Skip to main content

Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices

  • Chapter
  • First Online:
Plant, Soil and Microbes in Tropical Ecosystems

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Globally, there is excessive use of chemical fertilizer beyond the soil and crop threshold limits which had a deleterious effect on the soil ecosystem. So, now agriculturalists are switching from agrochemical practices to agro-biotechnological practices by using soil microbes as a source of fertilizers. In developed countries, soil microbial communities have been considered as the prime factor for sustainable agricultural practices for the last few decades. The activities and the interaction of these soil microorganisms have been proven to promote plant growth, soil quality, and productivity and maintain the biogeochemical cycle, earth geochemical stability, and climatic conditions of the earth system. Biofertilizers are the formulation of the beneficial microbial strains (bacteria, fungus, and algae) packed on the carrier for mobilization. Biofertilizers can fix the atmospheric nitrogen and mineralize the soil’s organic matter. Biofertilizers inoculants may be single species-specific or in the combination of different compatible strains. Microbial consortia are the symbiotic interactions of combinations of two or more compatible microbial strains. A microbial consortium improves the productivity of crop and soil in extreme stress conditions much better than the single-strain inoculants. Therefore, microbial fertilizers and consortium are the best solution to achieve sustainable agricultural practices worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Alley MM, Vanlauwe B (2009) The role of fertilizers in integrated plant nutrient management. Paris

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 7:1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Armada E, Azcón R, López-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    Article  CAS  PubMed  Google Scholar 

  • Asif M, Mughal AH, Ajaz Malik M et al (2018) Application of different strains of biofertilizers for raising quality forest nursery tree. Int J Curr Microbiol App Sci 7(10):3680–3686

    Article  CAS  Google Scholar 

  • Atta MMM, Abdel-Lattif HM, Hamza M (2018) Soil inoculation by Azospirillum affects protein and carbohydrate of maize grain under nitrogen deficiency. J Adv Biol Biotechnol 19(1):1–14

    Article  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 871:1473

    Article  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J (2015) Quorum sensing mechanisms in fungi. AIMS Microbiol 1(1):37–47

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317(1–2):235–255

    Article  CAS  Google Scholar 

  • Bashan N (2016) Inoculant formulations are essential for successful inoculation with plant growth-promoting bacteria and business opportunities. Indian Phytopathol 69:739–743

    Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Bashir Z, Zargar MY, Mohiddin FA, Kousar S, Husain M, Rasool F (2017) Phosphorus solubilizing microorganisms: mechanism and diversity. Int J Chem Stud 5:666–673

    CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Hung R, Lee S, Padhi S (2012) Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. In: Fungal associations, 2nd edn. Springer, Berlin, Heidelberg, pp 373–393

    Chapter  Google Scholar 

  • Bergelson J, Mittelstrass J, Horton MW (2019) Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Berrendero E, Valiente EF, Perona E, Gómez CL, Loza V, Munõz-Martín MÁ, Mateo P (2016) Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river. Sci Rep 6(1):30920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Bujard A, Azzollini A, Monod M, Gindro K, Wolfender JL (2013) Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J Chromatogr A 1292:219–228

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SK, Yi DH, Kim YH, Kim HJ, Seo HM, Lee JH, Kim JH, Jeon JM, Jang KS, Kim YG, Yang YH (2015) Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters). Fuel 159:189–196

    Article  CAS  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2342

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bikash Bag P, Panda P, Paramanik B, Mahato B, Choudhury A, Banga Krishi Viswavidyalaya U, Behar C, Bengal W, Dinajpur D, Vigyan Kendra K, Krishi Vigan Kendra K (2017) Atmospheric nitrogen fixing capacity of Azotobacter isolate from Cooch Behar and Jalpaiguri districts soil of West Bengal. Ind Int J Curr Microbiol App Sci 6(3):1775–1788

    Article  CAS  Google Scholar 

  • Bradáčová K, Florea A, Bar-Tal A, Minz D, Yermiyahu U, Shawahna R, Kraut-Cohen J, Zolti A, Erel R, Dietel K, Weinmann M, Zimmermann B, Berger N, Ludewig U, Neumann G, Poşta G (2019) Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production. Agronomy 9(2):105

    Article  CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK, Lavanya G, Nair SS, Gangaraddi VK, Gupta A (2017) Microbial functions of the rhizosphere. In: Plant-microbe interactions in agro-ecological perspectives. Springer, pp 177–210

    Chapter  Google Scholar 

  • Bramhachari PV, Nagaraju GP, Kariali E (2018) Current perspectives on rhizobacterial-EPS interactions in alleviation of stress responses: novel strategies for sustainable agricultural productivity. In: Role of rhizospheric microbes in soil: stress management and agricultural sustainability, vol 1. Springer, Singapore, pp 33–55

    Chapter  Google Scholar 

  • Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCS) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:1–8

    Article  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  PubMed  Google Scholar 

  • Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Abiotic stress in plants-mechanisms and daptations, Italy, pp 143–170

    Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Pallavi, Barh A, Sharma IP (2018) Plant growth promoting bacteria: a gateway to sustainable agriculture. In: Bhatt P, Sharma A (eds) Microbial biotechnology in environmental monitoring and cleanup. IGI Global Publication, pp 318–338

    Chapter  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use 16(20): 1–11

    Google Scholar 

  • Chibuzor NE, Chuks KO, Emmanuel AE, Paul IO, Simeon CE, Uchenna JO (2018) Chromium (III) and its effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna unguiculata. Afr J Biotechnol 17(38):1207–1214

    Article  Google Scholar 

  • Chuks Kenneth O, Chibuzor Nwadibe E, Uchenna Kalu A, Victor Unah U (2019) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agricult Biol Sci 14:35–54

    Article  CAS  Google Scholar 

  • Clinton A, Rumbaugh KP (2016) Interspecies and interkingdom signaling via quorum signals. Israel J Chem 56(5):265–272

    Article  CAS  Google Scholar 

  • Company S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40(11):2713–2721

    Article  CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291

    Chapter  Google Scholar 

  • de Salamone IEG, Di Salvo LP, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336(1):351–362

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology - a review. Soil Biol Biochem 36(8):1275–1288

    Article  CAS  Google Scholar 

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42(3):335–352

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of frankia and actinorhizal plants for degraded lands reclamation. Biomed Res Int 2013:948258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma zone, Southwest Ethiopia. Int J Microbiol. https://doi.org/10.1155/2016/5472601

  • El-Ramady H, El-Ghamry A, Mosa A, Alshaal T (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodiver Soil Secur 2(1):40–50

    Article  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects - a review. J Soil Sci Plant Nutr 17(4):897–911

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Article  Google Scholar 

  • Feng K, Yu BY, Ge DM, Wong MH, Wang XC, Cao ZH (2003) Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system I. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere 50(6):683–687

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo Mdo VB, Santo Mergulhão ACdo E, Sobral JK, Junior Mde AL, de Araújo ASF (2013) Biological nitrogen fixation: importance, associated diversity, and estimates. In: Plant microbe symbiosis: fundamentals and advances. Springer, pp 267–289

    Chapter  Google Scholar 

  • Fleitas Martínez O, Rigueiras PO, Pires Á d S, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL (2018) Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front Cell Infect Microbiol 8:444

    Article  PubMed  CAS  Google Scholar 

  • Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z, Siegfried S, de Weert S, Bloemberg G, Höfte M, Keel CJ, Maurhofer M (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions - a review. J Hort Sci Biotechnol 86(6):543–556

    Article  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2006) Bacterial biofertilizers. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Chapter  Google Scholar 

  • Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7(1):1–13

    Article  CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8(1):1–12

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bio Sci 53(4):341–356

    Google Scholar 

  • Gangwar M, Saini P, Nikhanj P, Kaur S (2017) Plant growth-promoting microbes (pgpm) as potential microbial bio-agents for eco-friendly agriculture. Springer, Singapore, pp 37–55

    Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  • Ghosh N (2004) Promoting biofertilisers in Indian agriculture. Econ Polit Wkly 39(52):5617–5625

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2020) Introduction to plant growth-promoting bacteria. In: Beneficial plant-bacterial interactions. Springer, pp 1–37

    Chapter  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    Article  PubMed  Google Scholar 

  • Gothandapani S, Sekar S, Padaria JC (2017) Azotobacter chroococcum: utilization and potential use for agricultural crop production: an overview. Int J Adv Res Biol Sci 4(3):35–42

    Article  CAS  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Guo J, Dong X, Han G, Wang B (2019) Salt-enhanced reproductive development of Suaeda salsa l. coincided with ion transporter gene upregulation in flowers and increased pollen kopenspisupspi+closespisupspi content. Front Plant Sci 10:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Annapurna K, Jaitley AK (2016) Screening of osmo protectants for liquid formulation of Azospirillum bio-inoculant. Int J Serv Technol Manag 5(5):258–267

    Google Scholar 

  • Hamilton CE, Bever JD, Labbé J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308

    Article  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74(5):1620–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocher V, Auguy F, Bogusz D, Doumas P, Franche C, Gherbi H, Laplaze L, Obertello M, Svistoonoff S (2009) Les symbioses actinorhiziennes fixatrices d’azote: un exemple d’adaptation aux contraintes abiotiques du sol. Cahiers Agricult 18(6):498–505

    Article  Google Scholar 

  • Htwe AZ, Moh SM, Soe KM, Moe K, Yamakawa T (2019) Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy 9(2):77

    Article  CAS  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Embrapa Soja-Artigo Em Periódico Indexado (ALICE). Am J Plant Sci 6:811–817

    Article  CAS  Google Scholar 

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Adv Biol Ecol Nitrog Fixat 2:24–48

    Google Scholar 

  • Itelima JU, Bang WJ, Onyimba IA, Oj E (2018) A review: biofertilizer; a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 2(1):22–28

    Google Scholar 

  • Iwuagwu M, Ks C, Uka U, Amandianeze MC (2013) Effects of biofertilizers on the growth of Zea mays L. Asian J Microbiol Biotechnol Environ Sci 15:235–240

    CAS  Google Scholar 

  • Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 427–448

    Chapter  Google Scholar 

  • Jambon I, Thijs S, Weyens N, Vangronsveld J (2018) Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact 13(1):119–130

    Article  CAS  Google Scholar 

  • Jangid MK, Khan IM, Singh S (2012) Constraints faced by the organic and conventional farmers in adoption of organic farming practices. Ind Res J Exten Educ 2:28–32

    Google Scholar 

  • Javoreková S, Maková J, Medo J, Kovácsová S, Charousová I, Horák J (2015) Effect of bio-fertilizers application on microbial diversity and physiological profiling of microorganisms in arable soil. Eurasian J Soil Sci 4(1):54

    Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chilean J Agric Res 73(3):213–219

    Article  Google Scholar 

  • Jiang Q, Chen J, Yang C, Yin Y, Yao K, Song D (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int 2019:2015978

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bano A, Babar MA (2019) Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS One 14(3):e0213040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Deshwal V, Kumar P (2013) Production of plant growth promoting substance by Pseudomonads. J Acad Indust Res 2:221–225

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010a) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Article  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010b) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson C (2013) Losing arable land, China faces stark choice: adapt or go hungry. Am Assoc Advan Sci 339(6120):644–645

    CAS  Google Scholar 

  • Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci 10:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Liste HH (2003) Soil–plant–microbe interactions and their implications for agriculture and environment. Habilitation thesis, Humboldt University, Berlin

    Google Scholar 

  • Liu Z, Rong Q, Zhou W, Liang G (2017) Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS One 12(3):e0172767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock biology of microorganisms. Edisi 12

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Mahato S, Kafle A (2018) Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann Agrar Sci 16(3):250–256

    Article  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8):112

    Article  CAS  Google Scholar 

  • Majeed A, Kaleem Abbasi M, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Malusà E, Ciesielska J (2014) Biofertilisers: a resource for sustainable plant nutrition. Fertiliser Technol 1(1):282–319

    Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:248078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Meena VS, Kumar A, Meena RK (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview agroforestry and fodder production management view project. Springer, pp 1–20

    Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). Agric Environ Sci 3(6):822–828

    Google Scholar 

  • Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: for sustainable agriculture. Springer, pp 3–33

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 11:41–61

    Google Scholar 

  • Mishra D, Rajvir S, Mishra U, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mishra J, Bhimrao B, Arora N, Arora NK (2018) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach development of bioformulation for sustainable agriculture view project phyto and rhizoremediation view project bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach 1. Springer, pp 3–33

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7(5):307–316

    Google Scholar 

  • Mohod S, Lakhawat GP, Deshmukh SK, Ugwekar RP (2015) Production of liquid biofertilizers and its quality control. Int J Emerg Trend Eng Basic Sci 2(2):158–165

    Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2006) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Chapter  Google Scholar 

  • Nath Yadav A, Ghosh Sachan S, Verma P, Kumar Saxena A (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus 5(1):1–10

    Article  CAS  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Nuti M, Giovannetti G (2015) Borderline products between bio-fertilizers/bio-effectors and plant protectants: the role of microbial consortia. J Agric Sci Technol A 5:305–315

    Google Scholar 

  • O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100(13):5729–5746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odoh CK (2015) Effects of some heavy metals on soil bacteria, shoot growth and nodulation of cowpea (Vigna unguiculata) and groundnut (Arachis hypogea) grown in sandy loam soil. Research Thesis, Department of Microbiology, University of Nigeria, Nsukka, 1–9

    Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A review. Int J Adv Res Biol Sci 4(5):123–142

    Article  CAS  Google Scholar 

  • Ojo J (2016) Pesticides use and health in Nigeria. IFE J Sci 18(4):981–991

    Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pal S, Singh HB, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Eco-Friendly Agric 10(2):101–113

    Google Scholar 

  • Patel U, Sinha S (2011) Rhizobia species: a boon for “plant genetic engineering”. Indian J Microbiol 51(4):521–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak D, Lone R, Koul KK (2017) Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) association in potato (Solanum tuberosum L.): a brief review. In: Probiotics and plant health. Springer, Singapore, pp 401–420

    Chapter  Google Scholar 

  • Pathak J, Rajneesh Maurya PK, Singh SP, Häder DP, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:7

    Article  Google Scholar 

  • Patil HJ, Solanki MK (2016) Microbial inoculant: modern era of fertilizers and pesticides. In: Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 319–343

    Chapter  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Pindi PK, Satyanarayana S (2012) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestici 3:124

    Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1(1):998507

    Article  CAS  Google Scholar 

  • Rai AN, Singh AK, Syiem MB (2019) Plant growth-promoting abilities in cyanobacteria. In: Cyanobacteria. Elsevier, pp 459–476

    Chapter  Google Scholar 

  • Ranjan A, Mahalakshmi MR, Sridevi M (2013) Isolation and characterization of phosphate-solubilizing bacterial species from different crop fields of Salem, Tamil Nadu, India. Int J Nutrit Pharmacol Neurol Dis 3(1):29

    Article  CAS  Google Scholar 

  • Räsänen LA, Elväng AM, Jansson J, Lindström K (2001) Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiol Ecol 34(3):267–278

    Article  PubMed  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Rathod JP, Rathod P, Rathod DR, Gade RM (2018) Study of anabaena ambigua on growth parameters of Coriandrum sativum after seed and foliar spray treatment. Int J Curr Microbiol App Sci 7(12):25–32

    Article  CAS  Google Scholar 

  • Reddy PP (2014) Potential role of PGPR in agriculture. In: Plant growth promoting rhizobacteria for horticultural crop protection. Springer, New Delhi, pp 17–34

    Chapter  Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GED, Allan Downie J, Etzler ME (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require Lectin Nucleotide Phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol 161(1):556–567

    Article  CAS  PubMed  Google Scholar 

  • Rotaru V (2015) Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and rhizobacteria application under low water supply. Scient Papers Ser A Agron 58:295

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sam K, Coulon F, Prpich G (2017) A multi-attribute methodology for the prioritisation of oil contaminated sites in the Niger Delta. Sci Total Environ 579:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Saranraj P, Sivasakthivelan P (2013) Azospirillum and its formulations: a review. Int J Microbiol Res 4(3):275–287

    Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions-review. Folia Microbiol 56(1):1–9

    Article  CAS  Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirawski J, Perlin M (2018) Plant–microbe interaction 2017—the good, the bad and the diverse. Int J Mol Sci 19(5):1374

    Article  PubMed Central  Google Scholar 

  • Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, Mathimaran N (2018) Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci 8:2204

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekar J, Raj R, Prabavathy VR (2016) Microbial consortial products for sustainable agriculture: commercialization and regulatory issues in India. In: Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 107–132

    Chapter  Google Scholar 

  • Sethi SK, Adhikary SP (2012) Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. Afr J Biotechnol 11(70):13490–13493

    Article  Google Scholar 

  • Shaikh SS, Sayyed RZ (2015) Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 337–351

    Chapter  Google Scholar 

  • Sharma K (2011) Inorganic phosphate solubilization by fungi isolated from agriculture soil. J Phytology 3(4):11–12

    CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):1–14

    Article  CAS  Google Scholar 

  • Sharon JA, Hathwaik LT, Glenn GM, Imam SH, Lee CC (2016) Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J Soil Sci Plant Nutr 16(2):525–536

    CAS  Google Scholar 

  • Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104(6):1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrimant Shridhar B (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3(1):46–52

    Google Scholar 

  • Siczek A, Lipiec J (2016) Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. Int J Mol Sci 17(5):784

    Article  PubMed Central  CAS  Google Scholar 

  • Simarmata T, Turmuktini T, Fitriatin BN, Setiawati MR (2016) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI J Biosci 23(4):181–184

    Article  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DL, Praslickova D, Ilangumaran G (2015) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Stamenković S, Beškoski V, Karabegović I, Lazić M, Nikolić N (2018) Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J Agric Res 16(1):1–18

    Article  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun R, Guo X, Wang D, Chu H (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178

    Article  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1(12):532–556

    Google Scholar 

  • Talbi C, Sánchez C, Hidalgo-Garcia A, González EM, Arrese-Igor C, Girard L, Bedmar EJ, Delgado MJ (2012) Enhanced expression of Rhizobium etli cbb. J Exp Bot 63(14):5035–5043

    Article  CAS  PubMed  Google Scholar 

  • Tamayo-Vélez Á, Osorio NW (2018) Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of Colombia. Commun Soil Sci Plant Anal 49(2):139–147

    Article  CAS  Google Scholar 

  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7(4):294–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thilakarathna MS, McElroy MS, Chapagain T, Papadopoulos YA, Raizada MN (2016) Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron Sustain Develop 36(4):1–16

    CAS  Google Scholar 

  • Thingujam I, Tiwari ON, Tiwari GL (2016) Screening and characterization of cyanobacterial species isolated from Loktak Lake, Manipur, India with emphasis on biofortification. Int J Adv Res Biol Sci 3(1):88–98

    CAS  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Xu ZZ, Jiang L, Zhao H (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551(7681):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77(1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Ben Ammar H, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:1–6

    Article  CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  • Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4):280–292

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573

    Article  PubMed Central  CAS  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KNL, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5(11):954–983

    Article  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vicente EJ, Dean DR (2017) Keeping the nitrogen-fixation dream alive. Proc Natl Acad Sci U S A 114(12):3009–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayabharathi R, Sathya A, Gopalakrishnan S, Vijayabharathi R, Sathya A, Gopalakrishnan S (2016) A renaissance in plant growth-promoting and biocontrol agents by endophytes. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 37–60

    Chapter  Google Scholar 

  • Vikhe PS (2014) Azotobacter species as a natural plant hormone synthesizer. Res J Recent Sci 3:63–59

    Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowled 3:15

    Google Scholar 

  • Wang J, Li Q, Xu S, Zhao W, Lei Y, Song C, Huang Z (2018) Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Front Microbiol 9:1692

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani S, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1(1):35–38

    Article  Google Scholar 

  • Wdowiak-Wróbel S, Marek-Kozaczuk M, Kalita M, Karaś M, Wójcik M, Małek W (2017) Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis. Int J Gen Mol Microbiol 110(8):1087–1103

    Google Scholar 

  • Xiang W, Zhao L, Xu X, Qin Y, Yu G (2012) Mutual information flow between beneficial microorganisms and the roots of host plants determined the bio-functions of biofertilizers. Am J Plant Sci 3(8):1115–1120

    Article  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22(1):598–608

    Article  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015a) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31(1):95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015b) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Zabbey N, Sam K, Onyebuchi AT (2017) Remediation of contaminated lands in the Niger Delta, Nigeria: prospects and challenges. Sci Total Environ 586:952–965

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Saleem M, Wang C (2017) Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Exp 7(1):227

    Article  CAS  Google Scholar 

  • Zheng W, Zeng S, Bais H, LaManna JM, Hussey DS, Jacobson DL, Jin Y (2018) Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resour Res 54(5):3673–3687

    Article  Google Scholar 

  • Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93(4):1423–1435

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vivekanand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gehlot, P., Pareek, N., Vivekanand, V. (2021). Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices. In: Dubey, S.K., Verma, S.K. (eds) Plant, Soil and Microbes in Tropical Ecosystems. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3364-5_15

Download citation

Publish with us

Policies and ethics