Skip to main content
Log in

Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L.

  • Original article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present study, we analysed the response of 30 day old seedlings of Capsella bursa-pastoris to cold stress (CS). Seeds of C. bursa-pastoris were grown at 25 °C for 1 month and then exposed to low temperature of 10 °C. Plant tissues were collected at different time points (24, 48, 72, 96 and 120 h) and assayed for change in osmoprotectants, fatty acid composition of membrane system and antioxidant enzymes. We also analysed the gene expression of important stress related transcription factors (TF) such as, LEA (Late embryogenesis abundant) and DREB (Dehydration responsive element binding). A significant increase in the levels of several osmoprotectants such as proline (Pro), glycine betaine (GB), free amino acids, total proteins, total soluble sugars and trehalose was observed. CS increased membrane fluidity by changing the ratio of saturated and unsaturated fatty acids in membranes which in turn resulted in significant ion leakage. CS in C. bursa-pastoris led to a significant decrease in photosynthetic pigments and ultimately altered the overall growth and biomass. Similarly, significant changes in antioxidant enzymes were observed, POD (peroxidase), CAT (cataalase), SOD (superoxide dismutase) and GR (glutathione reductase) increased significantly while as APX (ascorbate peroxidase) declined in response to CS. We assessed the transcriptional expression using qRT-PCR of these antioxidant genes coordinated with their enzyme activities. Additionally, in C. bursa-pastoris cold inducible genes encoding DREB and LEA (protein also got upregulated under CS). The present study suggests that C. bursa-pastoris responded to CS efficiently by changing its different metabolic pathways, antioxidant system, fatty acid composition and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CS:

Cold stress

Raphanus sativus :

R. sativus

Capsella bursa-pastoris :

C. bursa-patoris

qPCR:

Quantitative PCR

References

  • Akrami M, Arzani A (2018) Physiological alterations due to field salinity stress in melon (Cucumis melo L.). Acta Physiol Plant 40:1–14

    Article  CAS  Google Scholar 

  • Baek KH, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 1:34

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant soil 39:205–207

    Article  CAS  Google Scholar 

  • Bohn M, Luthje S, Sperling P, Heinz E, Dorffling K (2007) Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J plant Physiol 164:146–156

    Article  CAS  PubMed  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larre C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436. https://doi.org/10.1104/pp.105.074039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai HM, Dong YY, Li YY, Li DX, Peng CY, Zhang ZZ (2016) Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiol Plant 38:144–155. https://doi.org/10.1007/s11738-016-2156-0

    Article  CAS  Google Scholar 

  • Cyril J, Powell GL, Duncan RR, Baird WV (2002) Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci 42:2031–2037

    Article  CAS  Google Scholar 

  • Dey PM (1990) Oligosaccharides. In: Dey PM, Harbome JB (eds) Methods in plant biochemistry, vol 2. Academic Press, San Diego, CA, pp 189–218

    Chapter  Google Scholar 

  • Ding T, Pang J, Wang Q, Yang N, Gao LP (2012) Effect of exogenous glycine betaine treatment on chilling injury of hot pepper. Guangdong Agric Sci 21:2015

    Google Scholar 

  • Ding X, Zhang H, Wang L, Qian H, Qi X, Xiao J (2015) Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocoll 47:32–40

    Article  CAS  Google Scholar 

  • Duxbury AC, Yentsch CS (1956) Plankton pigment nomography. J Air Pollut Control Assoc 16:145–150

    Google Scholar 

  • Ebrahimi M, Abdullah SNA, Aziz MA, Namasivayam P (2016) Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. J Plant Physiol 202:107–120

    Article  CAS  PubMed  Google Scholar 

  • El-Aal HAHMA (2012) Lipid peroxidation end-products as a key of oxidative stress: effect of antioxidant on their production and transfer of free radicals. In Lipid Peroxidation. https://doi.org/10.5772/45944 (InTech)

    Article  Google Scholar 

  • Fan J, Ren J, Zhu W, Amombo E, Fu J, Chen L (2014) Antioxidant responses and gene expression in bermudagrass under cold stress. J Am Soc Hortic Sci 139:699–705

    CAS  Google Scholar 

  • Feng W, Indner H, Robbins NE, Dinneny JR (2016) Growing out of stress: the role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell 28:1769–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Diaz-Espejo A, Gago J, Galle A, Galmes J, Gulias J, Medrano H (2014) Photosynthetic limitations in Mediterranean plants: a review. Environ Exp Bot 103:12–23

    Article  CAS  Google Scholar 

  • Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883

    Article  CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DREB-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses intransgenic wheat. Plant Cell Rep 28:301–311

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Harb A, Awad D, Samarah N (2015) Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. J Plant Interact 10:109–116

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthrocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Holden M (1961) The breakdown of chlorophyll by chlorophyllase. Biochem J 78:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Iio M (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64:1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Hu ZR, Fan JB, Xie Y, Amombo E, Liu A, Gitau MM (2016) Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem 100:94–104. https://doi.org/10.1016/j.plaphy.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  • Huang HR, Liu JJ, Xu Y, Lascoux M, Ge XJ, Wright SI (2018) Homeologue-specific expression divergence in the recentlyformed tetraploid Capsella bursa-pastoris (Brassicaceae). New Phytol. https://doi.org/10.1111/nph.15299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hundertmark M, Hincha D (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  CAS  Google Scholar 

  • Jan N, Hussain M, Andrabi KI (2009) Cold resistance in plants: a mystery unresolved. Electron J Biotechnol 12:15

    Article  Google Scholar 

  • Jan N, Majeed U, Andrabi KI, John R (2018) Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiol Plant 40:73

    Article  CAS  Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2009) Cold stress and acclimation—what is important for metabolic adjustment. Plant Biol 12:395–405

    Article  CAS  Google Scholar 

  • John R, Ganeshan U, Singh BN, Kaul T, Reddy MK, Sopory SK, Rajam MV (2016) Over-expression of topoisomerase II enhances salt stress tolerance in tobacco. Front Plant Sci 7:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, Kaul T (2017) Trehalose: metabolism and role in stress signalling in plants. In stress signaling in plants: genomics and proteomics perspective, vol 2, pp 261–275. Springer International Publishing, Berlin

    Book  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karabudak T, Bor M, Ozdemir F, Turkan I (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase 7 and lipoxygenase gene expression. Mol Biol Rep 41:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Matsumoto Y, Matsunaga A, Mayama S, Mizuno M (2002) Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant Sci 163:829–836

    Article  CAS  Google Scholar 

  • Knight MR, Heather K (2012) Low temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 4:737–751

    Article  CAS  Google Scholar 

  • Koc E, Islek C, Ustun AS (2010) Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi Univ J Sci 23:1–6

    Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Vashegyi I, Kocsy G (2012) Different accumulation of free amino acids during short-and long-term osmotic stress in wheat. Sci World J 1:2012

    Google Scholar 

  • Lee BH, Zhu JK (2010) Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protoc 2010:4970

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • MacLachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of achlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  • Maraghni M, Gorai M, Neffati M (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. S Afr J Bot 76:453–459

    Article  CAS  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23(3):535

    Article  CAS  PubMed Central  Google Scholar 

  • Moore S, Stein WH (1948) Partition chromatography of amino acids on starch. Ann N Y Acad Sci 49:265–278

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K et al (2000) Organization and expression of two arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  • Nanculao GD, Herrera ML, Carcamo MP, Velasquez VB (2014) Relative expression of genes related with cold tolerance in temperate rice at the seedling stage. Afr J Biotechnol 13:2506–2512

    Article  CAS  Google Scholar 

  • Omolade O, Muller AE, Jung C, Melzer S (2016) BvPRR7 is a cold responsive gene with a clock function in beet. Biol Plant 60:95–104

    Article  CAS  Google Scholar 

  • Palonen P, Buszard D, Donnelly D (2000) Changes in carbohydrates and freezing tolerance during cold acclimation of red raspberry cultivars grown in vitro and in vivo. Physiol Plant 110:93–401

    Article  Google Scholar 

  • Patane C, Cavallaro V, Cosentino SL (2009) Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Crops Prod 30:1–8

    Article  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. https://doi.org/10.3389/fpls.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi A (2013) Seed priming improves the germination performance of cumin (Cuminum syminum L.) under temperature and water stress. Ind Crops Prod 42:454–460

    Article  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157. https://doi.org/10.1016/j.envexpbot.2017.02.010

    Article  CAS  Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration tolerance and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957. https://doi.org/10.1021/jf035216

    Article  CAS  PubMed  Google Scholar 

  • Shan TM, Sun YJ, Jin P, Xu J, Zheng YH (2014) Effects of glycine betaine on loquat fruit quality during cold storage. IV Int Symp Loquat 1092:131–137

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan CY, Ross WM (1979) Selecting for drought and heat resistance in grain sorghum. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  • Tahmasebi A, Pakniyat H (2015) Comparative analysis of some biochemical responses of winter and spring wheat cultivars under low temperature. Int J Agric Agric 7:14–22

    Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tobeh A, Jamaati-e-Somarin S (2012) Low temperature stress effect on wheat cultivars germination. Afr J Microbiol 6:1265–1269

    Article  Google Scholar 

  • Vazquez-Hernandez M, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT (2017) Deciphering the role of CBF/DREB transcription factors and dehydrins in maintaining the quality of table grapes cv. autumn royal treated with high CO2 levels and stored at 0°C. Front Plant Sci 8:1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen L, Yang H, Wang A (2015) Effect of exogenous glycine betaine on qualities of button mushrooms (Agaricus bisporus) during postharvest storage. Eur Food Research Technol 240:41–48

    Article  CAS  Google Scholar 

  • Xu S, Jiang Y, Cui W, Jin Q, Zhang Y, Bu D, Fu J, Wang R, Zhou F, Shen W (2017) Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 414:53–67

    Article  CAS  Google Scholar 

  • Yoon YE, Kuppusamy S, Cho KM, Kim PJ, Kwack YB, Lee YB (2017) Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chem 215:185–192

    Article  CAS  PubMed  Google Scholar 

  • Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:10

    Google Scholar 

  • Zeng X, Ling H, Yang J, Li Y, Guo S (2018) LEA proteins from Gastrodia elata enhance tolerance to low temperature stress in Escherichia coli. Gene 646:136–142

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu S, Chen K (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by Science and Engineering Research Board (SERB), and Department of Biotechnology, Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riffat John.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Communicated by J. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.A., Jan, N., Qazi, H.A. et al. Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L.. Acta Physiol Plant 40, 167 (2018). https://doi.org/10.1007/s11738-018-2747-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2747-z

Keywords

Navigation