fahad, S., Chang, M. X., Abbas, A., Khan, W. U., et al. (2019). Nano-biotechnology: A new approach to treat and prevent malaria. International journal of nanomedicine. International Journal of Nanomedicine, 14, 1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai, M., Ingle, A. P., Paralikar, P., Gupta, I., Medici, S., & Santos, C. A. (2017). Recent advances in use of silver nanoparticles as antimalarial agents. International Journal of Pharmaceutics, 526(1–2), 254–270.

    Article  CAS  PubMed  Google Scholar 

  • Ramanujam, R., Sundaram, B., Janarthanan, G., Devendran, E., Venkadasalam, M., & Milton, M. J. (2018). Biodegradable polycaprolactone nanoparticles based drug delivery systems: A short review. Biosciences, Biotechnology Research Asia, 15(3), 679–685.

    Article  Google Scholar 

  • Roberts, L. J., Handman, E., & Foote, S. J. (2000). Science, medicine, and the future: Leishmaniasis. BMJ, 321(7264), 801–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roozbehani, M., Falak, R., Mohammadi, M., Hemphill, A., Razmjou, E., reza Meamar, A., et al. (2018). Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine, 36(41), 6124–6132.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, J.-F. (2010). Cryptosporidium and Giardia: Treatment options and prospects for new drugs. Experimental Parasitology, 124(1), 45–53.

    Article  PubMed  Google Scholar 

  • Saber, A. E. S., Abdelwahab, A. K., El Amir, A. M., Nassar, M. I., & Zohdi, H. F. (2017). Bee venom loaded chitosan nanoparticles as treatment for amoebiasis in mice. Journal of the Egyptian Society of Parasitology, 47(2), 443–458.

    Article  Google Scholar 

  • Santos, D. O., Coutinho, C. E., Madeira, M. F., Bottino, C. G., Vieira, R. T., Nascimento, S. B., et al. (2008). Leishmaniasis treatment—a challenge that remains: A review. Parasitology Research, 103(1), 1–10.

    Article  PubMed  Google Scholar 

  • Santos-MagalhĂŁes, N. S., & Mosqueira, V. C. F. (2010). Nanotechnology applied to the treatment of malaria. Advanced Drug Delivery Reviews, 62(4–5), 560–575.

    Article  PubMed  CAS  Google Scholar 

  • Scherphof, G. L., Velinova, M., Kamps, J., Donga, J., van der Want, H., Kuipers, F., et al. (1997). Modulation of pharmacokinetic behavior of liposomes. Advanced Drug Delivery Reviews, 24(2–3), 179–191.

    Article  CAS  Google Scholar 

  • Shirley, D.-A. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infectious Diseases, 5(7), ofy161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silveira, F., Lainson, R., De Castro Gomes, C., Laurenti, M., & Corbett, C. (2009). Immunopathogenic competences of Leishmania (V.) braziliensis and L.(L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunology, 31(8), 423–431.

    Article  CAS  PubMed  Google Scholar 

  • Skwarczynski, M., Zaman, M., Urbani, C. N., Lin, I. C., Jia, Z., Batzloff, M. R., et al. (2010). Polyacrylate dendrimer nanoparticles: A self-adjuvanting vaccine delivery system. Angewandte Chemie, 49(33), 5742–5745.

    Article  CAS  PubMed  Google Scholar 

  • Slater, A. F. (1993). Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum. Pharmacology & Therapeutics, 57(2–3), 203–235.

    Article  CAS  Google Scholar 

  • Smith, H. V., & Corcoran, G. D. (2004). New drugs and treatment for cryptosporidiosis. Current Opinion in Infectious Diseases, 17(6), 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Swami, B., Lavakusuiu, D., & Sitha Devi, C. (1977). Imidazole and metronidazole in the treatment of intestinal amoebiasis. Current Medical Research and Opinion, 5(2), 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Urbán, P., Estelrich, J., CortĂ©s, A., & FernĂ ndez-Busquets, X. A. (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. Journal of Controlled Release, 151(2), 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Van de Ven, H., Vermeersch, M., Matheeussen, A., Vandervoort, J., Weyenberg, W., Apers, S., et al. (2011). PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. International Journal of Pharmaceutics, 420(1), 122–132.

    Article  PubMed  CAS  Google Scholar 

  • Wong, W., Bai, X.-C., Sleebs, B. E., Triglia, T., Brown, A., Thompson, J. K., et al. (2017). Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2(6), 17031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaro, A. (2009). Mechanisms of sulfadoxine pyrimethamine resistance and health implication in Plasmodium falciparum malaria: A mini review. Annals of Tropical Medicine and Public Health, 2(1), 20.

    Google Scholar 

  • Zahra’a, A. A., Mustafa, T. A., Ardalan, N. M., & Idan, E. M. (2017). In vitro toxicity evaluation of silver nanoparticles on Entamoeba histolytica trophozoite. Baghdad Science Journal, 14(3), 509–515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, R., Sengupta, S. (2021). Application of Nanotherapeutics for Combating Human Protozoan Parasitic Infections. In: Singh, S. (eds) Emerging Trends in Nanomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-9920-0_7

Download citation

Publish with us

Policies and ethics