Skip to main content

Cyanobacteria in Rhizosphere: Dynamics, Diversity, and Symbiosis

  • Chapter
  • First Online:
Plant, Soil and Microbes in Tropical Ecosystems

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Cyanobacteria also known as blue-green algae are primitive prokaryotic organisms capable of thriving in extremes of the environment, capable of oxygenic photosynthesis, and possessing the ability to fix atmospheric nitrogen into a biologically usable form. They have been area of research interest for a long time due to their potential of being exploited in multifarous sphere. Since long they have been recognised as excellent substitute for chemical fertilizer due to their ability to fix nitrogen, therefore, widely acknowledged as biofertilizers. They have been also found to be useful in bioremediation processes like other microbes and thus have been useful in the reclamation of usar land and in remediating various other pollutants either by bioaccumulating or degrading them. Apart from this, they have been useful in pest management as a biocontrol agent. Cyanobacteria alongwith methanotrophs are helpful in reducing the level of emission of greenhouse gases. Either by being free living or in association with other organisms in symbiosis, they are playing key role in the amelioration of various environmental concerns. This chapter is written to describe the diversity of cyanobacteria in the rhizosphere and utilization of cyanobacteria potential in various fields, thus making it an efficient, cost-effective, eco-friendly, and sustainable alternative for a better environment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MR, Winter A (1968a) Studies on the hormonal relationships of algae in pure culture. Planta 78:277–286

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MR, Winter A (1968b) Studies on the hormonal relationships of algae in pure culture: II. The effect of potential precursors of indole-3-acetic acid on the growth of several freshwater blue-green algae. Planta 81:16–27

    Article  CAS  PubMed  Google Scholar 

  • Al-Hasan R, Al-Bader D, Sorkhoh N, Radwan S (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Al-Hasan R, Khanafer M, Eliyas M, Radwan S (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Gupta RK, Joshi M (2008) Studies on the use of cyanobacteria as biofertilizer for vegetable cultivation in hydroponic system. In: Schirmacher oasis region, East Antarctica. Eleventh Indian expedition to Antarctica scientific report. Department of ocean development. Technical publication, vol 9, p 243

    Google Scholar 

  • Benson D, Kerry K, Malin G (2014) Algal biofuels: impact significance and implications for EU multi-level governance. J Clean Prod 72:4–13

    Article  CAS  Google Scholar 

  • Bergman B, Gallon J, Rai A, Stal L (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose P, Nagpal S (1971) Solubilization of tricalcium phosphate by blue-green algae. Curr Sci 40(7):165–166

    CAS  Google Scholar 

  • Brill WJ (1983) Biochemical genetics of nitrogen fixation. In: Structure and function of plant genomes. Springer, New York, NY, pp 231–237

    Chapter  Google Scholar 

  • Castenholz R (2001) General characteristics of the cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. Microbiology 116:495–500

    Article  CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980b) Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp., strain JCM. Arch Microbiol 125:203–207

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Article  CAS  Google Scholar 

  • De Caire G, De Cano M, De Mule M, De Halperin D (1990) Antimycotic products from the cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phyton, Buenos Aires 51:1–4

    Google Scholar 

  • Dhar N, Mukherji S (1936) Alkali soils and their reclamation. Proc Natl Acad Sci Ind 6:136–148

    CAS  Google Scholar 

  • Dhar DW, Prasanna R, Pabbi S, Vishwakarma R (2015) Significance of cyanobacteria as inoculants in agriculture. In: Algal biorefinery: an integrated approach. Springer, New York, NY, pp 339–374

    Chapter  Google Scholar 

  • Dorich R, Nelson D, Sommers L (1985) Estimating algal available phosphorus in suspended sediments by chemical extraction. J Environ Qual 14:400–405

    Article  CAS  Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Gantar M, Kerby N, Rowell P, Obreht Z, Scrimgeour C (1995a) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance in the plants. New Phytol 129:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Rowell P, Kerby NW, Sutherland IW (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N 2-fixing cyanobacteria. Biol Fertil Soils 19:41–48

    Article  CAS  Google Scholar 

  • Grieco E, Desrochers R (1978) Production de vitamine B12 par une algue bleue. Can J Microbiol 24:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Agarwal P (1973) Extraction, isolation, and bioassay of a gibberellin-like substance from Phormidium foveolarum. Ann Bot 37:737–741

    Article  CAS  Google Scholar 

  • Gupta A, Lata K (1964) Effect of algal growth hormones on the germination of paddy seeds. Hydrobiologia 24:430–434

    Article  Google Scholar 

  • Hagmann L, Jüttner F (1996) Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542

    Article  CAS  Google Scholar 

  • Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812

    Article  CAS  Google Scholar 

  • Hussain A, Krischke M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61:361–369

    Article  CAS  PubMed  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  PubMed  Google Scholar 

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Adv Biol Ecol Nitrogen Fix 2:24–48

    Google Scholar 

  • Ito O, Watanabe I (1985) Availability to rice plants of nitrogen fixed by Azolla. Soil Sci Plant Nutr 31:91–104

    Article  CAS  Google Scholar 

  • Jenkinson D (1977) Nitrogen economy of the Broadbalk experiments. I. Nitrogen balance in the experiments. Rothamsted Experimental Station Report for 1976. Rothamsted Research, Harpenden

    Google Scholar 

  • Kannaiyan S, Rao K, Hall D (1994) Immobilization of Anabaena azollae from Azolla filiculoides in polyvinyl foam for ammonia production in a photobioreactor system. World J Microbiol Biotechnol 10:55–58

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik B (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol (Praha) 54:43–51

    Article  CAS  Google Scholar 

  • Kaushik B (1961) Blue-green algae (Cyanobacteria) in Agriculture. Adv Microbiol Ind Agric Res Inst 2004:19–34

    Google Scholar 

  • Kaushik B (1994) Algalization of rice in salt-affected soils. Ann Agric Res 14:105–106

    Google Scholar 

  • Kaushik B (1998) Use of cyanobacterial biofertilizers in rice cultivation: a technology improvement. Cyanobact Biotechnol:211–222

    Google Scholar 

  • Kaushik B, Venkataraman G (1983) Response of cyanobacterial nitrogen fixation to insecticides. Curr Sci 52:321–323

    CAS  Google Scholar 

  • Khan Z, Begum ZT, Mandal R, Hossain M (1994) Cyanobacteria in rice soils. World J Microbiol Biotechnol 10:296–298

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Rees D (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Kirn J, Rees D (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:553–560

    Article  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  CAS  Google Scholar 

  • Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599

    Article  Google Scholar 

  • Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra BK, Kumar A, Adak A, Jauhari S, Yadav K, Singh R (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci Hortic 164:94–101

    Article  CAS  Google Scholar 

  • Lincoln E, Wilkie A, French B (1996) Cyanobacterial process for renovating dairy wastewater. Biomass Bioenergy 10:63–68

    Article  CAS  Google Scholar 

  • Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates—the ability of Spirulina spp. to degrade glyphosate. Enzym Microb Technol 41:286–291

    Article  CAS  Google Scholar 

  • Mansy AE-R, El-Bestawy E (2002) Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World J Microbiol Biotechnol 18:125–131

    Article  CAS  Google Scholar 

  • Maqubela M, Mnkeni P, Issa OM, Pardo M, D’acqui L (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Maršálek B, Zahradníčková H, Hronková M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508

    Article  Google Scholar 

  • Mazhar S, Cohen JD, Hasnain S (2013) Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol 53:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3:10

    Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao A (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Madhavi D, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  PubMed  Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312

    Article  CAS  Google Scholar 

  • Misra S, Kaushik B (1989a) Growth promoting substances of cyanobacteria II. Detection of amino acids, sugars and auxins. Proc Indian Natl Sci Acad B55:499–504

    Google Scholar 

  • Misra S, Kaushik B (1989b) Growth promoting substances of cyanobacteria. I: vitamins and their influence on rice plant. Proc Ind Natl Sci Acad B Biol Sci 55:295–300

    CAS  Google Scholar 

  • Mulligan M, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. J Biol Chem 264:19200–19207

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Rojas M, Chilton A, Liyanage G, Erickson T, Merritt D, Neilan B, Ooi M (2018) Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant Soil 429:91–100

    Article  CAS  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay Y, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Narro ML, Cerniglia C, Van Baalen C, Gibson D (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisha R, Kaushik A, Kaushik C (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root-associated N 2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    Article  CAS  Google Scholar 

  • Okuda A (1952) Algae and atmospheric nitrogen fixation in paddy soils. II. Relation between the growth of blue-green algae and physical or chemical properties of soils and effect of soil treatments and inoculation on the nitrogen fixation. Mem Res Inst Food Sci 4:1–11

    Google Scholar 

  • Papke U, Gross EM, Francke W (1997) Isolation, identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret). Tetrahedron Lett 38:379–382

    Article  CAS  Google Scholar 

  • Prasanna R, Kaushik B (2006) Cyanobacteria in soil health and sustainable agriculture. Health Environ 3:91–105

    Google Scholar 

  • Prasanna R, Nayak S (2007) Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetl Ecol Manag 15:127–134

    Article  Google Scholar 

  • Prasanna R, Kumar V, Kumar S, Yadav AK, Tripathi U, Singh AK, Jain M, Gupta P, Singh P, Sethunathan N (2002) Methane production in rice soil is inhibited by cyanobacteria. Microbiol Res 157:1–6

    Article  PubMed  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366

    Article  Google Scholar 

  • Prasanna R, Kanchan A, Kaur S, Ramakrishnan B, Ranjan K, Singh MC, Hasan M, Saxena AK, Shivay YS (2016a) Chrysanthemum growth gains from beneficial microbial interactions and fertility improvements in soil under protected cultivation. Hortic Plant J 2:229–239

    Article  Google Scholar 

  • Prasanna R, Kanchan A, Ramakrishnan B, Ranjan K, Venkatachalam S, Hossain F, Shivay YS, Krishnan P, Nain L (2016b) Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur J Soil Biol 75:15–23

    Article  Google Scholar 

  • Prasanna R, Ramakrishnan B, Ranjan K, Venkatachalam S, Kanchan A, Solanki P, Monga D, Shivay YS, Kranthi S (2016c) Microbial inoculants with multifaceted traits suppress Rhizoctonia populations and promote plant growth in cotton. J Phytopathol 164:1030–1042

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: The ecology of cyanobacteria. Springer, New York, NY, pp 307–319

    Google Scholar 

  • Rai AN, Bergman B (2002) Cyanolichens. In: Biology and environment: Proceedings of the royal irish academy, pp 19–22. JSTOR

    Google Scholar 

  • Rai A, Borthakur M, Bergman B (1992a) Nitrogenase derepresssion, its regulation and metabolic changes associated with diazotrophy in the non-heterocystous cyanobacterium Plectonema boryanum PCC 73110. Microbiology 138:481–491

    CAS  Google Scholar 

  • Rai A, Borthakur M, Soderback E, Bergman B (1992b) Immunogold localization of hydrogenase in the cyanobacterial-plant symbioses Peltigera canina, Anthoceros punctatus and Gunnera magellanica. Symbiosis 12:131

    CAS  Google Scholar 

  • Rai A, Singh A, Syiem M (2019) Plant growth-promoting abilities in cyanobacteria. In: Cyanobacteria. Elsevier, Amsterdam, pp 459–476

    Chapter  Google Scholar 

  • Rodgers G, Bergman B, Henriksson E, Udris M (1979) Utilisation of blue-green algae as biofertilisers. Plant Soil 52:99–107

    Article  CAS  Google Scholar 

  • Roger PA, Zimmerman WJ, Lumpkin TA (1993) Microbiological management of wetland rice fields. In: Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, NY, pp 417–455

    Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil withNostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Roy D, Pakhira M, Bera S (2016) A review on biology, cultivation and utilization of Azolla. Adv Life Sci 5:11–15

    Google Scholar 

  • Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149

    Article  PubMed  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Article  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shariatmadari Z, Riahi H, Seyed Hashtroudi M, Ghassempour A, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547

    Article  CAS  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Singh RN (1950) Reclamation of ‘Usar’lands in India through blue-green algae. Nature 165:325–326

    Article  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100:29–30

    CAS  Google Scholar 

  • Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1:20–24

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh P (1987) Influence of Azolla management on the growth, yield of rice and soil fertility: II. N and P contents of plant and soil. Plant Soil 102:49–54

    Article  Google Scholar 

  • Singh JS, Singh DP (2012) Reforestation: a potential approach to mitigate excess atmospheric CH4 build-up. Ecol Manag Restor 13:245–248

    Article  Google Scholar 

  • Singh S, Singh D (2013) Impact of anthropogenic disturbances on methanotrophs abundance in dry tropical forest ecosystems, India. Expert Opin Environ Biol 2(3):2

    Google Scholar 

  • Singh V, Trehan K (1973) Effect of extracellular products ofAulosira fertilissima on the growth of rice seedlings. Plant Soil 38:457–464

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh D (2011a) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh D, Dixit S (2011b) Cyanobacteria: an agent of heavy metal removal. Bioremediation of pollutants. IK International Publisher, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh N, Al-Hasan R, Radwan S, Höpner T (1992) Self-cleaning of the Gulf. Nature 359:109–109

    Article  Google Scholar 

  • Stewart W, Singh H (1975) Transfer of nitrogen-fixing (NIF) genes in the blue-green alga nostocmuscorum. Biochem Biophys Res Commun 62:62–69

    Article  CAS  PubMed  Google Scholar 

  • Swarnalakshmi K, Dhar D, Singh P (2006) Blue green algae: a potential biofertilizer for sustainable rice cultivation. Proc Ind Natl Sci Acad 72:167

    Google Scholar 

  • Teuscher E, Lindequist U, Mundt S (1992) Blue-green algae, sources of natural active agents. Pharm Ztg Wiss 137:57–69

    Google Scholar 

  • Thomas SP, Zaritsky A, Boussiba S (1991) Ammonium excretion by a mutant of the nitrogen-fixing cyanobacterium anabaena. Bioresour Technol 38:161–166

    Article  CAS  Google Scholar 

  • Tiwari S, Singh JS, Singh DP (2015) Methanotrophs and CH4 sink: effect of human activity and ecological perturbations. Clim Change Environ Sustain 3:35–50

    Article  Google Scholar 

  • Tsavkelova E, Klimova SY, Cherdyntseva T, Netrusov A (2006a) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol 42:229–235

    Article  CAS  Google Scholar 

  • Tsavkelova E, Klimova SY, Cherdyntseva T, Netrusov A (2006b) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader D-P, Dey T, Gupta A, Bhan U, Rao A (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516

    Article  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today & Tommorrow’s Printers & Publishers, New Delhi

    Google Scholar 

  • Venkataraman G (1975) The role of cyanobacteria in tropical rice cultivation. In: Nitrogen fixation by free living microorganisms. Cambridge University Press, Cambridge, pp 207–218

    Google Scholar 

  • Vilchez C, Garbayo I, Lobato MV, Vega J (1997) Microalgae-mediated chemicals production and wastes removal. Enzym Microb Technol 20:562–572

    Article  CAS  Google Scholar 

  • Vorontsova G, Romanova N, Postnova T, Selyakh I, Gusev M (1988) Biostimulating effect of cyanobacteria and ways to increase it. I. Use of mutants, superproducers of amino acids. Moscow Univ Biol Sci Bull (USA) 43:14

    Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Article  Google Scholar 

  • Watanabe A (1956) On the effect of the atmospheric nitrogen-fixing blue-green algae on the yield of rice. Bot Mag (Tokyo) 69:530–535

    Article  Google Scholar 

  • Watanabe I, Cholitkul W (1978) Field studies on nitrogen fixation in paddy [rice] soils [of Thailand]. In: Nitrogen and Rice Symposium College, Laguna (Philippines) 18-21 Sep 1978

    Google Scholar 

  • Watanabe A, Yamamoto Y (1971) Algal nitrogen fixation in the tropics. Plant Soil 35:403–413

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk CP, Thomas J, Shaffer P, Austin S, Galonsky A (1976) Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem 251:5027–5034

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K (1996) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502

    Article  Google Scholar 

  • Zahradníčková H, Maršálek B, Polišenská M (1991) High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteria. J Chromatogr A 555:239–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R., Kanda, T., Yadav, S., Mishra, R., Atri, N. (2021). Cyanobacteria in Rhizosphere: Dynamics, Diversity, and Symbiosis. In: Dubey, S.K., Verma, S.K. (eds) Plant, Soil and Microbes in Tropical Ecosystems. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3364-5_4

Download citation

Publish with us

Policies and ethics