Skip to main content

Role of Ectomycorrhizal Fungi in Human Welfare

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

Anthropogenic and natural activities-based ecosystem disturbances lead to leftover degraded barren lands. Ectomycorrhizal (ECM) fungi play an important role in regulating the nutrient balance of the terrestrial ecosystem, assisting plant regeneration on disturbed lands by conferring improved tolerance against various biotic and abiotic stresses. There are several challenges and knowledge gaps in utilizing the ECM fungi for large-scale ecosystem restoration programs. For strengthening the successful utilization of ECM fungal applications in out-fields, this chapter has summarized the various applications, mechanisms, and considerable important parameters of ECM symbiosis in regenerating and improving host plant growth against diverse stress conditions such as drought stress, heavy metal stress, and forest fire, thus leading to the rehabilitation of degraded lands. Above all, the major challenge remains the production of large-scale ECM fungal inocula for restoration programs. This chapter has summarized the various ECM inoculation techniques, including their merits and demerits. This chapter also highlights the essential role of ECM fungi in nutrient dynamics of host plants with soil and ECM fungal application as biofertilizers in agriculture and commercial nurseries, thereby replacing harmful chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curebal I, Efe R, Soykan A, Sonmez S (2015) Impacts of anthropogenic factors on land degradation during the anthropocene in Turkey. J Environ Biol 36(1):51

    PubMed  Google Scholar 

  2. Khosla B, Reddy MS (2014) Mycorrhizal fungi in extreme environments and their impact on plant growth. Kavaka 42:123–130

    Google Scholar 

  3. Guala SD, Vega FA, Covelo EF (2010) The dynamics of heavy metals in plant–soil interactions. Ecol Model 221(8):1148–1152

    Article  CAS  Google Scholar 

  4. Long Z, Huang Y, Zhang W, Shi Z, Yu D, Chen Y et al (2021) Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ Monit Assess 193(1):1–12

    Article  Google Scholar 

  5. Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161

    Article  CAS  PubMed  Google Scholar 

  6. Zhang C, Wang X, Ashraf U, Qiu B, Ali S (2017) Transfer of lead (Pb) in the soil-plant-mealybug-ladybird beetle food chain, a comparison between two host plants. Ecotoxicol Environ Saf 143:289–295

    Article  CAS  PubMed  Google Scholar 

  7. Change IC (2014) Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1454. Energy Procedia 147

    Google Scholar 

  8. Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  9. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8:953

    Article  PubMed  PubMed Central  Google Scholar 

  10. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

    Article  CAS  PubMed  Google Scholar 

  11. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G et al (2017) Forest disturbances under climate change. Nat Clim Chang 7(6):395–402

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miyamoto Y, Danilov AV, Bryanin SV (2021) The dominance of Suillus species in ectomycorrhizal fungal communities on Larix gmelinii in a post-fire forest in the Russian Far East. Mycorrhiza 31(1):55–66

    Article  PubMed  Google Scholar 

  13. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122(1–2):51–71

    Article  Google Scholar 

  14. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  15. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27(3–4):83–99

    Article  Google Scholar 

  16. Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  17. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484):543–545

    Article  CAS  PubMed  Google Scholar 

  18. Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015) Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol 206(4):1274–1282

    Article  CAS  PubMed  Google Scholar 

  19. Gadgil PD, Gadgil RL (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata, New Zealand Forest Service

    Google Scholar 

  20. Jackson O, Quilliam RS, Stott A, Grant H, Subke JA (2019) Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil 440(1–2):473–490

    Article  CAS  Google Scholar 

  21. Kalucka IL, Jagodzinski AM (2016) Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review. Dendrobiology 76:91–104

    Article  Google Scholar 

  22. Sousa NR, Franco AR, Ramos MA, Oliveira RS, Castro PM (2011) Reforestation of burned stands: the effect of ectomycorrhizal fungi on Pinus pinaster establishment. Soil Biol Biochem 43(10):2115–2120

    Article  CAS  Google Scholar 

  23. Gagné A, Jany JL, Bousquet J, Khasa DP (2006) Ectomycorrhizal fungal communities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Can J For Res 36(7):1684–1694

    Article  Google Scholar 

  24. El-Bashiti TA, El-Kichaoui A, Ajwa AHA (2017) Evaluation the effect of ectomycorrhizal fungi on Prunus cerasifera x salicina (Rosaceae) growth compared with chemical and organic fertilizer. Sky J Agric Res 6:41–49

    Google Scholar 

  25. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169(2):345–354

    Article  PubMed  Google Scholar 

  26. Nara K (2006) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171(1):187–198

    Article  PubMed  Google Scholar 

  27. Colpaert JV, Wevers JH, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68(1):17–24

    Article  Google Scholar 

  28. Khullar S, Reddy MS (2019) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32(1):101–110

    Article  CAS  PubMed  Google Scholar 

  29. Prin Y, Ducousso M, Tassin J, Béna G, Jourand P, Dumontet V, et al (2012) Ectotrophic mycorrhizal symbioses are dominant in natural ultramafic forest ecosystems of New Caledonia

    Google Scholar 

  30. Aryal P, Meiners SJ, Carlsward BS (2020) Ectomycorrhizae determine chestnut seedling growth and drought response. Agrofor Syst:1–10

    Google Scholar 

  31. Smith SE, Read D (2008) Mycorrhizal symbiosis third edition introduction. Mycorrhizal Symbiosis:1–9

    Google Scholar 

  32. Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41(12):2357–2369

    Article  CAS  Google Scholar 

  33. Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Phosphorus: agriculture and the environment, vol 46. pp 87–121

    Google Scholar 

  34. Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357(1420):449–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hobbie EA, Horton TR (2007) Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytol 173:447–449

    Article  CAS  PubMed  Google Scholar 

  36. Hodge A (2017) Accessibility of inorganic and organic nutrients for mycorrhizas. In: Mycorrhizal mediation of soil. Elsevier, pp 129–148

    Google Scholar 

  37. Sousa NR, Franco AR, Oliveira RS, Castro PM (2012) Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J Environ Manag 95:S269–S274

    Article  CAS  Google Scholar 

  38. Melin E, Nilsson H (1957) Transport of C14-labelled photosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:166–186

    CAS  Google Scholar 

  39. Cairney JWG, Ashford AE, Allaway WG (1989) Distribution of photosynthetically fixed carbon within root systems of Eucalyptus pilularis plants ectomycorrhizal with Pisolithus tinctorius. New Phytol 112(4):495–500

    Article  CAS  PubMed  Google Scholar 

  40. Wu B, Nara K, Hogetsu T (2002) Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza 12(2):83–88

    Article  CAS  PubMed  Google Scholar 

  41. Smith SE, Read DJ, Last FT (1997) Mycorrhizal symbiosis. Ann Bot 80(5):701

    Google Scholar 

  42. Nehls U (2004) Carbohydrates and nitrogen: nutrients and signals in ectomycorrhizas. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 373–392

    Google Scholar 

  43. Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104(6):439–445

    Article  CAS  Google Scholar 

  44. Schaeffer C, Wallenda T, Guttenberger M, HAMPP, R. (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L.] karst.) seedlings. New Phytol 129(3):417–424

    Article  CAS  Google Scholar 

  45. Nehls U, Hampp R (2000) Carbon allocation in ectomycorrhizas. Physiol Mol Plant Pathol 57(3):95–100

    Article  CAS  Google Scholar 

  46. Fajardo López M, Dietz S, Grunze N, Bloschies J, Weiß M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytol 180(2):365–378

    Article  PubMed  Google Scholar 

  47. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59(5):1097–1108

    Article  CAS  PubMed  Google Scholar 

  48. Albarracín MV, Six J, Houlton BZ, Bledsoe CS (2013) A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173(4):1439–1450

    Article  PubMed  Google Scholar 

  49. Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, Anderson IC (2017) Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J 11(12):2666–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A (2014) Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24(8):645–650

    Article  CAS  PubMed  Google Scholar 

  51. Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124(4):561–582

    Article  CAS  PubMed  Google Scholar 

  52. Leinweber P, Kruse J, Baum C, Arcand M, Knight JD, Farrell R et al (2013) Advances in understanding organic nitrogen chemistry in soils using state-of-the-art analytical techniques. Adv Agron 119:83–151

    Article  CAS  Google Scholar 

  53. Simpson AJ, Song G, Smith E, Lam B, Novotny EH, Hayes MH (2007) Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ Sci Technol 41(3):876–883

    Article  CAS  PubMed  Google Scholar 

  54. Nicolás C, Martin-Bertelsen T, Floudas D, Bentzer J, Smits M, Johansson T et al (2019) The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J 13(4):977–988

    Article  PubMed  Google Scholar 

  55. Plett KL, Singan VR, Wang M, Ng V, Grigoriev IV, Martin F et al (2020) Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer. New Phytol 226(1):221–231

    Article  CAS  PubMed  Google Scholar 

  56. LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172(1):257–269

    Article  PubMed  Google Scholar 

  57. Zhu H, Guo DC, Dancik BP (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56(4):837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24(7):741–747

    Article  CAS  Google Scholar 

  59. Martin F, Selosse MA (2008) The Laccaria genome: a symbiont blueprint decoded. New Phytol:296–310

    Google Scholar 

  60. Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A (2013) The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. New Phytol 200(3):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rineau F, Stas J, Nguyen NH, Kuyper TW, Carleer R, Vangronsveld J et al (2016) Ectomycorrhizal fungal protein degradation ability predicted by soil organic nitrogen availability. Appl Environ Microbiol 82(5):1391–1400

    Article  CAS  PubMed Central  Google Scholar 

  62. Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J et al (2018) Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139(2):103–122

    Article  CAS  Google Scholar 

  63. Mikutta R, Turner S, Schippers A, Gentsch N, Meyer-Stüve S, Condron LM et al (2019) Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  64. Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5(6):588–595

    Article  CAS  Google Scholar 

  65. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77(1):25–56

    Article  CAS  Google Scholar 

  66. Wang T, Tian Z, Tunlid A, Persson P (2020) Nitrogen acquisition from mineral-associated proteins by an ectomycorrhizal fungus. New Phytol 228(2):697–711

    Article  CAS  PubMed  Google Scholar 

  67. Schmalenberger A, Duran AL, Bray AW, Bridge J, Bonneville S, Benning LG et al (2015) Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Sci Rep 5(1):1–14

    Article  Google Scholar 

  68. Bills GF, Gloer JB (2016) Biologically active secondary metabolites from the fungi. Microbiol Spectr 4(6):4–6

    Article  Google Scholar 

  69. Feller BE, Kellis JT Jr, Cascão-Pereira LG, Robertson CR, Frank CW (2011) Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge. Langmuir 27(1):250–263

    Article  CAS  PubMed  Google Scholar 

  70. Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016) Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto-and arbuscular mycorrhizal trees. New Phytol 209(3):1184–1195

    Article  PubMed  Google Scholar 

  71. Yang X, Post WM (2011) Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8(10):2907–2916

    Article  CAS  Google Scholar 

  72. Liu X, Burslem DF, Taylor JD, Taylor AF, Khoo E, Majalap-Lee N et al (2018) Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol Lett 21(5):713–723

    Article  PubMed  Google Scholar 

  73. Ruess RW, Swanson MM, Kielland K, McFarland JW, Olson KD, Taylor DL (2019) Phosphorus mobilizing enzymes of alnus-associated ectomycorrhizal fungi in an Alaskan boreal floodplain. Forests 10(7):554

    Article  Google Scholar 

  74. Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27(9):1153–1159

    Article  CAS  Google Scholar 

  75. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30(9):1129–1139

    Article  CAS  PubMed  Google Scholar 

  76. Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199(1):41–51

    Article  CAS  PubMed  Google Scholar 

  77. Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10(7):1166–1181

    Article  CAS  Google Scholar 

  78. Colpaert JV, Van Laere A, Van Tichelen KK, Van Assche JA (1997) The use of inositol hexaphosphate as a phosphorus source by mycorrhizal and non-mycorrhizal Scots Pine (Pinus sylvestris). Funct Ecol 11(4):407–415

    Article  Google Scholar 

  79. Kroehler CJ, Linkins AE (1988) The root surface phosphatases of Eriophorum vaginatum: effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil 105(1):3–10

    Article  CAS  Google Scholar 

  80. Müller K, Kubsch N, Marhan S, Mayer-Gruner P, Nassal P, Schneider D et al (2020) Saprotrophic and ectomycorrhizal fungi contribute differentially to organic P mobilization in beech-dominated forest ecosystems. Front For Glob Change 3:47

    Article  Google Scholar 

  81. Becquer A, Garcia K, Plassard C (2018) HcPT1. 2 participates in Pi acquisition in Hebeloma cylindrosporum external hyphae of ectomycorrhizas under high and low phosphate conditions. Plant Signal Behav 13(10):e1525997

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garcia K, Haider MZ, Delteil A, Corratgé-Faillie C, Conéjero G, Tatry MV et al (2013) Promoter-dependent expression of the fungal transporter HcPT1. 1 under pi shortage and its spatial localization in ectomycorrhiza. Fungal Genet Biol 58:53–61

    Article  PubMed  Google Scholar 

  83. Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L et al (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23(8):597–625

    Article  CAS  PubMed  Google Scholar 

  84. Zheng R, Wang J, Liu M, Duan G, Gao X, Bai S, Han Y (2016) Molecular cloning and functional analysis of two phosphate transporter genes from Rhizopogon luteolus and Leucocortinarius bulbiger, two ectomycorrhizal fungi of Pinus tabulaeformis. Mycorrhiza 26(7):633–644

    Article  CAS  PubMed  Google Scholar 

  85. Ali MA, Louche J, Legname E, Duchemin M, Plassard C (2009) Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol 29(12):1587–1597

    Article  CAS  PubMed  Google Scholar 

  86. Alvarez M, Huygens D, Diaz LM, Villanueva CA, Heyser W, Boeckx P (2012) The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake. Plant Cell Environ 35(1):126–135

    Article  CAS  PubMed  Google Scholar 

  87. Gray L, Kernaghan G (2020) Fungal succession during the decomposition of ectomycorrhizal fine roots. Microb Ecol 79(2):271–284

    Article  CAS  PubMed  Google Scholar 

  88. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84(9):2302–2312

    Article  Google Scholar 

  89. Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210(4):1369–1381

    Article  PubMed  Google Scholar 

  90. Brabcová V, Štursová M, Baldrian P (2018) Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol Biochem 118:187–198

    Article  Google Scholar 

  91. Kaneda S, Kaneko N (2004) The feeding preference of a collembolan (Folsomia candida Willem) on ectomycorrhiza (Pisolithus tinctorius (Pers.)) varies with mycelial growth condition and vitality. Appl Soil Ecol 27(1):1–5

    Article  Google Scholar 

  92. Thimm T, Hoffmann A, Borkott H, Munch JC, Tebbe CC (1998) The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl Environ Microbiol 64(7):2660–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Butler MJ, Day AW (1998) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int J Plant Sci 159(6):989–995

    Article  CAS  Google Scholar 

  94. Fernandez CW, Koide RT (2012) The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology 93(1):24–28

    Article  PubMed  Google Scholar 

  95. Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40(9):2068–2075

    Article  Google Scholar 

  96. Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B et al (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382(1–2):203–218

    Article  CAS  Google Scholar 

  97. Mohan V, Nivea R, Menon S (2015) Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi. JAIR 3(9):408–412

    Google Scholar 

  98. Costa LSD, Grazziotti PH, Silva AC, Fonseca AJ, Gomes ÂLF, Grazziotti DCFS, Rossi MJ (2019) Alginate gel entrapped ectomycorrhizal inoculum promoted growth of cuttings of Eucalyptus clones under nursery conditions. Can J For Res 48(8):978–985

    Article  Google Scholar 

  99. Yang N, Zavišić A, Pena R, Polle A (2016) Phenology, photosynthesis, and phosphorus in European beech (Fagus sylvatica L.) in two forest soils with contrasting P contents. J Plant Nutr Soil Sci 179(2):151–158

    Article  CAS  Google Scholar 

  100. Zavišić A, Yang N, Marhan S, Kandeler E, Polle A (2018) Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, beech P uptake efficiency, and photosynthesis. Front Plant Sci 9:463

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gerasko T, Pyda S (2021) Effect of inoculation with symbiotic endo-and ectomycorrhizal fungi on content of basic mineral nutrients in sweet cherry leaves

    Google Scholar 

  102. Yousefshahi B, Bazgir M (2017) Inoculation process for brants oak (Quercus brantii Lindl.) seedling with ectomycorrhizal fungi in hydroponic culture condition. Iran J For Poplar Res 25(4):675–686

    Google Scholar 

  103. Verma B, Reddy MS (2020) Biochar augmentation improves ectomycorrhizal colonisation, plant growth and soil fertility. Soil Res 58(7):673–682

    Article  CAS  Google Scholar 

  104. Frank HE, Garcia K (2021) Benefits provided by four ectomycorrhizal fungi to Pinus taeda under different external potassium availabilities. Mycorrhiza 31(6):755–766

    Article  PubMed  Google Scholar 

  105. Zhang L, Zhou G, Liu J, Li L, Wang S (2012) Using ectomycorrhizal inocula to increase slash pine (Pinus elliottii) growth in Southern China. Afr J Microbiol Res 6(41):6936–6940

    Article  Google Scholar 

  106. Gandini AMM, Grazziotti PH, Rossi MJ, Grazziotti DCFS, Gandini EMM, Silva EDB, Ragonezi C (2015) Growth and nutrition of eucalypt rooted cuttings promoted by ectomycorrhizal fungi in commercial nurseries. Rev Bras Ciênc Solo 39:1554–1565

    Article  CAS  Google Scholar 

  107. Oliveira RS, Franco AR, Castro PM (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol Eng 43:95–103

    Article  Google Scholar 

  108. Sebastiana M, Pereira VT, Alcântara A, Pais MS, Silva AB (2013) Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L.(cork oak) nursery and field seedlings. New For 44(6):937–949

    Article  Google Scholar 

  109. Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90

    Article  PubMed  Google Scholar 

  110. Yin D, Qi J, Deng J, Deng X (2017) Effects of ectomycorrhizal cooperating with exogenous calcium on Pinus sylvestris var. mongolica growth. China Environ Sci 37(6):2295–2304

    CAS  Google Scholar 

  111. Bzdyk RM, Olchowik J, Studnicki M, Oszako T, Sikora K, Szmidla H, Hilszczańska D (2018) The impact of effective microorganisms (EM) and organic and mineral fertilizers on the growth and mycorrhizal colonization of Fagus sylvatica and Quercus robur seedlings in a bare-root nursery experiment. Forests 9(10):597

    Article  Google Scholar 

  112. Wang L, Katzensteiner K, Schume H, Van Loo M, Godbold DL (2016) Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Ann For Sci 73(3):691–702

    Article  Google Scholar 

  113. Rudawska M, Leski T (2021) Ectomycorrhizal fungal assemblages of nursery-grown scots pine are influenced by age of the seedlings. Forests 12(2):134

    Article  Google Scholar 

  114. Trocha LK, Rudawska M, Leski T, Dabert M (2006) Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions. Microb Ecol 52(3):418–425

    Article  CAS  PubMed  Google Scholar 

  115. Clausing S, Likulunga LE, Janz D, Feng HY, Schneider D, Daniel R et al (2021) Impact of nitrogen and phosphorus addition on resident soil and root mycobiomes in beech forests. Biol Fertil Soils 57(8):1031–1052

    Article  CAS  Google Scholar 

  116. Bahr A, Ellström M, Bergh J, Wallander H (2015) Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 390(1):323–335

    Article  CAS  Google Scholar 

  117. Klavina D, Pennanen T, Gaitnieks T, Velmala S, Lazdins A, Lazdina D, Menkis A (2016) The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza 26(2):153–160

    Article  PubMed  Google Scholar 

  118. Rudawska M, Leski T, Aučina A, Karliński L, Skridaila A, Ryliškis D (2017) Forest litter amendment during nursery stage influence field performance and ectomycorrhizal community of Scots pine (Pinus sylvestris L.) seedlings outplanted on four different sites. For Ecol Manag 395:104–114

    Article  Google Scholar 

  119. Augusto L, Bakker MR, Meredieu C (2008) Wood ash applications to temperate forest ecosystems—potential benefits and drawbacks. Plant Soil 306(1):181–198

    Article  CAS  Google Scholar 

  120. Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. In: Nutrient uptake and cycling in forest ecosystems. Springer, Dordrecht, pp 205–214

    Google Scholar 

  121. Berdén M, Nilsson SI, Nyman P (1997) Ion leaching before and after clear-cutting in a Norway spruce stand—effects of long-term application of ammonium nitrate and superphosphate. Water Air Soil Pollut 93(1):1–26

    Article  Google Scholar 

  122. Akselsson C, Belyazid S, Hellsten S, Klarqvist M, Pihl-Karlsson G, Karlsson PE, Lundin L (2010) Assessing the risk of N leaching from forest soils across a steep N deposition gradient in Sweden. Environ Pollut 158(12):3588–3595

    Article  CAS  PubMed  Google Scholar 

  123. Högberg MN, Skyllberg U, Högberg P, Knicker H (2020) Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests? Soil Biol Biochem 140:107635

    Article  Google Scholar 

  124. Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F (1998) Xerocomus badius–Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7(5):267–275

    Article  CAS  PubMed  Google Scholar 

  125. Iwański M, Rudawska M, Leski T (2006) Mycorrhizal associations of nursery grown Scots pine (Pinus sylvestris L.) seedlings in Poland. Ann For Sci 63(7):715–723

    Article  Google Scholar 

  126. Leski T, Rudawska M, Aučina A (2008) The ectomycorrhizal status of European larch (Larix decidua Mill.) seedlings from bare-root forest nurseries. For Ecol Manag 256(12):2136–2144

    Article  Google Scholar 

  127. Castrillón M, León JD, Carvajal D, Osorio NW (2015) Effectiveness of single and combined ectomycorrhizal inocula on three species of Pinus at nursery. Commun Soil Sci Plant Anal 46(2):169–179

    Article  Google Scholar 

  128. García FG, Valdés RC, Sanchez Peña S, González Morales S, Mendoza Villarreal R (2019) Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South For 81(1):23–30

    Article  Google Scholar 

  129. Reddy MS, Natarajan K (1997) Coinoculation efficacy of ectomycorrhizal fungi on Pinus patula seedlings in a nursery. Mycorrhiza 7(3):133–138

    Article  Google Scholar 

  130. Lofgren L, Nguyen NH, Kennedy PG (2018) Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations? New Phytol 220(4):1273–1284

    Article  PubMed  Google Scholar 

  131. Murat C, Zampieri E, Vizzini A, Bonfante P (2008) Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol 178(4):699–702

    Article  PubMed  Google Scholar 

  132. Rossi MJ, Furigo A Jr, Oliveira VL (2007) Inoculant production of ectomycorrhizal fungi by solid and submerged fermentations. Food Technol Biotechnol 45(3):277–286

    Google Scholar 

  133. Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I et al (2017) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Article  Google Scholar 

  134. Ullah A, Mushtaq H, Fahad S, Shah A, Chaudhary HJ (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology 86(1):119–127

    Article  CAS  Google Scholar 

  135. Vayssières A, Pěnčík A, Felten J, Kohler A, Ljung K, Martin F, Legué V (2015) Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiol 169(1):890–902

    Article  PubMed  PubMed Central  Google Scholar 

  136. García de Jalón L, Limousin JM, Richard F, Gessler A, Peter M, Hättenschwiler S, Milcu A (2020) Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. PLoS One 15(6):e0229807

    Article  PubMed  PubMed Central  Google Scholar 

  137. Calvo-Polanco M, Armada E, Zamarreño AM, García-Mina JM, Aroca R (2019) Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. J Exp Bot 70(21):6437–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhu C, Schraut D, Hartung W, Schäffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56(421):2971–2981

    Article  CAS  PubMed  Google Scholar 

  139. Ruiz-Lozano JM, del Mar AM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70(5):565–579

    Article  CAS  PubMed  Google Scholar 

  140. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6(2):291–297

    Article  Google Scholar 

  141. Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136(1):2438–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8(7):1181–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115(2):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yin D, Deng X, Song R (2016) Synergistic effects between Suillus luteus and Trichoderma virens on growth of Korean spruce seedlings and drought resistance of Scotch pine seedlings. J For Res 27(1):193–201

    Article  CAS  Google Scholar 

  145. Wang J, Zhang H, Gao J, Zhang Y, Liu Y, Tang M (2021) Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biol 21(1):1–13

    Google Scholar 

  146. Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136(4):426–436

    Article  CAS  PubMed  Google Scholar 

  147. Yin D, Wang H, Qi J (2021) The enhancement effect of calcium ions on ectomycorrhizal fungi-mediated drought resistance in Pinus sylvestris var. mongolica. J Plant Growth Regul 40(4):1389–1399

    Article  CAS  Google Scholar 

  148. Li Y, Zhang T, Zhou Y, Zou X, Yin Y, Li H et al (2021) Ectomycorrhizal symbioses increase soil calcium availability and water use efficiency of Quercus acutissima seedlings under drought stress. Eur J For Res 140:1039–1048

    Article  CAS  Google Scholar 

  149. Sebastiana M, Duarte B, Monteiro F, Malhó R, Caçador I, Matos AR (2019) The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol Biochem 144:157–165

    Article  CAS  PubMed  Google Scholar 

  150. Alberdi M, Alvarez M, Valenzuela E, Godoy R, Olivares E, Barrientos M (2007) Response to water deficit of Nothofagus dombeyi plants inoculated with a specific (Descolea Antarctica sing) and non-specific (Pisolithus tinctorius (Pers.) Coker & Couch) ectomycorrhizal fungi. Rev Chil Hist Nat 80(4):479–491

    Article  Google Scholar 

  151. Luo YY (1997) Oxidation and dissolution of lead in chlorinated drinking water. Adv Environ Res 1:84–97

    Google Scholar 

  152. Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Techn Environ Policy 10(1):89–95

    Article  CAS  Google Scholar 

  153. Dong B, Zhang R, Gan Y, Cai L, Freidenreich A, Wang K et al (2019) Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci Total Environ 651:3127–3138

    Article  CAS  PubMed  Google Scholar 

  154. Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141(1):77–85

    Article  CAS  PubMed  Google Scholar 

  155. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  156. Odum HT (ed) (2016) Heavy metals in the environment: using wetlands for their removal. CRC Press

    Google Scholar 

  157. Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16(8):553–558

    Article  CAS  PubMed  Google Scholar 

  158. Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5(7):e11757

    Article  PubMed  PubMed Central  Google Scholar 

  159. Moser AM, Frank JL, D’Allura JA, Southworth D (2009) Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils. Plant Soil 315(1):185–194

    Article  CAS  Google Scholar 

  160. Gonçalves SC, Martins-Loução MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19(4):221–230

    Article  PubMed  Google Scholar 

  161. Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R et al (2013) Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5(9):1225–1233

    Article  CAS  PubMed  Google Scholar 

  162. Ray P, Adholeya A (2009) Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro. Biometals 22(2):275

    Article  CAS  PubMed  Google Scholar 

  163. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    Article  CAS  PubMed  Google Scholar 

  164. Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109(2):107–116

    Article  CAS  Google Scholar 

  165. Majorel C, Hannibal L, Ducousso M, Lebrun M, Jourand P (2014) Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorrhizal Pisolithus albus isolated from ultramafic soil. Environ Microbiol Rep 6(5):510–518

    Article  CAS  PubMed  Google Scholar 

  166. Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79(17):4813–4814

    Article  CAS  Google Scholar 

  167. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    Article  CAS  PubMed  Google Scholar 

  168. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582

    Article  PubMed  Google Scholar 

  169. Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng CC (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52(6):585–592

    Article  CAS  Google Scholar 

  170. Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160(10):2235–2242

    Article  CAS  PubMed  Google Scholar 

  171. Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J (2017) A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 19(7):2577–2587

    Article  CAS  PubMed  Google Scholar 

  172. Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R, Fraissinet-Tachet L (2016) Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ Microbiol 18(8):2446–2454

    Article  CAS  PubMed  Google Scholar 

  173. Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 120(3):358–369

    Article  PubMed  Google Scholar 

  174. Pócsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76

    Article  PubMed  Google Scholar 

  175. Hematy K, Lim M, Cherk C, Bednarek P, Piślewska-Bednarek M, Sanchez-Rodriguez C et al (2019) Arabidopsis phytochelatin synthase 1, but not phytochelatin synthesis, functions in extracellular defense against multiple fungal pathogens. BioRxiv 568113

    Google Scholar 

  176. Dučić T, Parladé J, Polle A (2008) The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Mycorrhiza 18(5):227–239

    Article  PubMed  PubMed Central  Google Scholar 

  177. Langer I, Santner J, Krpata D, Fitz WJ, Wenzel WW, Schweiger PF (2012) Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration. Plant Soil 355(1):283–297

    Article  CAS  Google Scholar 

  178. Hachani C, Lamhamedi MS, Cameselle C, Gouveia S, Zine El Abidine A, Khasa DP, Béjaoui Z (2020) Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa. Microorganisms 8(12):2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tang Y, Shi L, Zhong K, Shen Z, Chen Y (2019) Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 215:115–123

    Article  CAS  PubMed  Google Scholar 

  180. Wen Z, Shi L, Tang Y, Shen Z, Xia Y, Chen Y (2017) Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. Int J Phytoremediation 19(4):387–394

    Article  CAS  PubMed  Google Scholar 

  181. Ngugi MR, Fechner N, Neldner VJ, Dennis PG (2020) Successional dynamics of soil fungal diversity along a restoration chronosequence post-coal mining. Restor Ecol 28(3):543–552

    Article  Google Scholar 

  182. Neldner VJ, Ngugi MR (2017) Establishment of woody species across 26 years of revegetation on a Queensland coal mine. Ecol Manage Restor 18(1):75–78

    Article  Google Scholar 

  183. Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17(4):279–290

    Article  CAS  PubMed  Google Scholar 

  184. Pressler Y, Moore JC, Cotrufo MF (2019) Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128(3):309–327

    Article  Google Scholar 

  185. Yang T, Tedersoo L, Lin X, Fitzpatrick MC, Jia Y, Liu X et al (2020) Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. New Phytol 227(2):572–587

    Article  CAS  PubMed  Google Scholar 

  186. Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fennica 36(1):69–80

    Article  Google Scholar 

  187. Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88(6):1051–1062

    Article  Google Scholar 

  188. Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85(1):91–118

    Article  CAS  Google Scholar 

  189. Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J 10(5):1228–1239

    Article  PubMed  Google Scholar 

  190. Burke DJ, Smemo KA, Hewins CR (2014) Ectomycorrhizal fungi isolated from old-growth northern hardwood forest display variability in extracellular enzyme activity in the presence of plant litter. Soil Biol Biochem 68:219–222

    Article  CAS  Google Scholar 

  191. Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15(4):235–245

    Article  PubMed  Google Scholar 

  192. Mosca E, Montecchio L, Scattolin L, Garbaye J (2007) Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol Biochem 39(11):2897–2904

    Article  CAS  Google Scholar 

  193. Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143(2):409–418

    Article  Google Scholar 

  194. Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8(11):1837–1850

    Article  CAS  PubMed  Google Scholar 

  195. Conjeaud C, Scheromm P, Mousain D (1996) Effects of phosphorus and ectomycorrhiza on maritime pine seedlings (Pinus pinaster). New Phytol 133(2):345–351

    Article  CAS  PubMed  Google Scholar 

  196. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167(1):219–228

    Article  PubMed  Google Scholar 

  197. Pulido-Chavez MF, Alvarado EC, DeLuca TH, Edmonds RL, Glassman SI (2021) High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For Ecol Manag 485:118923

    Article  Google Scholar 

  198. Sun H, Santalahti M, Pumpanen J, Köster K, Berninger F, Raffaello T et al (2015) Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl Environ Microbiol 81(22):7869–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Franco AR, Sousa NR, Ramos MA, Oliveira RS, Castro PM (2014) Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a Post-fire plantation in Northern Portugal. Microb Ecol 68(4):761–772

    Article  PubMed  Google Scholar 

  200. Repáč I (2011) Ectomycorrhizal inoculum and inoculation techniques. In: Diversity and biotechnology of ectomycorrhizae. Springer, Berlin, pp 43–63

    Google Scholar 

  201. Rudawska M, Leski T, Trocha LK, Gornowicz R (2006) Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. For Ecol Manage 236(2–3):375–384

    Article  Google Scholar 

  202. Taniguchi T, Yuzawa T, HuiPing M, Yamamoto F, Yamanaka N (2021) Plantation soil inoculation combined with straw checkerboard barriers enhances ectomycorrhizal colonization and subsequent growth of nursery grown Pinus tabulaeformis seedlings in a dryland. Ecol Eng 163:106191

    Article  Google Scholar 

  203. Wubs EJ, Van der Putten WH, Bosch M, Bezemer TM (2016) Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants 2(8):1–5

    Article  Google Scholar 

  204. Restrepo-Llano M, Osorio NW, León JD (2014) Assessment of the effectiveness of ectomycorrhizal inocula to promote growth and root ectomycorrhizal colonization in Pinus patula seedlings using the most probable number technique. Appl Environ Soil Sci 2:1–6

    Article  Google Scholar 

  205. Restrepo-Llano MF, Osorio-Vega NW, León-Peláez JD (2018) Plant growth response of Pinus patula and P maximinoi seedlings at nursery to three types of ectomycorrhizal inocula. Appl Environ Soil Sci 2018

    Google Scholar 

  206. Chen YL, Kang LH, Dell B (2006) Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in South China: comparison of field soil and potting mix. For Ecol Manag 222(1–3):439–449

    Article  Google Scholar 

  207. Castellano MA, Molina R (1989) The container tree nursery manual-volume 5: the biological component: nursery pests and mycorrhizae. US Department of Agriculture Forest Service. Agriculture Handbook 674

    Google Scholar 

  208. Kipfer T, Wohlgemuth T, van der Heijden MG, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single-and multi-species inoculation with ectomycorrhizal fungi. PLoS One 7(4):e35275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Moreira FDS, Siqueira JO (2006) Microbiologia e bioquımica do solo. Ufla, Lavras

    Google Scholar 

  210. Marx DH, Ruehle JL, Cordell CE (1991) 17 methods for studying nursery and field response of trees to specific ectomycorrhiza. Methods Microbiol 23:383–411

    Article  Google Scholar 

  211. Cline ML, Patrick Reid CP (1982) Seed source and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. For Sci 28(2):237–250

    Google Scholar 

  212. Gange AC, Gane DR, Chen Y, Gong M (2005) Dual colonization of Eucalyptus urophylla ST Blake by arbuscular and ectomycorrhizal fungi affects levels of insect herbivore attack. Agric For Entomol 7(3):253–263

    Article  Google Scholar 

  213. Alves J, Souza OD, Podlech P, Giachini A, de Oliveira VL (2001) Efeito de inoculante ectomicorrizico por fermentacao semi-solida sobre o crescimento de Eucalyptus dunnii Maiden

    Google Scholar 

  214. Vuorinen I, Hamberg L, Müller M, Seiskari P, Pennanen T (2015) Development of growth media for solid substrate propagation of ectomycorrhizal fungi for inoculation of Norway spruce (Picea abies) seedlings. Mycorrhiza 25(4):311–324

    Article  CAS  PubMed  Google Scholar 

  215. Repáč I (2007) Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum in peat and bark compost substrates. Forestry 80(5):517–530

    Article  Google Scholar 

  216. Baar J, Elferink MO (1996) Ectomycorrhizal development on Scots pine (Pinus sylvestris L.) seedlings in different soils. Plant Soil 179(2):287–292

    Article  CAS  Google Scholar 

  217. Rincón A, Parladé J, Pera J (2005) Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerised Pinus pinea L. seedlings produced in a commercial nursery. Ann For Sci 62(8):817–822

    Article  Google Scholar 

  218. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585

    Article  Google Scholar 

  219. da Costa ECS, dos Santos LL, Grazziotti PH, da Costa LS, Silva CS, de Vasconcelos Ramires R, de Abreu CM (2020) Inoculant production of Pisolithus sp. in submerged culture under agitation. Afr J Agric Res 16(5):746–751

    Google Scholar 

  220. Charya LS, Garg S (2019) Advances in methods and practices of ectomycorrhizal research. In: Advances in biological science research. Academic Press, pp 303–325

    Google Scholar 

  221. Araújo GC, Sousa NR, Ramos MA, Vega AL, Castro PM (2018) Performance of Quercus suber L. at nursery stage—application of two bio-inoculants under two distinct environments. Ann For Sci 75(1):1–12

    Article  Google Scholar 

  222. Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR (2016) Towards management of invasive ectomycorrhizal fungi. Biol Invasions 18(12):3383–3395

    Article  Google Scholar 

  223. Weidlich EW, Flórido FG, Sorrini TB, Brancalion PH (2020) Controlling invasive plant species in ecological restoration: a global review. J Appl Ecol 57(9):1806–1817

    Article  Google Scholar 

  224. Sugiyama Y, Murata M, Kanetani S, Nara K (2019) Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ. Mycorrhiza 29(3):195–205

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Thapar Institute of Engineering and Technology, Patiala, India, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sudhakara Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chot, E., Reddy, M.S. (2023). Role of Ectomycorrhizal Fungi in Human Welfare. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_2

Download citation

Publish with us

Policies and ethics