Skip to main content

Understanding Abiotic Stress Responses in Lentil Under Changing Climate Regimes

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes

Abstract

Lentil (Lens culinaris Medik.) is a cool-season grain legume crop that is mainly cultivated across the semi-arid regions of Australia, South Asia, Africa, and North America. The crop is highly valued for its nutritional attributes such as dietary proteins (22–35%), carbohydrates, minerals, and fiber that play a significant role in alleviating malnutrition and micronutrient deficiencies across populations in developing countries. The last five decades have seen an upward trend in global production of lentils from 0.85 to 5.73 Mt. suggesting its increasing demand and utilization. However, various abiotic stresses such as drought, heat, cold, salinity, and nutrient deficiency impose severe threats to the global lentil yield and productivity. The current book chapter is an attempt to comprehend the morpho-physiological and biochemical changes occurring during these stresses and the developmental plasticity shown by the plant to counteract them. Furthermore, the current status of research focusing on the development of novel molecular and functional markers/tags, identification of candidate genes/QTLs responsible for abiotic stress tolerance, the intervention of high throughput genotyping and phenotyping platforms, development of populations and linkage maps, and omics studies have been discussed. Some tolerant germplasm and varieties developed through conventional and next-generation breeding approaches are also enlisted making the book chapter a concise platform for reports of abiotic stress tolerance in lentils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Hassan G, Ali MA, Aslam M, Abbas Z (2010) Response of wheat to different doses of ZnSO4 under Thal desert environment. Pak J Bot 42(6):4079–4085

    CAS  Google Scholar 

  • Ahmed B, Alam MJ, Hossain MA, Sultana M, Islam MN, Ali MR (2016) Study of selected lentil genotypes against drought. Int J Appl Res 2:95–99

    Google Scholar 

  • Aldemir S, Ateş D, Temel HY, Yağmur B, Alsaleh A, Kahriman A, Özkan H, Vandenberg A, Tanyolac MB (2017) QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk J Agric For 41(4):243–255

    Article  CAS  Google Scholar 

  • Ali A, Johnson DL (1999) Association of growth habit and anthocyanin pigment with winter hardiness in lentil. Pak J Biol Sci 2:1292–1295

    Article  Google Scholar 

  • Ali A, Johnson D (2000) Heritability estimates for winter hardiness in lentil under natural and controlled conditions. Plant Breed 119:283–285. https://doi.org/10.1046/j.1439-0523.2000.00491.x

    Article  Google Scholar 

  • Ali A, Johnson D, Stushnoff C (1999) Screening lentil (Lens culinaris) for cold hardiness under controlled conditions. J Agric Sci 133(3):313–319. https://doi.org/10.1017/S0021859699006917

    Article  Google Scholar 

  • Ali A, Ahmad B, Hussain I, Ali A, Shah FA (2017) Effect of phosphorus and zinc on yield of lentil. Pure Appl Biol (PAB) 6(4):1397–1402

    CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. https://doi.org/10.1007/BF02672069

    Article  CAS  Google Scholar 

  • Ashraf M, Zafar ZU (1996) Effect of nitrogen deficiency on growth and some biochemical characteristics in salt-tolerant and salt-sensitive lines of Lentil (Lens culinaris Medic.). Arch Agron Soil Sci 40(4):231–239

    Article  CAS  Google Scholar 

  • Ashraf M, Zafar ZU (1997) Effect of potassium deficiency on growth and some biochemical characteristics in two lines of lentil (Lens culinaris Medic.). Acta Physiol Plantarum 19(1):9–15

    Article  CAS  Google Scholar 

  • Ates D, Aldemir S, Yagmur B, Kahraman A, Ozkan H, Vandenberg A, Tanyolac MB (2018) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3: Genes, Genomes. Genetics 8(5):1409–1416

    CAS  Google Scholar 

  • Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Varshney RK, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, Nayyar H (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41(11):1148–1167

    Article  CAS  PubMed  Google Scholar 

  • Bannayan Aval M, Yaghoubi F, Rashidi Z, Bardehji S (2017) Effect of different nitrogen levels on phenology, growth indices and yield of two lentil cultivars under rainfed conditions in Mashhad. Iran J Field Crops Res 15(4):939–956

    Google Scholar 

  • Barghi SS, Mostafaii H, Peighami F, Zakaria RA (2012) Path analysis of yield and its components in lentil under end season heat condition. Int J Agric: Res Rev 2(Special Issue):969–974

    Google Scholar 

  • Barrios A, Caminero C, García P, Krezdorn N, Hoffmeier K, Winter P, de la Vega MP (2017) Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC Plant Biol 17(1):1–15

    Article  CAS  Google Scholar 

  • Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y (2011) EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum. BMC Genomics 12(1):1–16

    Article  CAS  Google Scholar 

  • Bhandari K, Siddique KH, Turner NC, Kaur J, Singh S, Agrawal SK, Nayyar H (2016) Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv 30(2):118–151

    Article  CAS  Google Scholar 

  • Bhandari K, Sita K, Sehgal A, Bhardwaj A, Gaur P, Kumar S, Singh S, Siddique KH, Prasad PV, Jha U, Nayyar H (2020) Differential heat sensitivity of two cool-season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. J Agron Crop Sci 206(6):734–758

    Article  CAS  Google Scholar 

  • Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PV, Sharma KD, Siddique KH, Nayyar H (2021) ‘Omics’ approaches in developing combined drought and heat tolerance in food crops. Plant Cell Rep:1–41

    Google Scholar 

  • Bicer BT, Sakar D (2008) Studies on variability of lentil genotypes in Southeastern Anatolia of Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36(1):20–24

    Google Scholar 

  • Biju S, Fuentes S, Gupta D (2018) The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiol Biochem 127:11–24

    Article  CAS  PubMed  Google Scholar 

  • Biju S, Fuentes S, Gonzalez Viejo C, Torrico DD, Inayat S, Gupta D (2021) Silicon supplementation improves the nutritional and sensory characteristics of lentil seeds obtained from drought-stressed plants. J Sci Food Agric 101(4):1454–1466

    Article  CAS  PubMed  Google Scholar 

  • Chakherchaman SA, Mostafaei H, Yari A, Hassanzadeh M, Jamaati-e-Somarin S, Easazadeh R (2009a) Study of relationships of leaf relative water content, cell membrane stability and duration of growth period with grain yield of lentil under rain-fed and irrigated conditions. Res J Biol Sci 4(7):842–847

    Google Scholar 

  • Chakherchaman SA, Mostafaei H, Imanparast L, Eivazian MR (2009b) Evaluation of drought tolerance in lentil advanced genotypes in Ardabil region. Iran J Food Agric Environ 7(3/4):283–288

    Google Scholar 

  • Choukri H, Hejjaoui K, El-Baouchi A (2020) Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Front Nutr 7:596307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delahunty, A., Nuttall, J., Nicolas, M., and Brand, J. (2015). Genotypic heat tolerance in lentil. In: Proceedings of the 17th ASA Conference. pp. 20–24

    Google Scholar 

  • Dikshit, H. K., Singh, A., Singh, D., Aski, M., Jain, N., Hegde, V. S., Basandrai, A.K., Basandrai, D., and Sharma, T. R. (2016). Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris)

    Google Scholar 

  • Dissanayake R, Kahrood HV, Dimech AM, Noy DM, Rosewarne GM, Smith KF, Cogan NO, Kaur S (2020) Development and application of image-based high-throughput phenotyping methodology for salt tolerance in lentils. Agronomy 10(12):1992

    Article  CAS  Google Scholar 

  • Dissanayake R, Cogan NO, Smith KF, Kaur S (2021) Application of Genomics to Understand Salt Tolerance in Lentil. Genes 12(3):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124(3):1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-khamissi HA, El-Hamamsy SMA, Behairy RT (2018) Mitigation of drought stress on fenugreek seedlings by application of ascorbic acid. J Biol Chem Environ Sci 13(2):343–358

    Google Scholar 

  • Erskine W (1996) Seed-size effects on lentil (Lens culinaris) yield potential and adaptation to temperature and rainfall in West Asia. J Agric Sci 126(3):335–341

    Article  Google Scholar 

  • Erskine W, El Ashkar F (1993) Rainfall and temperature effects on lentil (Lens culinaris) seed yield in Mediterranean environments. J Agric Sci 121(3):347–354

    Article  Google Scholar 

  • Erskine W, Myveci K, Izgin N (1981) Screening a world lentil collection for cold tolerance. Lens Newslett 8:5–8

    Google Scholar 

  • Erskine W, Saxena NP, Saxena MC (1993) Iron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant Soil 151(2):249–254

    Article  CAS  Google Scholar 

  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97(1):83–89

    Article  CAS  Google Scholar 

  • Eujayl I, Erskine W, Baum M, Pehu E (1999) Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39:639–642

    Article  Google Scholar 

  • Faostat, F. A. O. (2019). Statistical databases. Food and Agriculture Organization of the United Nations. Available at. http://www.fao.org/faostat/en/#data/QC, September 28, 2021

  • Farooq M, Romdhane L, Al Sulti MK, Rehman A, Al-Busaidi WM, Lee DJ (2020) Morphological, physiological and biochemical aspects of osmopriming-induced drought tolerance in lentil. J Agron Crop Sci 206(2):176–186

    Article  CAS  Google Scholar 

  • Gaafar RM, Seyam MM (2018) Ascorbate–glutathione cycle confers salt tolerance in Egyptian lentil cultivars. Physiol Mol Biol of Plants 24(6):1083–1092

    Article  Google Scholar 

  • Ghimire NH, Mandal HN (2019) Genetic variability, genetic advance, correlation and heritability of cold tolerance lentil (Lens culinaris Medic.) genotypes at high Hill of Nepal. Int J Adv Res Biol Sci 6(11):1–10

    CAS  Google Scholar 

  • Gupta M, Verma B, Kumar N, Chahota RK, Rathour R, Sharma SK, Bhatia S, Sharma TR (2012) Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J Genet 91(3):279–287

    Article  CAS  PubMed  Google Scholar 

  • Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plantarum 36(5):1055–1070

    Article  CAS  Google Scholar 

  • Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7(1):1–10

    Article  Google Scholar 

  • Hamdi A, Küsmenoĝlu I, Erskine W (1996) Sources of winter hardiness in wild lentil. Genet Resour Crop Evol 43:63–67. https://doi.org/10.1007/BF00126942

    Article  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77(3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Hemantaranjan A, Nishant Bhanu A, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat Stress Responses and Thermotolerance. Adv Plants Agric Res 1(3):00012

    Google Scholar 

  • Hobson K, Armstrong R, Nicolas M, Connor D, Materne M (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151(3):371–382

    Article  CAS  Google Scholar 

  • Hu Y, Knapp S, Schmidhalter U (2020) Advancing high-throughput phenotyping of wheat in early selection cycles. Remote Sens 12(3):574

    Article  Google Scholar 

  • Humplík JF, Lazár D, Fürst T, Husičková A, Hýbl M, Spíchal L (2015) Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11(1):1–11

    Article  CAS  Google Scholar 

  • Ibrahim HM (2011) Heat stress in food legumes: evaluation of membrane thermostability methodology and use of infra-red thermometry. Euphytica 180(1):99–105

    Article  Google Scholar 

  • Ibrahim S (2014) Effect of zinc on lentil (Lens culinaris L.) metabolites and antioxidant enzyme activities. RADS J Biol Res Applied Sci 5(1):20–24

    Google Scholar 

  • Idrissi O, Udupa SM, De Keyser E, McGee RJ, Coyne CJ, Saha GC, Muehlbauer FJ, Van Damme P, De Riek J (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Frontiers. Plant Sci 7:1174

    Google Scholar 

  • Islam M, Karim M, Oliver M, Hosain M, Urmi TA, Hossain M, Haque MM (2018) Impacts of trace element addition on lentil (Lens culinaris L.) agronomy. Agronomy 8(7):100

    Article  CAS  Google Scholar 

  • Jahan SA, Alim MA, Hasan MM, Kabiraj UK, Hossain MB (2009) Effect of potassium levels on the growth, yield and yield attributes of lentil. Int J Sustain Crop Prod 4(6):1–6

    Google Scholar 

  • Jin LIU, Jian-Ping GUAN, Dong-Xu XU, Zhang XY, Jing GU, Xu-Xiao ZONG (2008) Genetic diversity and population structure in lentil (Lens culinaris Medik.) germplasm detected by SSR markers. Acta Agron Sin 34(11):1901–1909

    Article  Google Scholar 

  • Johnson N, Boatwright JL, Bridges W, Thavarajah P, Kumar S, Shipe E (2021) Genome-wide association mapping of lentil (Lens culinaris Medikus) prebiotic carbohydrates toward improved human health and crop stress tolerance. Sci Rep 11(1):1–12

    Article  CAS  Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004a) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44:5–12. https://doi.org/10.2135/cropsci2004.5000

    Article  Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004b) QTL mapping of winter hardiness genes in lentil. Crop Sci 44:13–22. https://doi.org/10.2135/cropsci2004.1300

    Article  CAS  Google Scholar 

  • Kahraman A, Demirel U, Ozden M, Muehlbauer FJ (2010) Mapping of QTLs for leaf area and the association with winter hardiness in fall-sown lentil. Afr J Biotechnol 9(50):8515–8519

    Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62(4):1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Karaköy T, Erdem H, Baloch FS, Toklu F, Eker S, Kilian B, Özkan H (2012) Diversity of macro-and micronutrients in the seeds of lentil landraces. Sci World J 2012

    Google Scholar 

  • Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12(1):1–11

    Article  CAS  Google Scholar 

  • Kaur S, Cogan NO, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127(3):703–713

    Article  CAS  PubMed  Google Scholar 

  • Keshtiban RK, Carvani V, Imandar M (2015) Effects of salinity stress and drought due to different concentrations of sodium chloride and polyethylene glycol 6000 on germination and seedling growth characteristics of pinto bean (Phaseolus vulgaris L.). Adv Environ Biol 9(5):229–235

    Google Scholar 

  • Khatib F, Makris A, Yamaguchi-Shinozaki K, Kumar S, Sarker A, Erskine W, Baum M (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp. culinaris) transformed with the Agrobacterium system. Crop Pasture Sci 62(6):488–495

    Article  CAS  Google Scholar 

  • Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2):plantgenome2017-02

    Article  CAS  Google Scholar 

  • Kökten K, Karaköy T, Bakoğlu A, Akçura M (2009) Determination of s nity tolerance of some lentil (Lens culinaris M.) varieties

    Google Scholar 

  • Kumar J, Basu PS, Srivastava E, Chaturvedi SK, Nadarajan N, Kumar S (2012) Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci 63(6):547–554

    Article  CAS  Google Scholar 

  • Kumar S, Barpete S, Kumar J, Gupta P, Sarker A (2013) Global lentil production: constraints and strategies. SATSA Mukhapatra-Annu Tech 17:1–13

    Google Scholar 

  • Kumar H, Dikshit HK, Singh A, Jain N, Kumari J, Singh AM, Singh D, Sarker A, Prabhu KV (2014) Characterization of grain iron and zinc in lentil (‘Lens culinaris’ Medikus' culinaris') and analysis of their genetic diversity using SSR markers. Aust J Crop Sci 8(7):1005–1012

    Google Scholar 

  • Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Kant R, Kumar S, Basu PS, Sarker A, Singh NP (2016) Heat tolerance in lentil under field conditions. Legume Genomics Genet 7

    Google Scholar 

  • Kumar J, Basu PS, Gupta S, Dubey S, Gupta DS, Singh NP (2017) Physiological and molecular characterisation for high temperature stress in Lens culinaris. Funct Plant Biol 45(4):474–487

    Article  CAS  Google Scholar 

  • Kumar J, Gupta DS, Kesari R, Verma R, Murugesan S, Basu PS, Soren KR, Gupta S, Singh NP (2021a) Comprehensive RNAseq analysis for identification of genes expressed under heat stress in lentil. Physiol Plant

    Google Scholar 

  • Kumar J, Sen Gupta D, Baum M, Varshney RK, Kumar S (2021b) Genomics-assisted lentil breeding: current status and future strategies. Legume Science:e71

    Google Scholar 

  • Kumawat KR, Gothwal DK, Kumawat R, Choudhary M, Kumawat S (2018) Determination of salinity tolerance in lentil (Lens culinaris M.) seedlings using salt tolerance index. Int J Chem Stud 6(1):1584–1589

    Google Scholar 

  • Kushwaha UKS, Ghimire SK, Yadav NK, Ojha BR (2013) Genetic relatedness of lentil (Lens culinaris L.) germplasm by using SSR markers. Int J Appl Sci Biotechnol 1(3):132–136

    Article  CAS  Google Scholar 

  • Ma Y, Marzougui A, Coyne CJ, Sankaran S, Main D, Porter LD, Mugabe D, Smitchger JA, Zhang C, Amin M, Rasheed N, Ficklin SP, McGee RJ (2020) Dissecting the genetic architecture of Aphanomyces root rot resistance in lentil by QTL mapping and genome-wide association study. Int J Mol Sci 21(6):2129

    Article  CAS  PubMed Central  Google Scholar 

  • Mamo T, Richter C, Heiligtag B (1996) Salinity effects on the growth and ion contents of some chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.) varieties. J Agron Crop Sci 176(4):235–247

    Article  CAS  Google Scholar 

  • Marzougui A, Ma Y, Zhang C, McGee RJ, Coyne CJ, Main D, Sankaran S (2019) Advanced imaging for quantitative evaluation of Aphanomyces root rot resistance in lentil. Front Plant Sci 10:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra BK, Srivastava JP, Lal JP, Sheshshayee MS (2016) Physiological and biochemical adaptations in lentil genotypes under drought stress. Russ J Plant Physiol 63(5):695–708

    Article  CAS  Google Scholar 

  • Morgil H, Tardu M, Cevahir G, Kavakli İH (2019) Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Funct Integr Genomics 19(5):715–727

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer F, McPhee K (2007) Registration of ‘Morton’ winter-hardy Lentil. Crop Sci 47:438–439. https://doi.org/10.2135/cropsci2005.12.0490

    Article  Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147(1):149–165

    Article  Google Scholar 

  • Muscolo A, Sidari M, Anastasi U, Santonoceto C, Maggio A (2014) Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact 9(1):354–363

    Article  CAS  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66(18):5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niri HH, Tobeh A, Gholipouri A, Zakaria RA, Mostafaei H, Jamaati-e-Somarin S (2010) Effect of nitrogen and phosphorous on yield and protein content of lentil in dryland condition. Am Eur J Agric Environ Sci 8(2):185–188

    CAS  Google Scholar 

  • Öktem HA, Eyidoðan F, Demirba D, Bayraç AT, Öz MT, Özgür E, Selçuk F, Yücel M (2008) Antioxidant responses of lentil to cold and drought stress. J Plant Biochem Biotechnol 17(1):15–21

    Article  Google Scholar 

  • Ouji A, El-Bok S, Mouelhi M, Younes MB, Kharrat M (2015) Effect of salinity stress on germination of five Tunisian lentil (Lens culinaris L.) genotypes. Eur Sci J 11(21)

    Google Scholar 

  • Panahyan-e-Kivi M, Ebadi A, Tobeh A, Jamaati-e-Somarin S (2009) Evaluation of yield and yield components of lentil genotypes under drought stress. Res J Environ Sci 3(4):456–460

    Article  Google Scholar 

  • Pandey AK, Sengar RS (2020) Effect of salt stress on salt tolerant indices of morpho-physiological traits and yield attributes of lentil (Lens culinaris Medik.). Int J Chem Stud 8:2292–2301

    Article  Google Scholar 

  • Qiu Q, Sun N, Bai H, Wang N, Fan Z, Wang Y, Meng Z, Li B, Cong Y (2019) Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “Phenomobile”. Front Plant Sci 10:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran K, Smouni A, Es-Safi NE, Benbrahim N, Mentag R, Nayyar H, Maalouf F, Kumar S (2020) Screening the FIGS set of lentil (Lens Culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy 10(7):1036

    Article  CAS  Google Scholar 

  • Redden RJ, Hatfield JL, Prasad V, Ebert AW, Yadav SS, O’Leary GJ (2014) Temperature, climate change, and global food security. Temp Plant Dev 8:181–202

    Google Scholar 

  • Roy CD, Tarafdar S, Das M, Kundagrami S (2012) Screening lentil (Lensculinaris Medik.) germplasms for heat tolerance. Trends Biosci 5:143–146. https://doi.org/10.3389/fpls.2017.00744

    Article  Google Scholar 

  • Sarker A, Erskine W, Singh M (2005) Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genet Resour Crop Evol 52(1):89–97

    Article  Google Scholar 

  • Sarker BC, Rashid P, Jarmoker JL (2015) Anatomical changes of lentil (Lens culinaris medik.) under phosphorus deficiency stress. Bangladesh J Bot 44(1):73–78

    Article  Google Scholar 

  • Sehgal A, Sita K, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Vara Prasad PV, Siddique KH, Nayyar H (2019) Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ 42(1):198–211

    Article  CAS  PubMed  Google Scholar 

  • Sen Gupta D, McPhee K, Kumar S (2017) Development of molecular markers for iron metabolism related genes in lentil and their expression analysis under excess iron stress. Front Plant Sci 8:579

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah BH, Khan JAHANGIR, Khetran MA, Kurd AA, Sadiq NADEEM (2013) Evaluation and Selection of cold and drought resistant lentil genotypes for highlands of Balochistan. Sarhad J Agric 29(4):511–513

    Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14(1):1–13

    Article  Google Scholar 

  • Singh D, Dikshit HK, Singh R (2013) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132(2):185–190

    Article  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RSS (2016a) Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medikus). Mol Breed 36(5):58

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Tomar RSS, Taunk J, Singh R, Maurya S, Chaturvedi AK, Pal M, Singh R, Dubey SK (2016b) Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS One 11(1):e0147213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A (2017a) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12(11):e0188296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Singh CK, Kumari S, Tomar RSS, Karwa S, Singh R, Singh RB, Sarkar SK, Pal M (2017b) Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. PLoS One 12(5):e0177465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Singh CK, Singh Tomar RS, Pal M (2017c) Genetics and molecular mapping of heat tolerance for seedling survival and pod set in lentil. Crop Sci 57(6):3059–3067

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K, Pal M (2017d) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18(1):1–20

    Article  Google Scholar 

  • Singh A, Dikshit HK, Mishra GP, Aski M, Kumar S (2019a) Association mapping for grain diameter and weight in lentil using SSR markers. Plant Gene 20:100204

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K (2019b) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9(1):1–19

    Article  Google Scholar 

  • Singh D, Singh CK, Tomar RSS, Sharma S, Karwa S, Pal M, Singh V, Sanwal SK, Sharma PC (2020a) Genetics and molecular mapping for salinity stress tolerance at seedling stage in lentil (Lens culinaris Medik). Crop Sci 60(3):1254–1266

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Tribuvan KU, Tyagi P, Taunk J, Tomar RSS, Kumari S, Tripathi K, Kumar A, Gaikwad K, Yadav RK, Pal M (2020b) Development, characterization, and cross species/genera transferability of novel EST-SSR markers in lentil, with their molecular applications. Plant Mol Biol Report 38(1):114–129

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Sharma S, Gaikwad K, Singh V, Sanwal SK, Singh D, Sharma PC, Pal M (2021a) Transcriptome skimming of lentil (Lens culinaris Medikus) cultivars with contrast reaction to salt stress. Funct Integr Genomics 21(1):139–156

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sirari A, Singh H, Kumar A, Jaidka M, Mandahal KS, Kumar S, Singh S (2021b) Identifying and validating SSR markers linked with rust resistance in lentil (Lens culinaris). Plant Breed

    Google Scholar 

  • Sinha R, Pal AK, Singh AK (2018) Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik.) genotypes under drought stress. Indian J Plant Physiol 23(4):772–784

    Article  CAS  Google Scholar 

  • Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Plant Sci 8:744

    Google Scholar 

  • Sita K, Sehgal A, Bhandari K, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2018) Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J Sci Food Agric 98(13):5134–5141

    Article  CAS  PubMed  Google Scholar 

  • Skliros D, Kalloniati C, Karalias G, Skaracis GN, Rennenberg H, Flemetakis E (2018) Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Front Plant Soil 429(1):451–468

    Article  CAS  Google Scholar 

  • Sohrabi SS, Ismaili A, Azarian Firouz-Abadi FN, Fallahi H (2018) Discovery of EST-SSRs markers in lentil (Lens culinaris) under cold stress. Crop Biotechnol 8(22):1–14

    Google Scholar 

  • Sohrabi SS, Ismaili A, Nazarian-Firouzabadi F, Fallahi H, Hosseini SZ (2022) Identification of key genes and molecular mechanisms associated with temperature stress in lentil. Gene 807:145952

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SP, Bhandari TMS, Yadav CR, Joshi M, Erskine W (2000) Boron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant Soil 219(1):147–151

    Article  CAS  Google Scholar 

  • Sudheesh S, Verma P, Forster JW, Cogan NO, Kaur S (2016) Generation and characterisation of a reference transcriptome for lentil (Lens culinaris Medik.). Int J Mol Sci 17(11):1887

    Article  PubMed Central  CAS  Google Scholar 

  • Talukdar D (2013) Bioaccumulation and transport of arsenic in different genotypes of lentil (Lens culinaris Medik.). Int J Pharm Bio Sci 4(1):694–701

    CAS  Google Scholar 

  • Temel, H. Y., Gol, D., Kahriman, A., & Tanyolac, M. B. (2014). Construction of linkage map through genotyping-by-sequencing in lentil. In: Proceedings of plant and animal genome conference, vol. 22, pp. 358.

    Google Scholar 

  • Temel HY, Göl D, Akkale HBK, Kahriman A, Tanyolac MB (2015) Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk J Agric For 39(3):470–488

    Article  CAS  Google Scholar 

  • Tepe M, Aydemir T (2011) Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogen sources. Afr J Biotechnol 10(53):10882–10891

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Tickoo JL, Mishra SK, Dikshit HK (2005) Lentil (Lens culinaris) In India: present Status and future perspectives

    Google Scholar 

  • Turan MA, Turkmen N, Taban N (2007) Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants. J Agron

    Google Scholar 

  • Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11(7):894–905

    Article  CAS  PubMed  Google Scholar 

  • Vijayan, P., Vandenberg, A., and Bett, K. E. (2009). A mixed genotype lentil EST library representing the normalized transcriptome of different seed development stages

    Google Scholar 

  • Wang D, Yang T, Liu R, Li N, Wang X, Sarker A, Zhang X, Li R, Pu Y, Li G, Huang Y, Ji Y, Li Z, Tian Q, Zong X, Ding H (2020) RNA-Seq analysis and development of SSR and KASP markers in lentil (Lens culinaris Medikus subsp. culinaris). Crop J 8(6):953–965

    Article  Google Scholar 

  • Xiao-lei WANG, Hai-qiu YU, Ning LIU, Bing YI, Jing WEN, Xing-tao LI, Xin-hua ZHAO, Min-jian CAO (2012) Some physiological characteristics in maize (Zea mays L.) inbred lines tolerant to low potassium from grain filling to maturity. Afr J Agric Res 7(11):10–5897

    Google Scholar 

  • Yadav GS, Devi AG, Das A, Kandpal B, Babu S, Das RC, Nath M (2021) Foliar application of urea and potassium chloride minimizes terminal moisture stress in lentil (Lens culinaris L.) crop. Legume Res: Int J 44(6)

    Google Scholar 

  • Yasin M, Zahid MA, Ghafoor A, Ahmad Z (2002) Genotypic behavior of lentil (Lens culinaris Medik) towards salinity. In: Prospects for saline agriculture. Springer, Dordrecht, pp 231–235

    Chapter  Google Scholar 

  • Zakeri H, Bueckert RA, Schoenau J (2013) Effects of nitrogen on reproductive duration and yield in lentil cultivars. J Plant Nutr 36(6):877–894

    Article  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabhyata Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B. et al. (2022). Understanding Abiotic Stress Responses in Lentil Under Changing Climate Regimes. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_9

Download citation

Publish with us

Policies and ethics