Skip to main content

Advertisement

Log in

Diversity and Persistence of Ectomycorrhizal Fungi and Their Effect on Nursery-Inoculated Pinus pinaster in a Post-fire Plantation in Northern Portugal

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. doi:10.1111/j.1462-2920.2004.00675.x

    Article  CAS  PubMed  Google Scholar 

  3. Baciarelli-Falini L, Rubini A, Riccioni C, Paolocci F (2006) Morphological and molecular analyses of ectomycorrhizal diversity in a man-made T. melanosporum plantation: description of novel truffle-like morphotypes. Mycorrhiza 16:475–484

    Article  PubMed  Google Scholar 

  4. Bastias BA, Xu ZH, Cairney JWG (2006) Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi. New Phytol 172:149–158. doi:10.1111/j.1469-8137.2006.01793.x

    Article  CAS  PubMed  Google Scholar 

  5. Battista CD, Bouchard D, Martin F, Genere B, Amirault JM, Le Tacon F (2002) Survival after outplanting of the ectomycorrhizal fungus Laccaria bicolor S238N inoculated on Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) cuttings. Ann For Sci 59:81–92. doi:10.1051/forest:2001007

    Article  Google Scholar 

  6. Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A (2012) Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 81:547–561. doi:10.1111/j.1574-6941.2012.01379.x

    Article  CAS  PubMed  Google Scholar 

  7. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Pirie Printers, Canberra, pp 173–216

    Google Scholar 

  8. Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470. doi:10.1111/j.1469-8137.2008.02652.x

    Article  PubMed  Google Scholar 

  9. Buscardo E, Rodríguez-Echeverría S, Barrico L, García MA, Freitas H, Martín MP, de Angelis P, Muller LAH (2012) Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol Biochem 46:136–144. doi:10.1016/j.soilbio.2011.12.007

    Article  CAS  Google Scholar 

  10. Castellano MA, Trappe JM (1991) Pisolithus tinctorius fails to improve plantation performance of inoculated conifers in southwestern Oregon. New For 5:349–358. doi:10.1007/BF00118862

    Article  Google Scholar 

  11. Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71. doi:10.1007/s11104-011-0731-0

    Article  CAS  Google Scholar 

  12. Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207–215. doi:10.1139/x06-190

    Article  Google Scholar 

  13. Carrillo C, Diaz G, Honrubia H (2011) Testing the effect of routine fungicide application on ectomycorrhiza formation on Pinus halepensis seedlings in a nursery. For Pathol 41:70–74. doi:10.1111/j.1439-0329.2009.00639.x

    Article  Google Scholar 

  14. Codwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0 user’s guide and application persistent at: http://purl.oclc.org/estimates

  15. Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 157–173

    Chapter  Google Scholar 

  16. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24. doi:10.1007/s13595-010-0003-9

    Article  Google Scholar 

  17. Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le-Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. doi:10.1016/j.soilbio.2009.12.006

    Article  CAS  Google Scholar 

  18. Cullings K, Makhija S (2001) Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming. Appl Environ Microbiol 67:5538–5543. doi:10.1128/AEM.67.12.5538-5543.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silvae Sin 36:69–80

    Google Scholar 

  20. Dell B, Malajczuk N, Dunstan WA (2002) Persistence of some Australian Pisolithus species introduced into eucalypt plantations in China. For Ecol Manag 169:271–281. doi:10.1016/S0378-1127(01)00750-2

    Article  Google Scholar 

  21. Dias JM, Oliveira RS, Franco AF, Ritz K, Nunan N, Castro PML (2010) Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites. Span J Agric Res 8:S86–S95, http://hdl.handle.net/10400.14/4841

    Article  Google Scholar 

  22. Diez J, ManjónJL MF (2002) Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia 94:247–259

    Article  CAS  PubMed  Google Scholar 

  23. Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569.597. doi:10.1016/j.funbio.2011.03.005

    Article  PubMed  Google Scholar 

  24. Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27. doi:10.1007/s11104-013-1630-3

    Article  CAS  Google Scholar 

  25. Finlay RD, Lindahl BD, Taylor AFS (2008) Responses of mycorrhizal fungi to stress. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 201–220

    Chapter  Google Scholar 

  26. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 4:95–98

    Google Scholar 

  28. Heltshe JF, Forrester NE (1983) Estimating species richness using the jack knife procedure. Biometrics 39:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77. doi:10.1007/s00572-007-0160-3

    Article  PubMed  Google Scholar 

  30. Hortal S, Pera J, Parladé J (2009) Field persistence of edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 19:167–177. doi:10.1007/s00572-009-0228-3

    Article  PubMed  Google Scholar 

  31. ICFF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisbon, p 34

    Google Scholar 

  32. Jones MD, Durall DM, Cairney JWG (2003) Tansley review: ectomycorrhizal fungal communities in young stands regenerating after clearcut logging. New Phytol 157:399–422. doi:10.1046/j.1469-8137.2003.00698.x

    Article  Google Scholar 

  33. Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364. doi:10.1034/j.1600-0706.2001.930301.x

    Article  Google Scholar 

  34. Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265. doi:10.1007/s005720050190

    Article  CAS  PubMed  Google Scholar 

  35. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. doi:10.1111/mec.12481

    Article  PubMed  Google Scholar 

  36. Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107. doi:10.1890/08-1291.1

    Article  PubMed  Google Scholar 

  37. Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472. doi:10.1016/j.funbio.2010.03.008

    Article  PubMed  Google Scholar 

  38. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228. doi:10.1007/s00442-011-1981-5

    Article  PubMed  Google Scholar 

  39. Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316. doi:10.1111/j.1469-8137.2004.01216.x

    Article  PubMed  Google Scholar 

  40. Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079. doi:10.1016/j.mycres.2008.02.004

    Article  PubMed  Google Scholar 

  41. Landeweert R, Leeflang P, Smit E, Kuyper TW (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza 15:1–6. doi:10.1007/s00572-003-0284-z

    Article  PubMed  Google Scholar 

  42. Leite FF, Gonçalves AB, Vieira A (2011) The recurrence interval of forest fires in Cabeço da Vaca (Cabreira Mountain—northwest of Portugal). Environ Res 111:215–221. doi:10.1016/j.envres.2010.05.007

    Article  CAS  Google Scholar 

  43. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infection. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  44. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4.0. MjM Software Design, Gleneden Beach, OR, USA. 237 pp

  45. Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16:33–41. doi:10.1007/s00572-005-0011-z

    Article  PubMed  Google Scholar 

  46. Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2007) Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi—impact on plant performance and ectomycorrhizal community. Mycorrhiza 17:337–348. doi:10.1007/s00572-007-0110-0

    Article  CAS  PubMed  Google Scholar 

  47. Menkis A, Vasaitis R (2011) Fungi in roots of nursery grown Pinus sylwestris ectomycorrhizal colonization, genetic and spatial distribution. Microb Ecol 61:52–63. doi:10.1007/s00248-010-9676-8

    Article  PubMed  Google Scholar 

  48. Napoli C, Mello A, Borra A, Vizzini A, Sourzat P, Bonfante P (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 185:237–247. doi:10.1111/j.1469-8137.2009.03053.x

    Article  CAS  PubMed  Google Scholar 

  49. Neary DG, Klopatek CC, DeBano LF, Folliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  50. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. doi:10.1128/AEM.71.9.5544-5550.2005

    Article  PubMed Central  PubMed  Google Scholar 

  51. Oliveira RS, Franco AR, Castro PML (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol Eng 43:95–103. doi:10.1016/j.ecoleng.2012.01.02

    Article  Google Scholar 

  52. Ortega U, Dunabeitia M, Menendez S, Gonzalez-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24:65–73. doi:10.1093/treephys/24.1.65

    Article  CAS  PubMed  Google Scholar 

  53. Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547. doi:10.1111/j.1365-2745.2009.01489.x

    Article  Google Scholar 

  54. Pereira JMC, Santos MT (2003) Áreas Queimadas e Risco de Incêndio em Portugal. DGF, MADRP, Lisbon

    Google Scholar 

  55. Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237. doi:10.2307/1311159

    Article  Google Scholar 

  56. Perry AD, Molina R, Amaranthus PM (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J For Res 17:929–940. doi:10.1139/x87-145

    Article  Google Scholar 

  57. Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  58. Quoreshi AM, Piche Y, Khasa DP (2008) Field performance of conifer and hardwood species 5 years after nursery inoculation in the Canadian Prairie Provinces. New For 35:235–253. doi:10.1007/s11056-007-9074-3

    Article  Google Scholar 

  59. Rincon A, Puye JJ (2010) Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. For Ecol Manag 260:361–369. doi:10.1016/j.foreco.2010.04.028

    Article  Google Scholar 

  60. Selosse MA, Jacquot D, Bouchard D, Martin F, Le Tacon F (1998) Temporal persistence and spatial distribution of an American inoculant strain of the ectomycorrhizal basidiomycete Laccaria bicolor in French forest plantations. Mol Ecol l7:561–573. doi:10.1046/j.1365-294x.1998.00353.x

    Article  Google Scholar 

  61. Selosse MA, Richard F, He XH, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621. doi:10.1016/j.tree.2006.07.003

    Article  PubMed  Google Scholar 

  62. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  63. Simard SW (2009) The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For Ecol Manag 258S:S95–S107. doi:10.1016/j.foreco.2009.05.001

    Article  Google Scholar 

  64. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  65. Soares A (2000) Atlas de Fauna e Flora da Serra da Cabreira. CIASC, pp 219

  66. Sousa NR, Franco AR, Oliveira RS, Castro PML (2010) Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J Environ Manag 95:S269–S274. doi:10.1016/j.jenvman.2010.07.016

    Article  Google Scholar 

  67. Sousa NR, Franco AR, Ramos MA, Oliveira RS, Castro PML (2011) Reforestation of burned stands: the effect of ectomycorrhizal fungi on Pinus pinaster establishment. Soil Biol Biochem 43:2115–2120. doi:10.1016/j.soilbio.2011.06.013

    Article  CAS  Google Scholar 

  68. Sousa NR, Franco AR, Oliveira RS, Castro PML (2014) Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For Ecol Manag 320:50–55. doi:10.1016/j.foreco.2014.02.033

    Article  Google Scholar 

  69. Stenstrom E, Ek M, Unestam T (1990) Variation in field response of Pinus sylvestris to nursery inoculation with four different ectomycorrhizal fungi. Can J For Res 20:1796–1803. doi:10.1139/x90-240

    Article  Google Scholar 

  70. TerBraak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  71. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljag U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. doi:10.1111/j.1469-8137.2008.02561.x

    Article  CAS  PubMed  Google Scholar 

  72. Torres P, Honrubia M (1997) Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. For Ecol Manag 96:189–196. doi:10.1016/S0378-1127(97)00058-3

    Article  Google Scholar 

  73. Vosátka M, Gajdos J, Kolomý P, Kavková M, Oliveira RS, Franco AR, Sousa NR, Carvalho MF, Castro PML, Albrechtová J (2008) Applications of ectomycorrhizal inocula in nursery and field plantings: the importance of inoculum tuning to target conditions. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. German Phytomedical Society, Braunschweig, pp 112–125

    Google Scholar 

  74. White TJ, Bruns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gefland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

A.R. Franco, R. S. Oliveira and N.R. Sousa had the support of FCT grants SFRH/BD/47722/2008, SFRH/BPD/85008/2012, SFRH/BPD/89112/2012. This work was supported by National Funds through FCT—Fundação para a Ciência e a Tecnologia—under the project PTDC/AGR/CFL/111583/2009, project PEst-OE/EQB/LA0016/2013 and Fundo Social Europeu (III Quadro Comunitário de Apoio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. L. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, A.R., Sousa, N.R., Ramos, M.A. et al. Diversity and Persistence of Ectomycorrhizal Fungi and Their Effect on Nursery-Inoculated Pinus pinaster in a Post-fire Plantation in Northern Portugal. Microb Ecol 68, 761–772 (2014). https://doi.org/10.1007/s00248-014-0447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0447-9

Keywords

Navigation