Skip to main content

Advertisement

Log in

Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ectomycorrhizal (ECM) communities were assessed on a 720 m2 plot along a chronosequence of red oak (Quercus rubra) stands on a forest reclamation site with disturbed soil in the lignite mining area of Lower Lusatia (Brandenburg, Germany). Adjacent to the mining area, a red oak reference stand with undisturbed soil was investigated reflecting mycorrhiza diversity of the intact landscape. Aboveground, sporocarp surveys were carried out during the fruiting season in a 2-week interval in the years 2002 and 2003. Belowground, ECM morphotypes were identified by comparing sequences of the internal transcribed spacer regions from nuclear rDNA with sequences from the GenBank database. Fifteen ECM fungal species were identified as sporocarps and 61 belowground as determined by morphological/anatomical and molecular analysis of their ectomycorrhizas. The number of ECM morphotypes increased with stand age along the chronosequence. However, the number of morphotypes was lower in stands with disturbed soil than with undisturbed soil. All stands showed site-specific ECM communities with low similarity between the chronosequence stands. The dominant ECM species in nearly all stands was Cenococcum geophilum, which reached an abundance approaching 80% in the 21-year-old chronosequence stand. Colonization rate of red oak was high (>95%) at all stands besides the youngest chronosequence stand where colonization rate was only 15%. This supports our idea that artificial inoculation with site-adapted mycorrhizal fungi would enhance colonization rate of red oak and thus plant growth and survival in the first years after outplanting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (1987–2006) Colour Atlas of Ectomycorrhizae. Eichhorn Verlag, Schwäbisch Gemünd

    Google Scholar 

  • Altschul SF, Madden MF, Schäffer AA, Zhang J, Zhang Z, Miller W, Web DJ (1997) Gapped BLAST and PSI BLAST: a new generation in protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Bâ AM, Garbaye J, Dexheimer J (1991) Influence of fungal propagules during the early stage of time sequence of ectomycorrhizal colonisation on Afzelia africana seedlings. Can J Bot 69:2442–2447

    Article  Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416

    Article  PubMed  Google Scholar 

  • Chiatante D, Di Iorio A, Maiuro L, Scippa SG (1999) Effect of water stress on root meristems in woody and herbaceous plants during the first stage of development. Plant Soil 217:159–172

    Article  Google Scholar 

  • Dahlberg A (1991) Ectomycorrhiza in coniferous forest: structure and dynamics of populations and communities. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden

  • Dahlberg A, Jonsson L, Nylund J-E (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Danielson RM (1991) Temporal changes and effects of amendments on the occurrence of sheating (ecto-)mycorrhizae of conifers growing in oil sands tailing and coal spoil. Agric Ecosyst Environ 35:261–281

    Article  Google Scholar 

  • Danielson RM, Visser S (1989) Host response to inoculation and behaviour of introduced indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can J For Res 19:1412–1421

    Article  Google Scholar 

  • Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant fungal process. Chapman and Hall, London, pp 249–300

    Google Scholar 

  • Egli S (1980) Vertikale Verteilung der Mykorrhiza in Eichenbeständen – Zusammenhang mit der Bewurzelung und einzelnen edaphischen Merkmalen. Diploma thesis, ETH Zürich, Switzerland

  • Fox FM (1986) Ultrastructure and infectivity of sclerotium-like bodies of the ectomycorrhizal fungus Hebeloma sachariolens,on birch (Betula spp.). Trans Br Mycol Soc 87:359–369

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Gast M, Schaaf W, Scherzer J, Wilden R, Schneider BU, Hüttl RF (2001) Element budgets of pine stands on lignite and pyrite containing mine soils. J Geochem Explor 73:63–74

    Article  CAS  Google Scholar 

  • Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79:1562–1572

    Article  Google Scholar 

  • Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1–13

    Article  Google Scholar 

  • Groer KH (1998) Das Lausitzer Braunkohle Revier. Der Naturraum und seine Gestaltung. In: Pflug W (ed) Braunkohletagebau und Rekultivierung. Springer, Berlin Heidelberg New York, pp 462–474

    Google Scholar 

  • Gryta H, Debaud JC, Effosse A, Gay G, Marmeisse R (1997) Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosystems. Mol Ecol 6:353–364

    Article  Google Scholar 

  • Häge K (1996) Recultivation in the Lusatian mining region—targets and prospects. Water Air Soil Pollut 91:43–57

    Article  Google Scholar 

  • Hangen E, Gerke HH, Schaaf W, Hüttl RF (2004) Flow path visualization in a lignite mine soil using iodine-starch staining. Geoderma 120:121–135

    Article  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506

    Article  Google Scholar 

  • Herrmann S, Ritter T, Kottke I, Oberwinkler F (1992) Steigerung der Leistungsfähigkeit von Forstpflanzen (Fagus silvatica L. und Quercus robur L.) durch kontrollierte Mykorrhizierung. Allg Forst- Jagdztg 163:72–79

    Google Scholar 

  • Hohensee C (2005) Molekularbiologische Identifizierung und Beobachtungen zur Funktion von Mykorrhizapilzen auf Rekultivierungsstandorten der Niederlausitzer Bergbaufolgelandschaft. PhD thesis, Brandenburg University of Cottbus, Cottbus, Germany

  • Horton TR, Molina R, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15:393–403

    Article  CAS  PubMed  Google Scholar 

  • Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88:322–329

    Article  PubMed  Google Scholar 

  • Ingleby K, Munro RC, Noor M, Mason PA, Clearwater MJ (1998) Ectomycorrhizal populations and growth of Shorea parvifolia (Dipterocarpaceae) seedlings regenerating under three different forest canopies following logging. For Ecol Manag 111:171–179

    Article  Google Scholar 

  • Jones MD, Durall DM, Cairney WG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49

    Article  PubMed  Google Scholar 

  • Katzur J, Haubold-Rosar M (1996) Amelioration and reforestation of sulfurous mine soils in Lusatia (eastern Germany). Water Air Soil Pollut 91:17–32

    Article  CAS  Google Scholar 

  • Keizer PJ, Arnolds E (1994) Succession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, The Netherlands. Mycorrhiza 4:147–159

    Article  Google Scholar 

  • Knoche D, Embacher A, Katzur J (2002) Water and element fluxes of red oak ecosystems during stand development on post-mining sites (Lusatian Lignite District). Water Air Soil Pollut 141:219–231

    Article  CAS  Google Scholar 

  • Kottke I (2002) Mycorrhizae-rhizosphere determinants of plant communities. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half. Marcel Dekker, New York, pp 919–932

    Chapter  Google Scholar 

  • Kutschera L, Lichtenegger E (2002) Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Leopold Stocker Verlag, Graz, Österreich

    Google Scholar 

  • Marx DH (1975) Mycorrhizae and establishment of trees on strip-mined land. Ohio J Sci 75:288–297

    Google Scholar 

  • Mc Afee BJ, Fortin JA (1986) The influence of pH on the competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J For Res 17:859–864

    Google Scholar 

  • Mehrmann B, Egli S, Braus GH, Brunner I (1995) Coincidence between molecularly or morphologically classified ectomycorrhizal morphotypes and fruitbodies in a spruce forest. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of Ectomycorrhizae. Plenum, New York, USA, pp 41–52

    Chapter  Google Scholar 

  • Mexal J, Reid CPP (1972) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 81:1579–1588

    Google Scholar 

  • Moser AM, Petersen CA, D’Allura JA, Southworth D (2005) Comparison of ectomycorrhizas of Quercus garryana (Fagaceae) on serpentine and non-serpentine soils in southwestern Oregon. Am J Bot 92:224–230

    Article  PubMed  Google Scholar 

  • Münzenberger B, Golldack J, Ullrich A, Schmincke B, Hüttl RF (2004) Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinus sylvestris L.) in lignite recultivation sites. Mycorrhiza 14:193–202

    Article  PubMed  Google Scholar 

  • Nara K (2006) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Article  Google Scholar 

  • Nara K, Kakaya H, Wu B, Zhou Z, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  Google Scholar 

  • Palfner G, Casanova-Katny MA, Read DJ (2005) The mycorrhizal community in a forest chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northern England. Mycorrhiza 15:571–579

    Article  PubMed  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Google Scholar 

  • Pigott CD (1982) Fine structure of mycorrhiza formed by Cenococcum geophilum Fr. on Tilia cordata Mill. New Phytol 92:501–512

    Article  Google Scholar 

  • Preussner K (1998) Wälder und Forste auf Kippenstandorten. In: W Pflug (ed) Braunkohletagebau und Rekultivierung. Springer, Berlin Heidelberg New York, Germany, pp 600–609

  • Rao CS, Sharma GD, Shukla AK (1997) Distribution of ectomycorrhizal fungi in pure stands of different age groups of Pinus kesiya. Can J Microbiol 43:85–91

    Article  CAS  Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Rumberger M, Münzenberger B, Bens O, Ehrig F, Lentzsch P, Hüttl RF (2004) Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant Soil 264:111–126

    Article  CAS  Google Scholar 

  • Schaaf W, Gast M, Wilden R, Scherzer J, Blechschmidt R, Hüttl RF (1999) Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant Soil 213:169–179

    Article  CAS  Google Scholar 

  • Schramm JE (1966) Plant colonisation studies on black wastes from anthracite mining in Pensylvania. Trans Am Philos Soc 56:1–194

    Article  Google Scholar 

  • Stratmann J (1985) Ertragskundliche Untersuchungen auf Rekultivierungsflächen im rheinischen Braunkohlengebiet. Braunkohle/Tagebautechnik 37:484–491

    Google Scholar 

  • Tate RL, Klein DA (1985) Soil reclamation processes: microbiological analyses and applications. Marcel Dekker, New York, USA

    Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

  • Valentine LL, Fiedler TL, Hart AN, Petersen CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135

    Article  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC (1981) Biomass and nutrient concentrations of sporocarps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia 50:170–175

    Article  PubMed  Google Scholar 

  • Walker JF, Miller OK Jr, Horton JL (2005) Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Mol Ecol 14:829–838

    Article  CAS  PubMed  Google Scholar 

  • Ward JH (1983) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols—a guide to methods and applications. Academic, New York, USA, pp 315–319

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey, USA

    Google Scholar 

  • Zöfel P (1998) Statistik in der Praxis. Gustav Fischer Verlag, Stuttgart, Germany

    Google Scholar 

Download references

Acknowledgment

The authors thank the Federal Ministry of Education and Research (BMBF) for financial support. The funded project 01LC0018 was part of the BIOLOG program ‘Biological Diversity and Global Change’. Catherine Fox is indebted for improving the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebhardt, S., Neubert, K., Wöllecke, J. et al. Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17, 279–290 (2007). https://doi.org/10.1007/s00572-006-0103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0103-4

Keywords

Navigation