Skip to main content

Ameliorating Abiotic Stress Tolerance in Crop Plants by Metabolic Engineering

  • Chapter
  • First Online:
Metabolic Engineering in Plants

Abstract

Environmental adversities like heat, cold, drought, salinity, ultraviolet radiation and flooding induces abiotic distress in plants and are the pioneer limiting factors for plant growth, development and productivity. Anthropogenic activities have fuelled changes in global climatic conditions and these changes have incremented multiple abiotic stresses in crop plants. Researchers are making unprecedented efforts to intercept heavy crop losses and in turn to generate more food and feed to meet the demands of the ever-increasing human population. Highlighting the techniques involved to combat abiotic stresses, their role in regulating plant growth and development under unfavourable climatic factors holds substantial importance. This chapter reviews the role of osmoprotectants, polyamines, flavonoids and phytohormones in plant growth and development under abiotic stress conditions and their metabolic engineering for producing abiotic stress-tolerant transgenic plants. This strategy can prove a vital tool to minimise heavy crop losses and alleviate the problem of increasing food demand of human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ADC:

Arginine decarboxylase

APX:

Ascorbate peroxidase

As:

Arsenic

ATP:

Adenosine triphosphate

BR:

Brassinosteroid

Cad:

Cadaverine

CAT:

Catalase

CHS:

Chalcone synthase

CK:

Cytokinin

DAO:

Diamine oxidase

dcSAM:

Decarboxylated S-adenosylmethionine

ET:

Ethylene

GA:

Gibberellic acid

GB:

Glycine-betaine

Glc-6-P:

Glucose-6-phosphate

GR:

Glutathione reductase

H2O2:

Hydrogen peroxide

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

LAT:

L-type amino acid transporter

MaCHS:

Morus atropurpurea Roxb chalcone synthase

MDA:

Malondialdehyde

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

NOX:

NADH oxidase

O2:

Superoxide ion

OAT:

Ornithine aminotransferase

ODC:

Ornithine dicarboxylic acid

P5C:

Pyrroline-5-carboxylate

P5CR:

Pyrroline-5-carboxylate reductase

P5CS:

Pyrroline-5-carboxylate synthetase

PA:

Polyamine

POD:

Peroxidase

Pro:

Proline

ProDH:

Proline dehydrogenase

PS II:

Photosystem II

PUT:

Polyamine uptake transporter

Put:

Putrescine

ROS:

Reactive oxygen species

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SA:

Salicylic acid

SAM:

S-adenosylmethionine

SAMDC:

SAM decarboxylase

SOD:

Superoxide dismutase

Spd:

Spermidine

SPDS:

Spd synthase

Spm:

Spermine

SPMS:

Spm synthase

Tre:

Trehalose

Tre6P:

Trehalose 6-phosphate

UDP-Glc:

Uridine diphospho-glucose

References

  • Abbas, W., Ashraf, M., & Akram, N. A. (2010). Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Scientia Horticulturae, 125(3), 188–195.

    Article  CAS  Google Scholar 

  • Abid, G., M’hamdi, M., Mingeot, D., Aouida, M., Aroua, I., Muhovski, Y., Sassi, K., Souissi, F., Mannai, K., & Jebara, M. (2017). Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(4), 536–552.

    Article  CAS  Google Scholar 

  • Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186(4), 786–793.

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani, F. O. (2021). Metabolic engineering of osmoprotectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta, 253(1), 1–17.

    CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Arif, M. S., Yasmeen, T., Shahzad, S. M., Riaz, M., Rizwan, M., Iqbal, S., Asif, M., Soliman, M. H., & Ali, S. (2019). Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere, 234, 70–80.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, J. E. (1991). Toward a science of metabolic engineering. Science, 252(5013), 1668–1675.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68(2), 175–179.

    Article  CAS  Google Scholar 

  • Bajpai, A., Khan, K., Muthukumar, M., Rajan, S., & Singh, N. K. (2018). Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel. Genome, 61(3), 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Liu, G. D., Zotarelli, L., & Khan, N. (2017). Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiologiae Plantarum, 39(1), 1–15.

    Article  CAS  Google Scholar 

  • Bali, A. S., & Sidhu, G. P. S. (2021). Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: A review. Chemosphere, 131050.

    Google Scholar 

  • Bali, A. S., Sidhu, G. P. S., & Kumar, V. (2020). Root exudates ameliorate cadmium tolerance in plants: A review. Environmental Chemistry Letters, 18(4), 1243–1275.

    Article  CAS  Google Scholar 

  • Banavath, J. N., Chakradhar, T., Pandit, V., Konduru, S., Guduru, K. K., Akila, C. S., Podha, S., & Puli, C. O. (2018). Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry, 6, 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5.

    Google Scholar 

  • Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A. S., Bordenave, M., Maldiney, R., Jdey, A., Abdelly, C., & Savouré, A. (2015). Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytologist, 208(4), 1138–1148.

    Article  CAS  PubMed  Google Scholar 

  • Bhargavi, B., Kalpana, K., & Reddy, J. K. (2017). Influence of water stress on morphological and physiological changes in Andrographis paniculata. International Journal of Pure & Applied Bioscience, 5, 1550–1556.

    Article  Google Scholar 

  • Bhatt, R. M., & Rao, N. S. (2005). Influence of pod load on response of okra to water stress. Indian Journal of Plant Physiology, 10(1), 54.

    Google Scholar 

  • Bouchemal, K., Bouldjadj, R., Belbekri, M. N., Ykhlef, N., & Djekoun, A. (2017). Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Archives of Agronomy and Soil Science, 63(5), 710–722.

    Article  CAS  Google Scholar 

  • Brestic, M., Zivcak, M., Kunderlikova, K., & Allakhverdiev, S. I. (2016). High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 130(1), 251–266.

    Article  CAS  PubMed  Google Scholar 

  • Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A., & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40(1), 373–386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campos, C. N., Ávila, R. G., de Souza, K. R. D., Azevedo, L. M., & Alves, J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37–47.

    Article  Google Scholar 

  • Cao, Y., Luo, Q., Tian, Y., & Meng, F. (2017). Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biology, 17(1), 1–16.

    Article  CAS  Google Scholar 

  • Chen, T., Li, W., Hu, X., Guo, J., Liu, A., & Zhang, B. (2015). A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant and Cell Physiology, 56(5), 917–929.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Wang, H., Hu, W., Wang, S., Snider, J. L., & Zhou, Z. (2017). Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton. Environmental and Experimental Botany, 135, 106–117.

    Article  CAS  Google Scholar 

  • Cheng, X. Q., Zhu, X. F., Tian, W. G., Cheng, W. H., Sun, J., Jin, S. X., & Zhu, H. G. (2017). Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell, Tissue and Organ Culture (PCTOC), 129(2), 237–249.

    Article  CAS  Google Scholar 

  • Chowdhury, J. A., Karim, M. A., Khaliq, Q. A., & Ahmed, A. U. (2017). Effect of drought stress on bio-chemical change and cell membrane stability of soybean genotypes. Bangladesh Journal of Agricultural Research, 42(3), 475–485.

    Article  Google Scholar 

  • Corradini, E., Foglia, P., Giansanti, P., Gubbiotti, R., Samperi, R., & Lagana, A. (2011). Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Natural Product Research, 25(5), 469–495.

    Article  CAS  PubMed  Google Scholar 

  • Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell & Environment, 42(3), 998–1018.

    Article  CAS  Google Scholar 

  • Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). Biochemistry and Molecular Biology of Plants, 24, 1250–1319.

    Google Scholar 

  • Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline accumulation in plants: Roles in stress tolerance and plant development. In Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 155–166). Springer.

    Chapter  Google Scholar 

  • Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272–280.

    Article  CAS  Google Scholar 

  • Deng, B., Yang, K., Zhang, Y., & Li, Z. (2015). The effects of temperature on the germination behavior of white, yellow, red and purple maize plant seeds. Acta Physiologiae Plantarum, 37(8), 1–11.

    Article  CAS  Google Scholar 

  • Di, H., Tian, Y., Zu, H., Meng, X., Zeng, X., & Wang, Z. (2015). Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica, 206(3), 775–783.

    Article  CAS  Google Scholar 

  • Docimo, T., Reichelt, M., Schneider, B., Kai, M., Kunert, G., Gershenzon, J., & D’Auria, J. C. (2012). The first step in the biosynthesis of cocaine in Erythroxylum coca: The characterization of arginine and ornithine decarboxylases. Plant Molecular Biology, 78(6), 599–615.

    Article  CAS  PubMed  Google Scholar 

  • Duque, A. S., López-Gómez, M., Kráčmarová, J., Gomes, C. N., Araújo, S. S., Lluch, C., & Fevereiro, P. (2016). Genetic engineering of polyamine metabolism changes Medicago truncatula responses to water deficit. Plant Cell, Tissue and Organ Culture (PCTOC), 127(3), 681–690.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 2104.

    Article  PubMed  PubMed Central  Google Scholar 

  • El Ghachtouli, N., Martin-Tanguy, J., Paynot, M., & Gianinazzi, S. (1996). First-report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Letters, 385(3), 189–192.

    Article  PubMed  Google Scholar 

  • Espasandin, F. D., Calzadilla, P. I., Maiale, S. J., Ruiz, O. A., & Sansberro, P. A. (2018). Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. Journal of Plant Growth Regulation, 37(1), 156–165.

    Article  CAS  Google Scholar 

  • Espasandin, F. D., Maiale, S. J., Calzadilla, P., Ruiz, O. A., & Sansberro, P. A. (2014). Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiology and Biochemistry, 76, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Melo, A. C., Reid, M. S., & Jiang, C. Z. (2015). Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Horticulture Research, 2(1), 1–9.

    Article  CAS  Google Scholar 

  • Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M. Z., Shah, A. N., Ullah, A., Khan, F., Ullah, S., & Alharby, H. (2016). A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 103, 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Faik, A., Popova, A. V., & Velitchkova, M. (2016). Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants. Photosynthetica, 54(4), 611–619.

    Article  CAS  Google Scholar 

  • Falahi, H., Sharifi, M., Chashmi, N. A., & Maivan, H. Z. (2018). Water stress alleviation by polyamines and phenolic compounds in Scrophularia striata is mediated by NO and H2O2. Plant Physiology and Biochemistry, 130, 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Varshney, P., Yusuf, M., Ali, A., & Ahmad, A. (2013). Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress, 7(1), 8–18.

    Google Scholar 

  • Feng, Y., Yin, Y., & Fei, S. (2015). Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science, 234, 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R. S., & Clément, C. (2010). Trehalose and plant stress responses: Friend or foe? Trends in Plant Science, 15(7), 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Figueroa, C. M., & Lunn, J. E. (2016). A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiology, 172(1), 7–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2000). Tansley review No. 112: Oxygen processing in photosynthesis: Regulation and signalling. New Phytologist, 146(3), 359–388.

    Article  CAS  Google Scholar 

  • Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., & Wu, R. J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, 99(25), 15898–15903.

    Article  CAS  Google Scholar 

  • Gheidary, S., Akhzari, D., & Pessarakli, M. (2017). Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L. Journal of Plant Nutrition, 40(10), 1507–1514.

    Article  CAS  Google Scholar 

  • Gholami, M., Fakhari, A. R., & Ghanati, F. (2013). Selective regulation of nicotine and polyamines biosynthesis in tobacco cells by enantiomers of ornithine. Chirality, 25(1), 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Gong, B., Li, X., VandenLangenberg, K. M., Wen, D., Sun, S., Wei, M., Li, Y., Yang, F., Shi, Q., & Wang, X. (2014). Overexpression of S-adenosyl-l-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 12(6), 694–708.

    Article  CAS  PubMed  Google Scholar 

  • Gunapati, S., Naresh, R., Ranjan, S., Nigam, D., Hans, A., Verma, P. C., Gadre, R., Pathre, U. V., Sane, A. P., & Sane, V. A. (2016). Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Scientific Reports, 6(1), 1–14.

    CAS  Google Scholar 

  • Guo, F., Yang, S., Feng, Y., Zhang, J. L., Meng, J. J., Li, X. G., & Wan, S. B. (2016). Effects of heat and high irradiance stress on energy dissipation of photosystem II in low irradiance-adapted peanut leaves. Russian Journal of Plant Physiology, 63(1), 62–69.

    Article  CAS  Google Scholar 

  • Gurumurthy, S., Sarkar, B., Vanaja, M., Lakshmi, J., Yadav, S. K., & Maheswari, M. (2019). Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiologiae Plantarum, 41(3), 1–14.

    Article  CAS  Google Scholar 

  • Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8(9), 1304–1320.

    Article  CAS  PubMed  Google Scholar 

  • Habben, J. E., Bao, X., Bate, N. J., DeBruin, J. L., Dolan, D., Hasegawa, D., Helentjaris, T. G., Lafitte, R. H., Lova, N., Mo, H., Reimann, K., & Schussler, J. R. (2014). Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnology Journal, 12(6), 685–693.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press.

    Book  Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Exogenous proline and glycine betaine-mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 2014.

    Google Scholar 

  • Hassan, F. A. S., Ali, E. F., & Alamer, K. H. (2018). Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. South African Journal of Botany, 116, 96–102.

    Article  CAS  Google Scholar 

  • He, X., Zhao, X., Gao, L., Shi, X., Dai, X., Liu, Y., Xia, T., & Wang, Y. (2018). Isolation and characterization of key genes that promote flavonoid accumulation in purple-leaf tea (Camellia sinensis L.). Scientific Reports, 8(1), 1–13.

    Google Scholar 

  • Helaly, A. A. (2017). Strategies for improvement of horticultural crops against abiotic stresses. Journal of Hortic, 4, e107.

    Google Scholar 

  • Hu, Y., Xia, S., Su, Y., Wang, H., Luo, W., Su, S., & Xiao, L. (2016). Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress. BioMed Research International, 2016.

    Google Scholar 

  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, H., Lee, D. K., Do Choi, Y., & Kim, J. K. (2015). OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Science, 236, 304–312.

    Article  CAS  PubMed  Google Scholar 

  • Kang, N. Y., Cho, C., Kim, N. Y., & Kim, J. (2012). Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology, 169(14), 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, G., & Asthir, B. J. B. P. (2015). Proline: A key player in plant abiotic stress tolerance. Biologia Plantarum, 59(4), 609–619.

    Article  CAS  Google Scholar 

  • Kaya, C., Tuna, A. L., Ashraf, M., & Altunlu, H. (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany, 60(3), 397–403.

    Article  CAS  Google Scholar 

  • Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655–1665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20(4), 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Ke, Q., Wang, Z., Ji, C. Y., Jeong, J. C., Lee, H. S., Li, H., Xu, B., Deng, X., & Kwak, S. S. (2015). Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiology and Biochemistry, 94, 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. I. R., Reddy, P. S., Ferrante, A., Khan, N. A., & (Eds.). (2019). Plant signaling molecules: Role and regulation under stressful environments. Woodhead Publishing.

    Google Scholar 

  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160(5), 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Khare, T., Srivastav, A., Shaikh, S., & Kumar, V. (2018). Polyamines and their metabolic engineering for plant salinity stress tolerance. In Salinity responses and tolerance in plants (Vol. 1, pp. 339–358). Springer.

    Chapter  Google Scholar 

  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779.

    Article  CAS  Google Scholar 

  • Khurana, N., Sharma, N., & Khurana, P. (2017). Overexpression of a heat stress inducible, wheat myo-inositol-1-phosphate synthase 2 (TaMIPS2) confers tolerance to various abiotic stresses in Arabidopsis thaliana. Agri Gene, 6, 24–30.

    Article  Google Scholar 

  • Kohli, S. K., Handa, N., Sharma, A., Kumar, V., Kaur, P., & Bhardwaj, R. (2017). Synergistic effect of 24-epibrassinolide and salicylic acid on photosynthetic efficiency and gene expression in Brassica juncea L. under Pb stress. Turkish Journal of Biology, 41(6), 943–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosar, F., Akram, N. A., Sadiq, M., Al-Qurainy, F., & Ashraf, M. (2019). Trehalose: A key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation, 38(2), 606–618.

    Article  CAS  Google Scholar 

  • Kour, D., Rana, K. L., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and Agricultural. Biotechnology, 23, 101501.

    Google Scholar 

  • Kour, D., Rana, K. L., Yadav, N., Yadav, A. N., Singh, J., Rastegari, A. A., & Saxena, A. K. (2019). Agriculturally and industrially important fungi: Current developments and potential biotechnological applications. Recent advancement in white biotechnology through fungi (pp. 1–64). Springer.

    Google Scholar 

  • Kumar, S., Chashoo, G., Saxena, A. K., & Pandey, A. K. (2013). Parthenium hysterophorus: A probable source of anticancer, antioxidant and anti-HIV agents. BioMed Research International, 2013.

    Google Scholar 

  • Kuznetsov, V. V., & Shevyakova, N. I. (2007). Polyamines and stress tolerance of plants. Plant Stress, 1(1), 50–71.

    Google Scholar 

  • Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4(1), 112–166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H., Mo, Y., Cui, Q., Yang, X., Guo, Y., Wei, C., Yang, J., Zhang, Y., Ma, J. X., & Zhang, X. (2019a). Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and-susceptible watermelon genotypes. Plant Science, 278, 32–43.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. W., Zang, B. S., Deng, X. W., & Wang, X. P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 234(5), 1007–1018.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Xing, C., Yao, Z., & Huang, X. (2017). Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnology Journal, 15(9), 1186–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Jin, H., & Zhang, Q. (2016). The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Frontiers in Plant Science, 7, 1221.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zhang, H., Zhang, Q., Liu, Q., Zhai, H., Zhao, N., & He, S. (2019b). An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 281, 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K., & Burkart, S. (1999). Photosynthesis and high light stress. Bulg. J. Plant Physiol, 25(3–4), 3–16.

    CAS  Google Scholar 

  • Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 16(7), 15251–15270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q. H., Xiu, W. U., Chen, B. C., & Jie, G. A. O. (2014). Effects of low light on agronomic and physiological characteristics of rice including grain yield and quality. Rice Science, 21(5), 243–251.

    Article  Google Scholar 

  • Liu, Y., Gu, D., Wu, W., Wen, X., & Liao, Y. (2013). The relationship between polyamines and hormones in the regulation of wheat grain filling. PLoS One, 8(10), e78196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J., Liu, M., Zhang, C., Zhang, P., Chen, J., Guo, Z., & Lu, S. (2017). Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling. Frontiers in Plant Science, 8, 1655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahjoor, F., Ghaemi, A. A., & Golabi, M. H. (2016). Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration. International Soil and Water Conservation Research, 4(2), 99–107.

    Article  Google Scholar 

  • Marco, F., Bitrián, M., Carrasco, P., Alcázar, R., & Tiburcio, A. F. (2015). Polyamine biosynthesis engineering as a tool to improve plant resistance to abiotic stress. In Genetic manipulation in plants for mitigation of climate change (pp. 103–116). Springer.

    Chapter  Google Scholar 

  • Mishra, A., Kumar, S., & Pandey, A. K. (2013a). Scientific validation of the medicinal efficacy of Tinospora cordifolia. The Scientific World Journal, 2013.

    Google Scholar 

  • Mishra, A., Sharma, A. K., Kumar, S., Saxena, A. K., & Pandey, A. K. (2013b, 2013). Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Research International.

    Google Scholar 

  • Mishra, P., Jain, A., Takabe, T., Tanaka, Y., Negi, M., Singh, N., Jain, N., Mishra, V., Maniraj, R., Krishnamurthy, S. L., Sreevathsa, R., Singh, N. K., & Rai, V. (2019). Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Frontiers in Plant Science, 10, 217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi, H., Ghorbanpour, M., & Brestic, M. (2018). Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Industrial Crops and Products, 122, 119–132.

    Article  CAS  Google Scholar 

  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48, 1–7.

    Article  CAS  Google Scholar 

  • Mustafavi, S. H., Badi, H. N., Sękara, A., Mehrafarin, A., Janda, T., Ghorbanpour, M., & Rafiee, H. (2018). Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiologiae Plantarum, 40(6), 1–19.

    Article  CAS  Google Scholar 

  • Najla, S., Sanoubar, R., & Murshed, R. (2012). Morphological and biochemical changes in two parsley varieties upon water stress. Physiology and Molecular Biology of Plants, 18(2), 133–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisa, Z. U., Chen, C., Yu, Y., Chen, C., Mallano, A. I., Xiang-bo, D., Xiao-li, S., & Yan-ming, Z. (2016). Constitutive overexpression of myo-inositol-1-phosphate synthase gene (GsMIPS2) from Glycine soja confers enhanced salt tolerance at various growth stages in Arabidopsis. Journal of Northeast Agricultural University (English Edition), 23(2), 28–44.

    Article  Google Scholar 

  • Nuccio, M. L., Wu, J., Mowers, R., Zhou, H. P., Meghji, M., Primavesi, L. F., Paul, M. J., Gao, Y., Haque, E., Basu, S. S., & Lagrimini, L. M. (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8), 862–869.

    Article  CAS  PubMed  Google Scholar 

  • Pál, M., Szalai, G., & Janda, T. (2015). Speculation: Polyamines are important in abiotic stress signaling. Plant Science, 237, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R., Gupta, A., Chowdhary, A., Pal, R. K., & Rajam, M. V. (2015). Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. Plant Molecular Biology, 87(3), 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Kim, D. H., Lee, J. Y., Ha, S. H., & Lim, S. H. (2017). Comparative analysis of two flavonol synthases from different-colored onions provides insight into flavonoid biosynthesis. Journal of Agricultural and Food Chemistry, 65(26), 5287–5298.

    Article  CAS  PubMed  Google Scholar 

  • Parvin, S., Lee, O. R., Sathiyaraj, G., Khorolragchaa, A., Kim, Y. J., & Yang, D. C. (2014). Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 537(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Pathak, M. R., Teixeira da Silva, J. A., & Wani, S. H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops & Food, 5(2), 87–96.

    Article  Google Scholar 

  • Pegg, A. E. (2016). Functions of polyamines in mammals. Journal of Biological Chemistry, 291(29), 14904–14912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126–140.

    Article  CAS  PubMed  Google Scholar 

  • Pospíšilová, H., Jiskrova, E., Vojta, P., Mrizova, K., Kokáš, F., Čudejková, M. M., Bergougnoux, V., Plihal, O., Klimesova, J., Novak, O., Dzurova, L., Frebort, I., & Galuszka, P. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology, 33(5), 692–705.

    Article  PubMed  CAS  Google Scholar 

  • Prathyusha, I. V. S. N., & Chaitanya, K. V. (2019). Effect of water stress on the physiological and biochemical responses of two different Coleus (Plectranthus) species. Biologia Futura, 70, 312–322.

    CAS  PubMed  Google Scholar 

  • Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J., Sun, S., Luo, S., Zhang, J., Xiao, X., Zhang, L., Wang, F., & Liu, S. (2014). Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Reports, 33(4), 669–680.

    Article  CAS  PubMed  Google Scholar 

  • Rasool, S., Urwat, U., Nazir, M., Zargar, S. M., & Zargar, M. Y. (2018). Cross talk between phytohormone signaling pathways under abiotic stress conditions and their metabolic engineering for conferring abiotic stress tolerance. In Abiotic stress-Mediated Sensing and signaling in plants: An omics perspective (pp. 329–350).

    Chapter  Google Scholar 

  • Rastegari, A. A., Yadav, A. N., & Yadav, N. (2020). New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: Perspectives for human health. Elsevier.

    Google Scholar 

  • Reis, R. S., de Moura Vale, E., Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2016). Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. Journal of Proteomics, 130, 170–179.

    Article  CAS  PubMed  Google Scholar 

  • Riaz, M., Arif, M. S., Ashraf, M. A., Mahmood, R., Yasmeen, T., Shakoor, M. B., Shahzad, S. M., Ali, M., Saleem, I., Arif, M., & Fahad, S. (2019). A comprehensive review on rice responses and tolerance to salt stress. In Advances in rice research for abiotic stress tolerance (pp. 133–158).

    Chapter  Google Scholar 

  • Romero, F. M., Maiale, S. J., Rossi, F. R., Marina, M., Ruíz, O. A., & Gárriz, A. (2018). Polyamine metabolism responses to biotic and abiotic stress. Polyamines, 37–49.

    Google Scholar 

  • Saha, J., Brauer, E. K., Sengupta, A., Popescu, S. C., Gupta, K., & Gupta, B. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 3, 21.

    Article  Google Scholar 

  • Saha, J., & Giri, K. (2017). Molecular phylogenomic study and the role of exogenous spermidine in the metabolic adjustment of endogenous polyamine in two rice cultivars under salt stress. Gene, 609, 88–103.

    Article  CAS  PubMed  Google Scholar 

  • Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6(1), 1–14.

    Article  CAS  Google Scholar 

  • Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Frontiers in Plant Science, 6, 950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 407–421.

    Google Scholar 

  • Sang, Q., Shan, X., An, Y., Shu, S., Sun, J., & Guo, S. (2017). Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Frontiers in Plant Science, 8, 120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader, S. M., Wise, R. R., Wacholtz, W. F., Ort, D. R., & Sharkey, T. D. (2004). Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell & Environment, 27(6), 725–735.

    Article  CAS  Google Scholar 

  • Sekhar, P. N., Amrutha, R. N., Sangam, S., Verma, D. P. S., & Kishor, P. K. (2007). Biochemical characterization, homology modeling and docking studies of ornithine δ-aminotransferase—an important enzyme in proline biosynthesis of plants. Journal of Molecular Graphics and Modelling, 26(4), 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne, M., Weerasundara, L., Ok, Y. S., Rinklebe, J., & Vithanage, M. (2017). Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. Journal of Environmental Management, 186, 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Sequeramutiozabal, M. I., Erban, A., Kopka, J., Atanasov, K. E., Bastida, J., Fotopoulos, V., Alcazar, R., & Tiburcio, A. F. (2016). Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Frontiers in Plant Science, 7, 173.

    Google Scholar 

  • Shah, A., & Smith, D. L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10(8), 1209.

    Article  CAS  Google Scholar 

  • Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Gomez, C., Mattson, N., Nasim, W., & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938.

    Article  CAS  Google Scholar 

  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019b). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019a). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma, A., Thakur, S., Kumar, V., Kanwar, M. K., Kesavan, A. K., Thukral, A. K., Bhardwaj, R., Alam, P., & Ahmad, P. (2016). Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Frontiers in Plant Science, 7, 1569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, H., & Chan, Z. (2014). Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. Journal of Integrative Plant Biology, 56(2), 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Habben, J. E., Archibald, R. L., Drummond, B. J., Chamberlin, M. A., Williams, R. W., Lafitte, H. R., & Weers, B. P. (2015). Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiology, 169(1), 266–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Yuan, Y. H. (2013). Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry, 63, 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, G. P. S., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2018). Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere, 205, 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, G. P. S., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2020). Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress. Chemosphere, 244, 125350.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017a). Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere, 182, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017b). Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and Environmental Safety, 135, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Zhang, R., Yue, D., Chen, X., Guo, Z., Cheng, C., Hu, M., Zhang, J., & Zhang, K. (2018). Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. Plant Science, 274, 369–382.

    Article  CAS  PubMed  Google Scholar 

  • Songstad, D. D., Petolino, J. F., Voytas, D. F., & Reichert, N. A. (2017). Genome editing of plants. Critical Reviews in Plant Science, 36, 1–23.

    Article  Google Scholar 

  • Srivastava, S., & Srivastava, M. (2014). Morphological changes and antioxidant activity of Stevia rebaudiana under water stress. American Journal of Plant Sciences, 5(22), 3417.

    Article  CAS  Google Scholar 

  • Sun, P., Zhu, X., Huang, X., & Liu, J. H. (2014). Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiology and Biochemistry, 78, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Liu, X., Zhai, H., Gao, H., Yao, Y., & Du, Y. (2016). Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves. Acta Physiologiae Plantarum, 38(10), 1–8.

    Article  CAS  Google Scholar 

  • Suprasanna, P., Nikalje, G. C., & Rai, A. N. (2016). Osmolyte accumulation and implications in plant abiotic stress tolerance. In Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 1–12). Springer.

    Google Scholar 

  • Surekha, C. H., Kumari, K. N., Aruna, L. V., Suneetha, G., Arundhati, A., & Kishor, P. K. (2014). Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell, Tissue and Organ Culture (PCTOC), 116(1), 27–36.

    Article  CAS  Google Scholar 

  • Tabatabaie, S. J., & Nazari, J. (2007). Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turkish Journal of Agriculture and Forestry, 31(4), 245–253.

    CAS  Google Scholar 

  • Talaat, N. B., & Shawky, B. T. (2011). Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. Journal of Plant Nutrition and Soil Science, 174(2), 283–291.

    Article  CAS  Google Scholar 

  • Talaat, N. B., Shawky, B. T., & Ibrahim, A. S. (2015). Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany, 113, 47–58.

    Article  CAS  Google Scholar 

  • Tan, Y., Hu, W., Xu, X., Zhou, J., Wang, C., Liu, X., & Cheng, G. (2017). Polyamine plays a role in subculture growth of in vitro callus of indica rice. Acta Biologica Cracoviensia s. Botanica.

    Book  Google Scholar 

  • Tian, F., Wang, W., Liang, C., Wang, X., Wang, G., & Wang, W. (2017). Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. The Crop Journal, 5(1), 73–82.

    Article  Google Scholar 

  • Tian, X., Wang, Z., Li, X., Lv, T., Liu, H., Wang, L., Niu, H., & Bu, Q. (2015). Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice, 8(1), 1–13.

    Article  Google Scholar 

  • Tiwari, P., Bajpai, M., Singh, L. K., Mishra, S., & Yadav, A. N. (2020). Phytohormones producing fungal communities: Metabolic engineering for abiotic stress tolerance in crops. In Agriculturally important fungi for sustainable agriculture (pp. 171–197). Springer.

    Chapter  Google Scholar 

  • Upadhyay, A. K., Singh, N. K., Singh, R., & Rai, U. N. (2016). Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicology and Environmental Safety, 124, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Verma, P., Yadav, A. N., Khannam, K. S., Kumar, S., Saxena, A. K., & Suman, A. (2016). Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Journal of Basic Microbiology, 56(1), 44–58.

    Article  CAS  PubMed  Google Scholar 

  • Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., & Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65(4), 1885–1899.

    Article  CAS  Google Scholar 

  • Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M., & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vob, U., Bishopp, A., Farcot, E., & Bennett, M. J. (2014). Modelling hormonal response and development. Trends in Plant Science, 19(5), 311–319.

    Article  CAS  Google Scholar 

  • Vuosku, J., Karppinen, K., Muilu-Mäkelä, R., Kusano, T., Sagor, G. H. M., Avia, K., Alakärppä, E., Kestilä, J., Suokas, M., Nickolov, K., Hamberg, L., Savolainen, O., Haggman, H., & Sarjala, T. (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6), 1243–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, L., Wu, Y., Huang, J., Dai, X., Lei, Y., Yan, L., Jiang, H., Zhang, J., Varshney, R. K., & Liao, B. (2014). Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Functional & Integrative Genomics, 14(3), 467–477.

    Article  CAS  Google Scholar 

  • Wang, C., Zhi, S., Liu, C., Xu, F., Zhao, A., Wang, X., Tang, X., Li, Z., Huang, P., & Yu, M. (2017). Isolation and characterization of a novel chalcone synthase gene family from mulberry. Plant Physiology and Biochemistry, 115, 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Deng, F., Ren, W. J., & Yang, W. Y. (2013). Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.). PLoS One, 8(7), e68220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, P., Zhang, L., Jiang, X., Dai, X., Xu, L., Li, T., Xing, D., Li, Y., Li, M., Gao, L., & Xia, T. (2018). Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta, 247(1), 139–154.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., & Liu, J. H. (2016). CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Scientific Reports, 6(1), 1–15.

    CAS  Google Scholar 

  • Wang, X., Shu, C., Li, H., Hu, X., & Wang, Y. (2014). Effects of 0.01% brassinolide solution application on yield of rice and its resistance to autumn low-temperature damage. Acta Agriculturae Jiangxi, 26(5), 36–38.

    CAS  Google Scholar 

  • Wang, Y., Yang, L., Chen, X., Ye, T., Zhong, B., Liu, R., Wu, Y., & Chan, Z. (2016). Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 67(1), 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Wani, M. A., Jan, N., Qazi, H. A., Andrabi, K. I., & John, R. (2018). Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L. Acta Physiologiae Plantarum, 40(9), 1–14.

    Article  CAS  Google Scholar 

  • Wani, T. A., Pandith, S. A., Gupta, A. P., Chandra, S., Sharma, N., & Lattoo, S. K. (2017). Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS One, 12(6), e0179155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei, D., Zhang, W., Wang, C., Meng, Q., Li, G., Chen, T. H., & Yang, X. (2017). Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Science, 257, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Wellmann, F., Lukačin, R., Moriguchi, T., Britsch, L., Schiltz, E., & Matern, U. (2002). Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. European Journal of Biochemistry, 269(16), 4134–4142.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., He, J., Chen, J., Yang, S., & Zha, D. (2014). Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma, 251(1), 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Wuddineh, W., Minocha, R., & Minocha, S. C. (2018). Polyamines in the context of metabolic networks. Polyamines, 1–23.

    Google Scholar 

  • Xia, X. J., Gao, C. J., Song, L. X., Zhou, Y. H., Shi, K. A. I., & Yu, J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell & Environment, 37(9), 2036–2050.

    Article  CAS  Google Scholar 

  • Xu, L. (2015). The effect of polyamineon flower bud differentiation and bud germination of chrysanthemum. Shandong Agricultural University, 2, 31–36.

    Google Scholar 

  • Yadav, A. N., Kour, D., Rana, K. L., Yadav, N., Singh, B., Chauhan, V. S., Rastegari, A. A., Hesham, A. E. L., & Gupta, V. K. (2019). Metabolic engineering to synthetic biology of secondary metabolites production. In New and future developments in microbial biotechnology and bioengineering (pp. 279–320). Elsevier.

    Chapter  Google Scholar 

  • Yadav, A. N., Rastegari, A. A., Yadav, N., & (Eds.). (2021). Microbiomes of extreme environments: Biodiversity and biotechnological applications. CRC Press.

    Google Scholar 

  • Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2015a). Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. Journal of Bioscience and Bioengineering, 119(6), 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A. N., Sachan, S. G., Verma, P., Tyagi, S. P., Kaushik, R., & Saxena, A. K. (2015b). Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World Journal of Microbiology and Biotechnology, 31(1), 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A. N., Singh, J., Rastegari, A. A., & Yadav, N. (Eds.). (2020). Plant microbiomes for sustainable agriculture (Vol. 25). Springer.

    Google Scholar 

  • Yahyaa, M., Ali, S., Davidovich-Rikanati, R., Ibdah, M., Shachtier, A., Eyal, Y., Lewinsohn, E., & Ibdah, M. (2017). Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.). Phytochemistry, 140, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Wang, S., Deng, X., Yin, L., Xiong, B., & Wang, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum, 38(2), 48.

    Article  CAS  Google Scholar 

  • You, L., Song, Q., Wu, Y., Li, S., Jiang, C., Chang, L., Yang, X., & Zhang, J. (2019). Accumulation of glycine betaine in transplastomic potato plants expressing choline oxidase confers improved drought tolerance. Planta, 249(6), 1963–1975.

    Article  CAS  PubMed  Google Scholar 

  • Zaheer, I. E., Ali, S., Rizwan, M., Farid, M., Shakoor, M. B., Gill, R. A., Najeeb, U., Iqbal, N., & Ahmad, R. (2015). Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicology and Environmental Safety, 120, 310–317.

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Zang, X., Geng, X., Wang, F., Liu, Z., Zhang, L., Zhao, Y., Tian, X., Ni, Z., Yao, Y., Xin, M., Hu, Z., Sun, Q., & Peng, H. (2017). Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 17(1), 1–13.

    Article  CAS  Google Scholar 

  • Zhang, G. W., Xu, S. C., Hu, Q. Z., Mao, W. H., & Gong, Y. M. (2014). Putrescine plays a positive role in salt-tolerance mechanisms by reducing oxidative damage in roots of vegetable soybean. Journal of Integrative Agriculture, 13(2), 349–357.

    Article  CAS  Google Scholar 

  • Zhang, J., Yu, H., Zhang, Y., Wang, Y., Li, M., Zhang, J., Duan, L., Zhang, M., & Li, Z. (2016). Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. Journal of Experimental Botany, 67(5), 1339–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Xu, B., Wu, T., Yang, Y., Fan, L., Wen, M., & Sui, J. (2017). Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway. BMC Genomics, 18(1), 1–11.

    Google Scholar 

  • Zhang, Y., Hu, X. H., Shi, Y., Zou, Z. R., Yan, F., Zhao, Y. Y., Zhang, H., & Zhao, J. Z. (2013). Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. Journal of the American Society for Horticultural Science, 138(1), 38–49.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, Y., Chang, L., Zhang, T., An, J., Liu, Y., Cao, Y., Zhao, X., Hu, T., & Yang, P. (2015). MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Reports, 35(2), 439–453.

    Google Scholar 

  • Zou, M., Yuan, L., Zhu, S., Liu, S., Ge, J., & Wang, C. (2017). Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of wucai (Brassica campestris L.). Acta Physiologiae Plantarum, 39(1), 1–10.

    Article  CAS  Google Scholar 

  • Zulfiqar, F., Akram, N. A., & Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 251(1), 1–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narula, S., Chaudhry, S., Sidhu, G.P.S. (2022). Ameliorating Abiotic Stress Tolerance in Crop Plants by Metabolic Engineering. In: Aftab, T., Hakeem, K.R. (eds) Metabolic Engineering in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7262-0_2

Download citation

Publish with us

Policies and ethics