Skip to main content

Advertisement

Log in

Fungal volatile organic compounds and their role in ecosystems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

All odorants are volatile organic compounds (VOCs), i.e., low molecular weight compounds that easily evaporate at normal temperatures and pressure. Fungal VOCs are relatively understudied compared to VOCs of bacterial, plant, or synthetic origin. Much of the research to date on fungal VOCs has focused on their food and flavor properties, their use as indirect indicators of fungal growth in agriculture, or their role as semiochemicals for insects. In addition, research into fungal volatiles has also taken place to monitor spoilage, for purposes of chemotaxonomy, for use in biofilters and for biodiesel, to detect plant and animal disease, for “mycofumigation,” and with respect to plant health. As methods for the analysis of gas phase molecules have improved, it has become apparent that fungal VOC are more chemically varied and more biologically active than has generally been realized. In particular, there is increasing data that show that fungal VOCs frequently mediate interactions between organisms within and across different ecological niches. The goal of this mini review is to orchestrate data on fungal VOCs obtained from disparate disciplines as well as to draw attention to the ecological importance of fungal VOCs in signaling between different species. Technologies and approaches that are common in one area of research are often unknown in others, and the study of fungal VOCs would benefit from more cross talk between subdisciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman D (1991) A natural history of the senses. Random House LLC, New York

    Google Scholar 

  • Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81:1147–1156

    CAS  PubMed  Google Scholar 

  • Araki A, Kawai T, Eitaki Y, Kanazawa A, Morimoto K, Nakayama K, Shibata E, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R (2010) Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Sci Total Environ 408:2208–2215

    CAS  PubMed  Google Scholar 

  • Araki A, Kanazawa A, Kawai T, Eitaki Y, Morimoto K, Nakayama K, Shibata E, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R (2012) The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci Total Environ 423:18–26

    CAS  PubMed  Google Scholar 

  • Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sci 169:854–861

    CAS  Google Scholar 

  • Azeem M, Rajarao GK, Terenius O, Nordlander G, Nordenhem H, Nagahama K, Norin E, Borg-Karlson AK (2015) A fungal metabolite masks the host plant odor for the pine weevil (Hylobius abietis). Fungal Ecol 13:103–111

  • Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (VOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659

    Google Scholar 

  • Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246

    PubMed  Google Scholar 

  • Bazemore RA, Jason F, Leland C, Podila GK (2012) Biomedically important pathogenic fungi detection with volatile biomarkers. J Breath Res 6:016002. doi:10.1088/1752-7155/6/1/016002

    CAS  PubMed  Google Scholar 

  • Beltran-Garcia MJ, Estarron-Espinosa M, Ogura T (1997) Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J Agric Food Chem 45:4049–4052

    CAS  Google Scholar 

  • Bennett JW, Hung R, Lee S, Padhi S (2013) Fungal and bacterial volatile organic compounds; an overview and their role as ecological signaling agents. In: Hock B (ed) The Mycota IX Fungal Interactions. Springer-Verlag, Heidelberg and Berlin, pp 373–393

    Google Scholar 

  • Berendsen R, Kalkhove SC, Lugones L, Baars JP, Wösten HB, Bakker PHM (2013) Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol 97:5535–5543

    CAS  PubMed  Google Scholar 

  • Berger RG (1995) Aroma biotechnology. Springer, Verlag

    Google Scholar 

  • Berger RG, Neuhauser K, Drawert F (1986) Characterization of odour principles of some basidiomycetes: Bjerkandera adusta, Poria aurea, Tyromyces sambuceus. Flavour Fragance J 12:181–183

    Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835–843

    CAS  PubMed  Google Scholar 

  • Blackwell A, Dyer C, Mordue (Luntz) AJ, Wadhams LJ, Mordue W (1996) The role of 1-octen-3-ol as a host-odour attractant for the biting midge, Culicoides impunctatus Goetghebuer, and interactions of 1-octen-3-ol with a volatile pheromone produced by parous female midges. Physiol Entomol 21:15–19

    CAS  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    CAS  PubMed  Google Scholar 

  • Booth E, Strobel G, Knighton B, Sears J, Geary B, Avci R (2011) A rapid column technique for trapping and collecting volatile fungal hydrocarbons. Biotechnol Lett 33:1963–1972

    CAS  PubMed  Google Scholar 

  • Bos LDJ, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9:e1003311. doi:10.1371/journal.ppat.1003311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brillat-Savarin JA (1825) The physiology of taste: Or, meditations on transcendental gastronomy. English translation by Penguin Classics, 1994

  • Bruce A, Stewart D, Verrall S, Wheatley RE (2003) Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int Biodeterior Biodegrad 51:101–108

    CAS  Google Scholar 

  • Bruna JM, Hierro EM, dela Hoz L, Mottram DS, Fernandez M, Ordonez JA (2001) The contribution of Penicillium aurantiogriseum to the volatiles composition and sensory quality of dry fermented sausages. Meat Sci 59:97–107

    CAS  PubMed  Google Scholar 

  • Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughn-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193

    CAS  PubMed  Google Scholar 

  • Camara JS, Marques JC, Perestrelo RM, Rodrigues F, Oliveira L, Andrade P, Caldeira M (2007) Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings. J Chromatogr A 1150:198–207

    CAS  PubMed  Google Scholar 

  • Canhoto OF, Magan N (2003) Potential for detection of microorganisms and heavy metals in potable water using electronic nose technology. Biosens Bioelectron 18:751–754

    CAS  PubMed  Google Scholar 

  • Canhoto O, Pinzari F, Fanelli C, Magan N (2004) Application of electronic nose technology for the detection of fungal contamination in library paper. Int Biodeterior Biodegrad 54:303–309

    Google Scholar 

  • Carey SA, Plopper CG, Hyde DM, Islam Z, Pestka JJ, Harkema JR (2012) Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys. Toxicol Pathol 40:887–898

    PubMed  Google Scholar 

  • Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6:1428–1439

    PubMed Central  Google Scholar 

  • Chambers ST, Syhre M, Murdoch DR, McCartin F, Epton MJ (2009) Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med Mycol 47:468–476

    CAS  PubMed  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs de champignons: chimie et rôle dans les interactions biotiques- une revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75

    CAS  PubMed  Google Scholar 

  • Coeur C, Jacob V, Denis I, Foster P (1997) Decomposition of α-pinene and sabinene on solid sorbents, tenax TA and carboxen. J Chromatogr A 786:185–187

    CAS  Google Scholar 

  • Crespo R, Pedrini N, Juarez MP, Dal Bello GM (2008) Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163:148–151

    CAS  PubMed  Google Scholar 

  • Cronin DA, Ward MK (1971) The characterisation of some mushroom volatiles. J Sci Food Agric 22:477–479

    CAS  Google Scholar 

  • Darriet P, Pons M, Henry R, Dumont O, Findeling V, Cartolaro P, Calonnec A, Dubourdieu A (2002) Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); Incidence of enzymatic activities of the yeast Saccharomyces cerevisiae. J Agric Food Chem 50:3277–3282

    CAS  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    CAS  PubMed  Google Scholar 

  • Demyttenaere JCR, Moriña RM, De Kimpe N, Sandra P (2004) Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A 1027:147–154

    CAS  PubMed  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    CAS  PubMed  Google Scholar 

  • El-Fouly MZ, Shahin AAFM, El-Bialy HAA (2011) Biological control of sapstain fungi in Egyptian wood stores and infected trees. Ann Microbiol 61:789–799

    CAS  Google Scholar 

  • Evans JA, Eyre CA, Rogers HJ, Boddy L, Müller CT (2008) Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol 1:57–68

    Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, de Cerio JD, Hidalgo M, Sesma MT, Bahaji A (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol 51:1674–1693

    CAS  PubMed  Google Scholar 

  • Ezra D, Strobel GA (2003) Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci 165:1229–1238

    CAS  Google Scholar 

  • Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel GA (2004) Proton-transfer reaction- mass spectroscopy as a technique to measure volatile emissions of Muscodor albus. Plant Sci 166:1471–1477

    CAS  Google Scholar 

  • Fiedler K, Schutz E, Geh S (2001) Detection of microbial volatile organic compounds (VOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121

    CAS  PubMed  Google Scholar 

  • Fiers M, Lognay G, Fauconnier ML, Jijakli MH (2013) Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 8:e66805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer G, Dott W (2003) Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 179:75–82

    CAS  PubMed  Google Scholar 

  • Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810

    CAS  PubMed  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The Mycota X: industial applications, 2nd edn. Springer-Verlag Berlin, Heidelberg, pp 249–264

    Google Scholar 

  • French FE, Kline DL (1989) 1-Octen-3-ol, an attractant for Tabanidae (Diptera). J Med Entomol 26:459–461

    CAS  Google Scholar 

  • George J, Jenkins NE, Blanford S, Thomas MB, Baker TC (2013) Malaria mosquitoes attracted by fatal fungus. PLoS One 8:e62632. doi:10.1371/journal.pone.0062632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    CAS  PubMed  Google Scholar 

  • Grigoriev IV, Cullen D, Hibbett D, Goodwin SB, Jeffries TW, Kuske C, Magnuson J, Spatafora J (2011) Fueling the future with fungal genomics. Mycology 2:192–209

    Google Scholar 

  • Heddergott C, Calvo AM, Latgé JP (2014) The volatome of Aspergillus fumigatus. Eukaryot Cell 13:1014–1025

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herrero-Garcia E, Garzia A, Cordobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400

    CAS  PubMed  Google Scholar 

  • Herrmann A (2010) The chemistry and biology of volatiles. Wiley, Chichester

    Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Google Scholar 

  • Hung R, Lee S, Bennett JW (2014a) The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana. Mycology 5:73–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Rodriguez-Saona R, Bennett J (2014b) Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 4:53

    PubMed Central  PubMed  Google Scholar 

  • Hussain A, Tian M-Y, He Y-R, Lei Y-Y (2010) Differential fluctuation in virulence and VOC profiles among different cultures of entomopathogenic fungi. J Invertebr Pathol 104:166–171

    CAS  PubMed  Google Scholar 

  • Inamdar AA, Bennett JW (2014) A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster. Sci Rep 4:3833

    PubMed Central  PubMed  Google Scholar 

  • Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117:418–426

    CAS  PubMed  Google Scholar 

  • Inamdar AA, Zaman T, Morath S, Pu D, Bennett JW (2012) Drosophila melanogaster as a model to characterize fungal volatile organic compounds. Environ Toxicol. doi:10.1002/tox.21825

    PubMed  Google Scholar 

  • Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW (2013) Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. PNAS 110:19561–19566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Institute of Medicine (2004) Committee on damp indoor spaces and health. The National Academy Press, Washington, D.C

    Google Scholar 

  • Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    PubMed  Google Scholar 

  • Jeleń HH, Wasowicz E (1998) Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev Int 14:391–426

    Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825

    CAS  PubMed  Google Scholar 

  • Kaminiski E, Stawicki S, Wasowicz E (1974) Volatile flavor compounds produced by molds of Aspergillus, Penicillium, and Fungi imperfecti. Appl Microbiol 27:1001–1004

    Google Scholar 

  • Karahadian C, Josephson DB, Lindsay RC (1985) Contribution of Penicillium sp. to the flavors of brie and camembert cheese. J Dairy Sci 68:1865–1877

    CAS  Google Scholar 

  • Karlshøj K, Nielsen PV, Larsen TO (2007) Fungal volatiles biomarkers of good and bad food quality. In: Dijksterhuis J, Samson RA (eds) Food mycology. CRC, Boca Raton, pp 279–302

    Google Scholar 

  • Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113:305–319

    CAS  PubMed  Google Scholar 

  • Keshri G, Voysey P, Magan N (2002) Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assay. J Appl Microbiol 92:165–172

    CAS  PubMed  Google Scholar 

  • Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, De Castro Vasconcellos P, de Oliva T, Tavares T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072

    CAS  Google Scholar 

  • Kinderlerer (1989) Volatile metabolites of filamentous fungi and their role in food flavor. J Appl Bacteriol Symp Suppl 133S–144S

  • Kline DL, Wood JR, Cornell JA (1991) Interactive effects of 1-octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. J Med Entomol 28:254–258

    CAS  PubMed  Google Scholar 

  • Korpi A, Pasanen A, Pasanen P (1998) Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions. Appl Environ Microbiol 64:2914–2919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    CAS  PubMed  Google Scholar 

  • Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    CAS  Google Scholar 

  • Kudalkar P, Strobel GA, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    CAS  Google Scholar 

  • Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 16:144–172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuske M, Romain A-C, Nicolas J (2005) Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ 40:824–831

    Google Scholar 

  • Larsen TO, Frisvad JC (1995) Chemosystematics of Penicillium based on profiles of volatile metabolites. Mycol Res 99:1167–1174

    CAS  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106:1213–1219

    CAS  PubMed  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) VOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lomascolo A, Stentelaire C, Asther M, Lesage-Meessen L (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol 17:282–289

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Macías-Rubalcava M, Hernández-Bautista B, Oropeza F, Duarte G, González M, Glenn A, Hanlin R, Anaya A (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131

    PubMed  Google Scholar 

  • Magan N, Evans P (2000) Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J Stored Prod Res 36:319–340

    CAS  PubMed  Google Scholar 

  • Mallette N, Pankratz EM, Parker AE, Strobel GA, Busses SC, Carlson RP, Peyton BM (2014) Evaluation of cellulose as a substrate for hydrocarbon fuel production by Ascocoryne sarcoides (NRRL 50072). J Sustain Bioenergy Syst 4:33–49

  • Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 75:182–187

    CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain msa 35. Environ Microbiol 11:844–854

    CAS  PubMed  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    CAS  PubMed  Google Scholar 

  • Mølhave L (2009) Volatile organic compounds and the sick building syndrome. In: Lippmann M (ed) Environmental toxicants: human exposures and their health effects, 3rd edn. Wiley-Interscience, New York, pp 241–256

    Google Scholar 

  • Mølhave L, Liu Z, Jorgensen AH, Perderson OF, Kjaergard SK (1993) Sensory and physiological effects on humans of combined exposures to air temperatures and volatile organic compounds. Indoor Air 3:155–169

    Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Google Scholar 

  • Müller T, Thißen R, Braun S, Dott W, Fischer G (2004) (M)VOC and composting facilities Part 1: (M)VOC emissions from municipal biowaste and plant refuse. Environ Sci Pollut Res 11:91–97

    Google Scholar 

  • Muller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    PubMed  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9(1):e86882

    PubMed Central  PubMed  Google Scholar 

  • Nieminen T, Neubauer P, Sivelä S, Vatamo S, Silfverberg P, Salkinoja-Salonen M (2008) Volatile compounds produced by fungi grown in strawberry jam. LWT Food Sci Technol 41:2051–2056

    CAS  Google Scholar 

  • Paul D, Park K (2013) Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969–13977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Picardi SM, Issenbergl P (1973) Investigation of some volatile constituents of mushrooms (Agaricus bisporus): changes which occur during heating. J Agric Food Chem 21:959–962

    CAS  Google Scholar 

  • Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812

    CAS  PubMed  Google Scholar 

  • Polizzi V, Delmulle B, Adams A, Moretti A, Susca A, Picco AM, Rosseel Y, Kindt R, Van Bocxlaer J, De Kimpe N, Van Peteghem C, De Saeger S (2009) JEM Spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. J Environ Monit 11:1849–1858

    CAS  PubMed  Google Scholar 

  • Polizzi V, Adams A, De Saeger S, Van Peteghem C, Moretti A, De Kimpe N (2012) Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds. Sci Total Environ 414:277–286

    CAS  PubMed  Google Scholar 

  • Prapulla SG, Karanth NG, Engel KH, Tressl R (1992) Production of 6-pentyl-α-pyrone by Trichoderma viride. Flavour Fragance J 7:231–234

    CAS  Google Scholar 

  • Salthammer T, Uhde E (2009) Organic indoor air pollutants. Wiley, Verlag

    Google Scholar 

  • Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217

    PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    CAS  PubMed  Google Scholar 

  • Scotter JM, Langford VS, Wilson PF, McEwan MJ, Chambers ST (2005) Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J Microbiol Methods 63:127–134

    CAS  PubMed  Google Scholar 

  • Sell C (2006) The chemistry of fragrances. From perfumer to consumer, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    CAS  PubMed  Google Scholar 

  • Splivallo R, Deveau A, Valdez N, Kirchoff N, Frey-Klet P, Karlovsky P (2014) Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. doi:10.1111/1462-2920.12521

    PubMed  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    CAS  PubMed  Google Scholar 

  • Straus DC (2009) Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health 25:617–635

    CAS  PubMed  Google Scholar 

  • Strobel GA (2012) Muscodor albus- the anatomy of an important biological discovery. Microbiol Today 39:108–111

    Google Scholar 

  • Strobel GA (2014a) Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. Nat Prod Rep 39:259–272

    Google Scholar 

  • Strobel GA (2014b) The story of mycodiesel. Curr Opin Microbiol 19:52–58

    CAS  PubMed  Google Scholar 

  • Strobel GA (2014c) The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbos. Biofuels 5:447–455

    CAS  Google Scholar 

  • Strobel GA, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94

    CAS  PubMed  Google Scholar 

  • Takigawa T, Wang BL, Sakano N, Wang DH, Ogino K, Kishi R (2009) A longitudinal study of environmental risk factors for subjective symptoms associated with sick building syndrome in new dwellings. Sci Total Environ 407:5223–5228

    CAS  PubMed  Google Scholar 

  • Takken W (1991) The role of olfaction in host seeking of mosquitoes: a review. Int J Trop Insect Sci 12:287–295

    Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:383–386

    Google Scholar 

  • Vergara-Fernandez A, Hernandez S, Revah S (2011) Elimination of hydrophobic volatile organic compounds in fungal biofilters: reducing start-up time using different carbon sources. Biotechnol Bioeng 108:758–765

    CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    CAS  PubMed  Google Scholar 

  • Wihlborg R, Pippitt D, Marsili R (2008) Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods 75:244–250

    CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2009) In: Heseltine E, Rosen J (eds) WHO guidelines for indoor air quality: dampness and mold. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    CAS  Google Scholar 

  • Zipfel C (2013) Combined roles of ehtylaene and endogenous peptides in regulating plant immunity and growth. Proc Natl Acad Sci U S A 110:5748–5749

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Arati Inamdar, Shannon Morath, Sally Padhi, Prakash Masurekar, David Pu, Jason Richardson, and Guohua Yin for stimulating discussions and to Rutgers University and the National Science Foundation Graduate Research Fellowship Program under Grant No. (0937373) for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, R., Lee, S. & Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99, 3395–3405 (2015). https://doi.org/10.1007/s00253-015-6494-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6494-4

Keywords

Navigation