Skip to main content

Mechanical Characterization of Additive Manufactured Polymeric Scaffolds for Tissue Engineering

  • Chapter
  • First Online:
Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery

Abstract

In the last decades, tissue engineering has become a promising and important field of research that is opening new perspectives for the treatment of tissue diseases or injuries. Scaffold-guided tissue engineering involves the fabrication of 3D biodegradable polymeric structures with a porous architecture suitable for cell adhesion and proliferation, as well as the regeneration of the damaged tissue. Biodegradable polymers represent the most employed materials for the fabrication of tissue engineering scaffolds, thanks to their versatile physical-chemical properties and relatively easy processing. Additive manufacturing (AM) techniques are attracting growing interest for the fabrication of scaffolds with customized anatomical shape, overall porosity, as well as pores’ dimension and geometry. Scaffold’s morphological, mechanical, and biological properties optimization is fundamental to obtain structures that precisely mimic the properties of the target tissue and support its regeneration. In particular, scaffold mechanical properties have to be carefully tailored to avoid, for example, the early collapse of the supporting structure or stress-shielding phenomena. This book chapter presents the most important aspects involved in the mechanical characterization of biodegradable polymeric scaffolds fabricated by AM. To this purpose, common strategies employed for enhancing and tuning the mechanical properties of additive manufactured scaffolds are discussed in depth depending on the selected material(s) and the employed AM technique. Relevant experimental approaches, such as the formation of polymeric blends and composites, chemical modification of the starting materials, tailoring scaffold architecture, variation of fabrication parameters, and post-processing treatments, are accordingly overviewed by analyzing representative examples reported in literature and focused on biodegradable polymers of either natural or synthetic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer RS, Vacanti JP (1999) Tissue engineering the challenges ahead. Sci Am 280:86–89

    Article  CAS  PubMed  Google Scholar 

  2. Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89

    Article  CAS  PubMed  Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  4. Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451

    Article  CAS  PubMed  Google Scholar 

  5. Puppi D, Morelli A, Chiellini F (2017) Additive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering (Basel) 4(2):49

    Article  PubMed Central  Google Scholar 

  6. Vinatier C, Guicheux J (2016) Cartilage tissue engineering: from biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med 59:139–144

    Article  CAS  PubMed  Google Scholar 

  7. Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35:6143–6156

    Article  CAS  PubMed  Google Scholar 

  8. Vaz CM, van Tuijl S, Bouten CV, Baaijens FP (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1:575–582

    Article  CAS  PubMed  Google Scholar 

  9. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S et al (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4):789

    Article  PubMed Central  CAS  Google Scholar 

  10. Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S (2013) Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal 2013:154564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Article  CAS  Google Scholar 

  12. Sladkova M, de Peppo G (2014) Bioreactor systems for human bone tissue engineering. Processes 2:494–525

    Article  CAS  Google Scholar 

  13. Pobloth A-M, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K et al (2018) Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med 10(423):eaam8828

    Article  PubMed  CAS  Google Scholar 

  14. Puppi D, Morelli A, Bello F, Valentini S, Chiellini F (2018) Additive manufacturing of poly(methyl methacrylate) biomedical implants with dual-scale porosity. Macromol Mater Eng 303:1800247

    Article  CAS  Google Scholar 

  15. Sarker MD, Naghieh S, Sharma NK, Chen X (2018) 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal 8:277–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr Top Med Chem 8(4):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441

    Article  CAS  PubMed  Google Scholar 

  18. Puppi D, Chiellini F, Dash M, Chiellini E (2011) Biodegradable polymers for biomedical applications. In: Felton GP (ed) Biodegradable polymers: processing, degradation & applications. Nova Science Publishers, New York, pp 545–560

    Google Scholar 

  19. Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M et al (2012) Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevices 14:1115–1127

    Article  CAS  PubMed  Google Scholar 

  20. Puppi D, Chiellini F (2020) Biodegradable polymers for biomedical additive manufacturing. Appl Mater Today 20:100700

    Article  Google Scholar 

  21. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  22. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  23. Peter MG (2002) Chitin and chitosan from animal sources. In: Steinbüchel A (ed) Biopolymers. Wiley-VCH, Weinheim, pp 481–574

    Google Scholar 

  24. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  25. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  26. Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Steinbüchel A (ed) Biopolymers. Wiley-VCH, Weinheim, pp 275–319

    Google Scholar 

  27. Courtenay JC, Sharma RI, Scott JL (2018) Recent advances in modified cellulose for tissue culture applications. Molecules 23:654

    Article  PubMed Central  CAS  Google Scholar 

  28. Gatenholm P, Klemm D (2011) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213

    Article  Google Scholar 

  29. Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories 10:99

    Article  CAS  Google Scholar 

  30. Laurent TC, Laurent UBG, Fraser JRE (1995) Functions of hyaluronian. Ann Rheum Dis 54:429–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279

    Article  CAS  PubMed  Google Scholar 

  32. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10:1502–1514

    Article  CAS  PubMed  Google Scholar 

  33. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15:208–215

    Article  CAS  Google Scholar 

  34. Hosoyama K, Lazurko C, Munoz M, McTiernan CD, Alarcon EI (2019) Peptide-based functional biomaterials for soft-tissue repair. Front Bioeng Biotechnol 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li H, Tan C, Li L (2018) Review of 3D printable hydrogels and constructs. Mater Des 159:20–38

    Article  CAS  Google Scholar 

  36. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  PubMed  Google Scholar 

  37. Tabata Y, Ikada Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301

    Article  CAS  PubMed  Google Scholar 

  38. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38

    Article  CAS  Google Scholar 

  39. Litvinov RI, Weisel JW (2016) What is the biological and clinical relevance of fibrin? Semin Thromb Hemost 42:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spotnitz WD (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34:632–634

    Article  PubMed  Google Scholar 

  41. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  CAS  PubMed  Google Scholar 

  42. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8:e1800465

    Article  PubMed  CAS  Google Scholar 

  44. Kim S, Kim C, Lee J, Kim S, Lee J, Kim J et al (2018) Hybrid electrochemical desalination system combined with an oxidation process. ACS Sustain Chem Eng 6:1620–1626

    Article  CAS  Google Scholar 

  45. Morelli A, Puppi D, Chiellini F (2013) Polymers from renewable resources. J Renew Mater 1:83–112

    Article  CAS  Google Scholar 

  46. Miranda De Sousa Dias M, Koller M, Puppi D, Morelli A, Chiellini F, Braunegg G (2017) Fed-batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 4:36

    Article  CAS  Google Scholar 

  47. Puppi D, Pecorini G, Chiellini F (2019) Biomedical processing of polyhydroxyalkanoates. Bioengineering 6:108

    Article  CAS  PubMed Central  Google Scholar 

  48. Puppi D, Chiellini F (2020) Additive manufacturing of PHA. In: Koller M (ed) Handbook of polyhydroxyalkanoates. CRC Press, Boca Raton, FL

    Google Scholar 

  49. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  50. Coulembier O, Degée P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives. Prog Polym Sci 31:723–747

    Article  CAS  Google Scholar 

  51. Youssef A, Hollister SJ, Dalton PD (2017) Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication 9:012002

    Article  PubMed  CAS  Google Scholar 

  52. Puppi D, Chiellini F (2021) Computer-aided wet-spinning. In: Rainer A, Moroni L (eds) Computer-aided tissue engineering: methods and protocols. Springer, New York, pp 101–110

    Chapter  Google Scholar 

  53. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  54. Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265

    Article  CAS  Google Scholar 

  55. Narladkar A, Balnois E, Vignaud G, Grohens Y (2008) Difference in glass transition behavior between semi crystalline and amorphous poly(lactic acid) thin films. Macromol Symp 273:146–152

    Article  CAS  Google Scholar 

  56. Puppi D, Piras AM, Detta N, Dinucci D, Chiellini F (2010) Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomater 6:1258–1268

    Article  CAS  PubMed  Google Scholar 

  57. Kasper FK, Tanahashi K, Fisher JP, Mikos AG (2009) Synthesis of poly(propylene fumarate). Nat Protoc 4:518–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Timmer MD, Ambrose CG, Mikos AG (2003) In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials 24:571–577

    Article  CAS  PubMed  Google Scholar 

  59. Penczek P, Frisch KC, Szczepaniak B, Rudnik E (1993) Synthesis and properties of liquid crystalline polyurethanes. J Polym Sci A Polym Chem 31:1211–1220

    Article  CAS  Google Scholar 

  60. ASTM. Standard terminology for additive manufacturing technologies. Standard F2792-12a2012

    Google Scholar 

  61. Bernal PN, Delrot P, Loterie D, Li Y, Malda J, Moser C et al (2019) Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater 31:e1904209

    Article  PubMed  CAS  Google Scholar 

  62. Aitchison GA, Hukins DWL, Parry JJ, Shepherd DET, Trotman SG (2009) A review of the design process for implantable orthopedic medical devices. Open Biomed Eng J 3:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9:174–190

    Article  CAS  PubMed  Google Scholar 

  64. Javaid M, Haleem A (2018) Additive manufacturing applications in medical cases: a literature based review. Alexandria J Med 54:411–422

    Article  Google Scholar 

  65. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045

    Article  CAS  PubMed  Google Scholar 

  66. Han Y, Yin Q, Wang Y, Zhao H, He J, Gu C (2018) Three-dimensional printed degradable splint in the treatment of pulmonary artery sling associated with severe bilateral bronchus stenosis. Cardiol Young 28:1477–1480

    Article  PubMed  Google Scholar 

  67. Mandrycky C, Wang Z, Kim K, Kim D-H (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434

    Article  CAS  PubMed  Google Scholar 

  68. Mueller B (2012) Additive manufacturing technologies – rapid prototyping to direct digital manufacturing. Assem Autom 32

    Google Scholar 

  69. Chartrain NA, Williams CB, Whittington AR (2018) A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 74:90–111

    Article  CAS  PubMed  Google Scholar 

  70. Hinze U, Chichkov B (2017) Light sources and systems for multiphoton lithography. In: Stampfl J, Liska R, Ovsianikov A (eds) Multiphoton lithography: techniques, materials and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  71. Zhu L, Luo D, Liu Y (2020) Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 12:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20:314–322

    Article  CAS  Google Scholar 

  73. Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. In: NMR; 3D analysis; photopolymerization. Springer, Berlin, pp 169–273

    Google Scholar 

  74. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2002) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64B:65–69

    Article  CAS  Google Scholar 

  75. Geven MA, Varjas V, Kamer L, Wang X, Peng J, Eglin D et al (2015) Fabrication of patient specific composite orbital floor implants by stereolithography. Polym Adv Technol 26:1433–1438

    Article  CAS  Google Scholar 

  76. Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–398

    Article  CAS  PubMed  Google Scholar 

  77. Ronca A, Ronca S, Forte G, Zeppetelli S, Gloria A, De Santis R et al (2016) Synthesis and characterization of divinyl-fumarate poly-ε-caprolactone for scaffolds with controlled architectures. J Tissue Eng Regen Med 12:e523–ee31

    Article  CAS  Google Scholar 

  78. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(ϵ-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62:395–403

    Article  CAS  PubMed  Google Scholar 

  79. Lee S-J, Kang H-W, Park JK, Rhie J-W, Hahn SK, Cho D-W (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10:233–241

    Article  CAS  PubMed  Google Scholar 

  80. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30:3801–3809

    Article  CAS  PubMed  Google Scholar 

  81. Jansen J, Melchels FPW, Grijpma DW, Feijen J (2009) Fumaric acid monoethyl ester-functionalized poly(d,l-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10:214–220

    Article  CAS  PubMed  Google Scholar 

  82. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang W, Li D, Wang K, Bian W, Li X, Lian Q et al (2012) Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J 18:68–80

    Article  CAS  Google Scholar 

  84. Morris VB, Nimbalkar S, Younesi M, McClellan P, Akkus O (2017) Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography. Ann Biomed Eng 45:286–296

    Article  PubMed  Google Scholar 

  85. Froyen L, Kruth JP, Laoui T, Wang X (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371

    Article  Google Scholar 

  86. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827

    Article  CAS  PubMed  Google Scholar 

  87. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3:1–12

    Article  CAS  PubMed  Google Scholar 

  88. Eosoly S, Lohfeld S, Brabazon D (2009) Effect of hydroxyapatite on biodegradable scaffolds fabricated by SLS. Key Eng Mater 396–398:659–662

    Google Scholar 

  89. Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6:2467–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee P-H, Chang E, Yu S, Lee SW, Kim IW, Park S et al (2013) Modification and characteristics of biodegradable polymer suitable for selective laser sintering. Int J Precis Eng Manuf 14:1079–1086

    Article  Google Scholar 

  91. Antonov EN, Bagratashvili VN, Whitaker MJ, Barry JJA, Shakesheff KM, Konovalov AN et al (2004) Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater 17:327–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Antonov EN, Bagratashvili VN, Howdle SM, Konovalov AN, Popov VK, Panchenko VY (2006) Fabrication of polymer scaffolds for tissue engineering using surface selective laser sintering. Laser Phys 16:774–787

    Article  CAS  Google Scholar 

  93. Gayer C, Abert J, Bullemer M, Grom S, Jauer L, Meiners W et al (2018) Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering. J Mech Behav Biomed Mater 87:267–278

    Article  CAS  PubMed  Google Scholar 

  94. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6:4495–4505

    Article  CAS  PubMed  Google Scholar 

  95. Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7:S615–SS29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duan B, Cheung WL, Wang M (2011) Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3:015001

    Article  PubMed  CAS  Google Scholar 

  97. Les AS, Ohye RG, Filbrun AG, Ghadimi Mahani M, Flanagan CL, Daniels RC et al (2019) 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 129(8):1763–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK et al (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 7:285ra64

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 10:96–104

    Article  Google Scholar 

  101. Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920

    Article  CAS  PubMed  Google Scholar 

  102. Wei Q, Wang Y, Chai W, Zhang Y, Chen X (2017) Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 43:13702–13709

    Article  CAS  Google Scholar 

  103. Wei Q, Wang Y, Li X, Yang M, Chai W, Wang K et al (2016) Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 57:190–200

    Article  CAS  PubMed  Google Scholar 

  104. Shao H, Sun M, Zhang F, Liu A, He Y, Fu J et al (2017) Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res 97:68–76

    Article  PubMed  CAS  Google Scholar 

  105. Seidenstuecker M, Kerr L, Bernstein A, Mayr OH, Suedkamp PN, Gadow R et al (2018) 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials 11:13

    Article  CAS  Google Scholar 

  106. Deng Y, Jiang C, Li C, Li T, Peng M, Wang J et al (2017) 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci Rep 7:5588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Miguel C, Marta D, Uwe G, Jürgen G, Paulo F, Inês P et al (2013) Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication 5:035012

    Article  CAS  Google Scholar 

  108. Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45:23–44

    Article  PubMed  Google Scholar 

  109. Barba A, Diez-Escudero A, Maazouz Y, Rappe K, Espanol M, Montufar EB et al (2017) Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture. ACS Appl Mater Interfaces 9:41722–41736

    Article  CAS  PubMed  Google Scholar 

  110. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18:909–916

    Article  CAS  PubMed  Google Scholar 

  111. Lin S, Chao PY, Chien YW, Sayani S, Kuma S, Mason M et al (2001) In vitro and in vivo evaluations of biodegradable implants for hormone replacement therapy: effect of system design and PK-PD relationship. AAPS PharmSciTech 2:E16

    Article  CAS  PubMed  Google Scholar 

  112. Huang W, Zheng Q, Sun W, Xu H, Yang X (2007) Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm 339:33–38

    Article  CAS  PubMed  Google Scholar 

  113. Wu W, Zheng Q, Guo X, Sun J, Liu Y (2009) A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater 4:065005

    Article  PubMed  CAS  Google Scholar 

  114. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56

    Article  Google Scholar 

  115. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  116. Mota C, Puppi D, Dinucci D, Errico C, Bártolo P, Chiellini F (2011) Dual-scale polymeric constructs as scaffolds for tissue engineering. Materials 4(3):527–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gloria A, Russo T, De Santis R, Ambrosio L (2009) 3d fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications. J Appl Biomater Biomech 7:141–152

    CAS  PubMed  Google Scholar 

  118. Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S et al (2004) Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyp J 10:42–49

    Article  Google Scholar 

  119. Domingos M, Chiellini F, Gloria A, Ambrosio L, Bartolo P, Chiellini E (2012) Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε-caprolactone) scaffolds. Rapid Prototyp J 18:56–67

    Article  Google Scholar 

  120. Rohner D, Hutmacher Dietmar W, Cheng Tan K, Oberholzer M, Hammer B (2003) In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 66B:574–580

    Article  CAS  Google Scholar 

  121. Park SH, Park DS, Shin JW, Kang YG, Kim HK, Yoon TR et al (2012) Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J Mater Sci Mater Med 23:2671–2678

    Article  CAS  PubMed  Google Scholar 

  122. Jinku K, Sean M, Brandi T, Pedro A-U, Young-Hye S, David DD et al (2012) Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4:025003

    Article  CAS  Google Scholar 

  123. Kosorn W, Sakulsumbat M, Uppanan P, Kaewkong P, Chantaweroad S, Jitsaard J et al (2016) PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds. J Biomed Mater Res B Appl Biomater 105(5):1141–1150

    Article  PubMed  CAS  Google Scholar 

  124. Low SW, Ng YJ, Yeo TT, Chou N (2009) Use of Osteoplug polycaprolactone implants as novel burr-hole covers. Singap Med J 50:777–780

    CAS  Google Scholar 

  125. Teo L, Teoh SH, Liu Y, Lim L, Tan B, Schantz J-T et al (2015) A novel bioresorbable implant for repair of orbital floor fractures. Orbit 34:192–200

    Article  PubMed  Google Scholar 

  126. Goh Bee T, Teh Luan Y, Tan Danny Ben P, Zhang Z, Teoh Swee H (2015) Novel 3D polycaprolactone scaffold for ridge preservation – a pilot randomised controlled clinical trial. Clin Oral Implants Res 26:271–277

    PubMed  Google Scholar 

  127. Guo S-Z, Gosselin F, Guerin N, Lanouette A-M, Heuzey M-C, Therriault D (2013) Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9:4118–4122

    Article  CAS  PubMed  Google Scholar 

  128. Puppi D, Braccini S, Ranaudo A, Chiellini F (2020) Poly(3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro- and microstructural features by additive manufacturing. J Biotechnol 308:96–107

    Article  CAS  PubMed  Google Scholar 

  129. Puppi D, Chiellini F (2017) Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. Polym Int 66:1690–1696

    Article  CAS  Google Scholar 

  130. Chung JHY, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE et al (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1:763–773

    Article  CAS  PubMed  Google Scholar 

  131. Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002–111008

    Article  PubMed  Google Scholar 

  132. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90

    Article  CAS  PubMed  Google Scholar 

  133. Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC et al (2015) Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices 17:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009

    Article  PubMed  Google Scholar 

  135. Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D et al (2016) Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J Bioact Compat Polym 31:531–549

    Article  CAS  Google Scholar 

  136. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536

    Article  CAS  PubMed  Google Scholar 

  137. Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11:013001

    Article  CAS  PubMed  Google Scholar 

  138. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070

    Article  CAS  PubMed  Google Scholar 

  139. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R et al (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 1:100008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang Z, Jin X, Dai R, Holzman JF, Kim K (2016) An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv 6:21099–21104

    Article  CAS  Google Scholar 

  141. Koltzenburg S, Maskos M, Nuyken O (2017) Polymer chemistry. Springer, Berlin

    Book  Google Scholar 

  142. Gregor A, Filova E, Novak M, Kronek J, Chlup H, Buzgo M et al (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lohfeld S, Cahill S, Barron V, McHugh P, Durselen L, Kreja L et al (2012) Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater 8:3446–3456

    Article  CAS  PubMed  Google Scholar 

  144. Hutmacher DW, Schantz T, Zein I, Woei K, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  CAS  PubMed  Google Scholar 

  145. Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL, Weber MH, Haglund L (2019) Three-dimensional printed polylactic acid scaffolds promote bone-like matrix deposition in vitro. ACS Appl Mater Interfaces 11:15306–15315

    Article  CAS  PubMed  Google Scholar 

  146. Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW (2007) Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 28:814–824

    Article  CAS  PubMed  Google Scholar 

  147. Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW et al (2012) Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med 23:2993–3002

    Article  CAS  PubMed  Google Scholar 

  148. Cui H, Zhu W, Holmes B, Zhang LG (2016) Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv Sci (Weinh) 3:1600058

    Article  CAS  Google Scholar 

  149. Jiang W, Shi J, Li W, Sun K (2013) Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into scaffold for bone repair. J Biomater Sci Polym Ed 24:539–550

    Article  CAS  PubMed  Google Scholar 

  150. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9:5521–5530

    Article  CAS  PubMed  Google Scholar 

  151. Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E et al (2017) Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components - guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater 2:208–223

    Article  PubMed  PubMed Central  Google Scholar 

  152. Antonov EN, Barinov SM, Vakhrushev IV, Komlev VS, Popov VK, Fedotov AY et al (2015) Selective laser sintering of bioactive composite matrices for bone tissue engineering. Inorg Mater Appl Res 6:171–178

    Article  Google Scholar 

  153. Hong JM, Kim BJ, Shim JH, Kang KS, Kim KJ, Rhie JW et al (2012) Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Acta Biomater 8:2578–2586

    Article  CAS  PubMed  Google Scholar 

  154. Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31:6909–6916

    Article  CAS  PubMed  Google Scholar 

  155. Huang B, Aslan E, Jiang Z, Daskalakis E, Jiao M, Aldalbahi A et al (2020) Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Addit Manuf 36:101452

    CAS  Google Scholar 

  156. Ronca A, Ambrosio L, Grijpma DW (2012) Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mater 10:249–258

    CAS  PubMed  Google Scholar 

  157. Zhong L, Chen J, Ma Z, Feng H, Chen S, Cai H et al (2020) 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12:24437–24449

    Article  CAS  PubMed  Google Scholar 

  158. Meng Z, He J, Cai Z, Zhang M, Zhang J, Ling R et al (2020) In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties. Biofabrication 12:035012

    Article  CAS  PubMed  Google Scholar 

  159. Manjunath KS, Sridhar K, Gopinath V, Sankar K, Sundaram A, Gupta N et al (2020) Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering—an embedding model with plasticity for incorporation of additives. Biomed Mater 16:015028

    Article  PubMed  Google Scholar 

  160. Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E (2020) Towards 3D multi-layer scaffolds for periodontal tissue engineering applications: addressing manufacturing and architectural challenges. Polymers (Basel) 12:2233

    Article  CAS  Google Scholar 

  161. Diez-Escudero A, Harlin H, Isaksson P, Persson C (2020) Porous polylactic acid scaffolds for bone regeneration: a study of additively manufactured triply periodic minimal surfaces and their osteogenic potential. J Tissue Eng 11:2041731420956541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Cubo-Mateo N, Rodriguez-Lorenzo LM (2020) Design of thermoplastic 3D-printed scaffolds for bone tissue engineering: influence of parameters of “Hidden” importance in the physical properties of scaffolds. Polymers (Basel) 12:1546

    Article  CAS  PubMed Central  Google Scholar 

  163. Pecci R, Baiguera S, Ioppolo P, Bedini R, Del Gaudio C (2020) 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: manufacturing and characterization. J Mech Behav Biomed Mater 103:103583

    Article  CAS  PubMed  Google Scholar 

  164. Ziaee M, Mahmood A, Crane NB (2020) Optimization of laser sintering for demineralized bone/polycaprolactone composite powder for bone tissue scaffold. J Manuf Mater Process 4:7

    CAS  Google Scholar 

  165. Alam F, Shukla VR, Varadarajan KM, Kumar S (2020) Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J Mech Behav Biomed Mater 103:103576

    Article  CAS  PubMed  Google Scholar 

  166. Pierantozzi D, Scalzone A, Jindal S, Stīpniece L, Šalma-Ancāne K, Dalgarno K et al (2020) 3D printed Sr-containing composite scaffolds: effect of structural design and material formulation towards new strategies for bone tissue engineering. Compos Sci Technol 191:108069

    Article  CAS  Google Scholar 

  167. Arora JK, Bhati P (2020) Fabrication and characterization of 3D printed PLA scaffolds. AIP Conf Proc 2205:020065

    Article  CAS  Google Scholar 

  168. Meng Z, He J, Cai Z, Wang F, Zhang J, Wang L et al (2020) Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater Des 189:108508

    Article  CAS  Google Scholar 

  169. Guo W, Xu L, Feng P, Gu Y, Shuai C (2020) In-situ growth of silica nano-protrusions on halloysite nanotubes for interfacial reinforcement in polymer/halloysite scaffolds. Appl Surf Sci 513:145772

    Article  CAS  Google Scholar 

  170. Huang B, Vyas C, Byun JJ, El-Newehy M, Huang Z, Bartolo P (2020) Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater Sci Eng C Mater Biol Appl 108:110374

    Article  CAS  PubMed  Google Scholar 

  171. Rojas-Martínez LE, Flores-Hernandez CG, López-Marín LM, Martinez-Hernandez AL, Thorat SB, Reyes Vasquez CD et al (2020) 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: effect of geometry and structure. Eur Polym J 141:110088

    Article  CAS  Google Scholar 

  172. Ahlinder A, Fuoco T, Morales-López Á, Yassin MA, Mustafa K, Finne-Wistrand A (2019) Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response. J Appl Polym Sci 137:48550

    Article  CAS  Google Scholar 

  173. Karimipour-Fard P, Behravesh AH, Jones-Taggart H, Pop-Iliev R, Rizvi G (2020) Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds. J Mech Behav Biomed Mater 112:104064

    Article  CAS  PubMed  Google Scholar 

  174. Gloria A, Russo T, D’Amora U, Santin M, De Santis R, Ambrosio L (2020) Customised multiphasic nucleus/annulus scaffold for intervertebral disc repair/regeneration. Connect Tissue Res 61:152–162

    Article  CAS  PubMed  Google Scholar 

  175. Yu D, Li Q, Mu X, Chang T, Xiong Z (2008) Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Int J Oral Maxillofac Surg 37:929–934

    Article  CAS  PubMed  Google Scholar 

  176. Huebner P, Warren PB, Chester D, Spang JT, Brown AC, Fisher MB et al (2020) Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment. Connect Tissue Res 61:190–204

    Article  CAS  PubMed  Google Scholar 

  177. Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q et al (2010) Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Biofabrication 2:025002

    Article  PubMed  CAS  Google Scholar 

  178. Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW et al (2019) Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 90:37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN et al (2008) Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84:17–25

    Article  PubMed  CAS  Google Scholar 

  180. Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC (2016) Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med 10:E337–EE53

    Article  CAS  PubMed  Google Scholar 

  181. Yousefi AM, Powers J, Sampson K, Wood K, Gadola C, Zhang J et al (2021) In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation. J Biomater Sci Polym Ed 32:454–476

    Article  CAS  PubMed  Google Scholar 

  182. Pereira TF, Silva MAC, Oliveira MF, Maia IA, Silva JVL, Costa MF et al (2012) Effect of process parameters on the properties of selective laser sintered poly(3-hydroxybutyrate) scaffolds for bone tissue engineering. Virtual Phys Prototyp 7:275–285

    Article  Google Scholar 

  183. Mota C, Puppi D, Dinucci D, Gazzarri M, Chiellini F (2013) Additive manufacturing of star poly(ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. J Bioact Compat Polym 28:320–340

    Article  CAS  Google Scholar 

  184. Puppi D, Migone C, Grassi L, Pirosa A, Maisetta G, Batoni G et al (2016) Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polym Int 65:631–640

    Article  CAS  Google Scholar 

  185. Kosorn W, Sakulsumbat M, Uppanan P, Kaewkong P, Chantaweroad S, Jitsaard J et al (2017) PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds. J Biomed Mater Res B Appl Biomater 105:1141–1150

    Article  CAS  PubMed  Google Scholar 

  186. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3:1–12

    Article  CAS  PubMed  Google Scholar 

  187. Mota C, Wang SY, Puppi D, Gazzarri M, Migone C, Chiellini F et al (2017) Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen Med 11:175–186

    Article  CAS  PubMed  Google Scholar 

  188. Xiong Z, Yan Y, Zhang R, Sun L (2001) Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45:773–779

    Article  CAS  Google Scholar 

  189. Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineeringvia low-temperature deposition. Scripta Mater 46:771–776

    Article  CAS  Google Scholar 

  190. Puppi D, Pirosa A, Morelli A, Chiellini F (2018) Design, fabrication and characterization of tailored poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyexanoate] scaffolds by computer-aided wet-spinning. Rapid Prototyp J 24:1–8

    Article  Google Scholar 

  191. Chhaya MP, Melchels FP, Holzapfel BM, Baldwin JG, Hutmacher DW (2015) Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials 52:551–560

    Article  CAS  PubMed  Google Scholar 

  192. Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP (2011) The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32:3750–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gomez-Lizarraga KK, Flores-Morales C, Del Prado-Audelo ML, Alvarez-Perez MA, Pina-Barba MC, Escobedo C (2017) Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C Mater Biol Appl 79:326–335

    Article  CAS  PubMed  Google Scholar 

  194. Kim MH, Yun C, Chalisserry EP, Lee YW, Kang HW, Park S-H et al (2018) Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds. Mater Lett 220:112–115

    Article  CAS  Google Scholar 

  195. Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG (2017) Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed 28:532–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hung KC, Tseng CS, Dai LG, Hsu SH (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156–168

    Article  CAS  PubMed  Google Scholar 

  197. Alves P, Ferreira P, Gil H (2012) Biomedical polyurethane-based materials. Polyurethane: properties, structure and applications. Nova Publishers, New York

    Google Scholar 

  198. Camarero-Espinosa S, Tomasina C, Calore A, Moroni L (2020) Additive manufactured, highly resilient, elastic and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Mater Today Bio 2020:100051

    Article  Google Scholar 

  199. Güney A, Gardiner C, McCormack A, Malda J, Grijpma DW (2018) Thermoplastic PCL-b-PEG-b-PCL and HDI polyurethanes for extrusion-based 3D-printing of tough hydrogels. Bioengineering 5:99

    Article  PubMed Central  CAS  Google Scholar 

  200. Lee JW, Ahn G, Kim JY, Cho DW (2010) Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci Mater Med 21:3195–3205

    Article  CAS  PubMed  Google Scholar 

  201. Puppi D, Chiellini F (2018) 4 - Biofabrication via integrated additive manufacturing and electrofluidodynamics. In: Guarino V, Ambrosio L (eds) Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices. Woodhead Publishing, Duxford, UK, pp 71–85

    Chapter  Google Scholar 

  202. Naghieh S, Karamooz-Ravari MR, Sarker MD, Karki E, Chen X (2018) Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches. J Mech Behav Biomed Mater 80:111–118

    Article  CAS  PubMed  Google Scholar 

  203. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW (2020) FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng 6:6453–6459

    Article  CAS  PubMed  Google Scholar 

  204. Tian Y, Liu M, Liu Y, Shi C, Wang Y, Liu T et al (2020) The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. J Biomed Mater Res A 109:1209–1219

    Article  PubMed  CAS  Google Scholar 

  205. Gong Y, Wang F, Al-Furjan MSH, Shan L, He J, Bian X et al (2020) Experimental investigation and optimal 3D bioprinting parameters of SA-gel porous cartilage scaffold. Appl Sci 10:768

    Article  CAS  Google Scholar 

  206. Naghieh S, Sarker MD, Sharma NK, Barhoumi Z, Chen X (2019) Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters. Appl Sci 10:292

    Article  CAS  Google Scholar 

  207. Zhang J, Wehrle E, Vetsch JR, Paul GR, Rubert M, Muller R (2019) Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed Mater 14:065009

    Article  CAS  PubMed  Google Scholar 

  208. Roushangar Zineh B, Shabgard MR, Roshangar L (2018) An experimental study on the mechanical and biological properties of bio-printed alginate/halloysite nanotube/methylcellulose/Russian olive-based scaffolds. Adv Pharm Bull 8:643–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Chawla D, Kaur T, Joshi A, Singh N (2020) 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Int J Biol Macromol 144:560–567

    Article  CAS  PubMed  Google Scholar 

  210. Wei X, Luo Y, Huang P (2019) 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. Polym Bull 76:6077–6088

    Article  CAS  Google Scholar 

  211. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001

    Article  CAS  PubMed  Google Scholar 

  212. Jang CH, Ahn S, Lee JW, Lee BH, Lee H, Kim G (2017) Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation. Mater Sci Eng C Mater Biol Appl 72:456–463

    Article  CAS  PubMed  Google Scholar 

  213. You F, Wu X, Kelly M, Chen X (2020) Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink. Bio-Design Manuf 3:48–59

    Article  CAS  Google Scholar 

  214. Mohan T, Dobaj Štiglic A, Beaumont M, Konnerth J, Gürer F, Makuc D et al (2020) Generic method for designing self-standing and dual porous 3D bioscaffolds from cellulosic nanomaterials for tissue engineering applications. ACS Appl Biomater 3:1197–1209

    Article  CAS  Google Scholar 

  215. Zafeiris K, Brasinika D, Karatza A, Koumoulos E, Karoussis IK, Kyriakidou K et al (2021) Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 119:111639

    Article  CAS  PubMed  Google Scholar 

  216. Hu X, Man Y, Li W, Li L, Xu J, Parungao R et al (2019) 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers (Basel) 11(10):1601

    Article  CAS  Google Scholar 

  217. Ma H, Zhou Q, Chang J, Wu C (2019) Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano 13:4302–4311

    Article  CAS  PubMed  Google Scholar 

  218. Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A et al (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25:7406–7417

    Article  Google Scholar 

  219. Ma L, Li Y, Wu Y, Yu M, Aazmi A, Gao L et al (2020) 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Design Manuf 3:164–174

    Article  CAS  Google Scholar 

  220. Chen C, Zhao ML, Zhang RK, Lu G, Zhao CY, Fu F et al (2017) Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res A 105:1324–1332

    Article  CAS  PubMed  Google Scholar 

  221. Tytgat L, Van Damme L, Ortega Arevalo MDP, Declercq H, Thienpont H, Otteveare H et al (2019) Extrusion-based 3D printing of photo-crosslinkable gelatin and kappa-carrageenan hydrogel blends for adipose tissue regeneration. Int J Biol Macromol 140:929–938

    Article  CAS  PubMed  Google Scholar 

  222. Zhang J, Eyisoylu H, Qin XH, Rubert M, Muller R (2020) 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater 121:637–652

    Article  PubMed  CAS  Google Scholar 

  223. Ratheesh G, Vaquette C, Xiao Y (2020) Patient-specific bone particles bioprinting for bone tissue engineering. Adv Healthc Mater 2020:e2001323

    Article  CAS  Google Scholar 

  224. Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK (2020) Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Appl Mater Interfaces 12:15976–15988

    Article  CAS  PubMed  Google Scholar 

  225. Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J (2020) Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater Sci Eng C Mater Biol Appl 109:110578

    Article  CAS  PubMed  Google Scholar 

  226. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y (2020) Synchronous 3D bioprinting of large-scale cell-laden constructs with nutrient networks. Adv Healthc Mater 9:e1901142

    Article  PubMed  CAS  Google Scholar 

  227. Huang L, Du X, Fan S, Yang G, Shao H, Li D et al (2019) Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym 221:146–156

    Article  CAS  PubMed  Google Scholar 

  228. Costa JB, Silva-Correia J, Oliveira JM, Reis RL (2017) Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv Healthc Mater 6

    Google Scholar 

  229. Liu Q, Li Q, Xu S, Zheng Q, Cao X (2018) Preparation and properties of 3D printed alginate(-)chitosan polyion complex hydrogels for tissue engineering. Polymers (Basel) 10(6):664

    Article  PubMed Central  CAS  Google Scholar 

  230. Dong T, Mi R, Wu M, Zhong N, Zhao X, Chen X et al (2019) The regenerated silk fibroin hydrogel with designed architecture bioprinted by its microhydrogel. J Mater Chem B 7:4328–4337

    Article  CAS  Google Scholar 

  231. Wu X, Chen K, Zhang D, Xu L, Yang X (2019) Study on the technology and properties of 3D bioprinting SF/GT/n-HA composite scaffolds. Mater Lett 238:89–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Puppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pecorini, G., Chiellini, F., Puppi, D. (2022). Mechanical Characterization of Additive Manufactured Polymeric Scaffolds for Tissue Engineering. In: Dash, M. (eds) Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-4566-2_5

Download citation

Publish with us

Policies and ethics