Skip to main content
Log in

Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Casuarinas are very important plants for their various uses and survival in adverse sites or harsh environments. As nitrogen fixation, in symbiosis with Frankia, is an important factor for the survival of these plants under various conditions, the basis for selecting both effective and tolerant Frankia strains and Casuarina spp., are provided. Enhancement of the symbiotic relationship between Frankia and Casuarina, by mycorrhizal infection and other biofertilizing microorganisms such as Bacillus and Azospirillum, is reflected by superior plant growth. Casuarina leaf litter is also a great source for both inorganic and organic nutrients. Therefore, careful management of the top soil layer under Casuarina trees is very important. Litter decomposition ratio is affected by many physical chemical and biological factors including temperature, moisture conditions, lignin, and C-to-N and N-to-P ratios in addition to soil biota. In general, here the above relations are discussed and an alleviation model is presented for important disturbances of natural and human origin made in soil and environment, especially in the dry regions. In conclusion, we suggest how to optimize the nitrogen fixation and plant growth under the prevalent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addiscott TM, Thomas D (2000) Tillage, mineralization and leaching: phosphate. Soil Tillage Res 53:255–273

    Article  Google Scholar 

  • Badran OA, El-Lakany MH, El-Osta ML, Abo Gazia HA (1976) Breeding and improving Casuarina trees, I. Taxonomy and morphological characteristics of Casuarina spp. grown in Egypt. Alex J Agric Res 24:683–694

    Google Scholar 

  • Baker DD, Schwintzer CR (1990) Introduction. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, NY

    Google Scholar 

  • Barritt AR, Facelli JM (2001) Effects of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid land of South Australia. J Arid Environ 49:569–579

    Article  Google Scholar 

  • Bashkin MA, Binkley D (1998) Changes in soil carbon following afforestation in Hawaii. Ecology 79:828–833

    Article  Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Benson DR, Van den Heuvel BD, Potter D (2004) Actinorhizal symbiosis: diversity and biography. In: Gillings M, Holmes A (eds) Plant microbiology. Garland Science/BIOS Publishers, Oxford, pp 99–129

    Google Scholar 

  • Borthakur M, Sen A, Misra AK (1996) Immobilized Frankia spores remained viable on dry storage and on restoration to medium regenerated active colonies. Plant Soil 181:227–231

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caravaca F, Hernandez MT, Garcia C, Roldan A (2002) Improvement of rhizosphere aggregates stability of afforested semi-arid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 108:133–144

    Article  CAS  Google Scholar 

  • Carillo-Garcia A, de la Luz JL, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335

    Article  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51:201–226

    Article  Google Scholar 

  • Clemens J, Campbell LC, Nurisjah S (1983) Germination, growth and mineral ion concentrations of Casuarina species under saline conditions. Aust J Bot 31:1–9

    Article  CAS  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, Berlin, Germany, pp 199–234

    Chapter  Google Scholar 

  • Dawson JO, Kowalski DG, Dart PJ (1989) Variation with soil depth, topographic position and host species in the capacity of soils from an Australian locale to nodulate Casuarina and Allocasuarina seedlings. Plant Soil 118:1–11

    Article  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtopics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 317–342

    Google Scholar 

  • Diouf D, Diop TA, Ndoye I (2003) Actinorhizal, mycorhizal and rhizobial symbioses: how much do we know? Afric J Biotechnol 2:1–7

    CAS  Google Scholar 

  • Dommergues YR (1997) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29:931–941

    Article  CAS  Google Scholar 

  • Dutta RK, Agrawal M (2001) Litterfall, litter decomposition and nutrient release in five exotic plant species planted in coal mine spoils. Pedobiologia 45:298–312

    Article  CAS  Google Scholar 

  • Facelli JM, Williams R, Fricker S, Ladd B (1999) Establishment and growth of seedlings of Eucalyptus obliqua: interactive effects of litter, water and pathogens. Austral J Ecol 24:484–494

    Article  Google Scholar 

  • Fleming AI, Williams ER, Turnbull JW (1988) Growth and nodulation of provenances of Casuarina cunninghamiana inoculated with a range of Frankia sources. Austral J Bot 30:171–181

    Article  Google Scholar 

  • Girgis MGZ, Ishac YZ, Diem HG, Dommergues YR (1992) Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecol 13:443–451

    Google Scholar 

  • Gonzalez G, Seastdt TR (2001) Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964

    Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana in the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH +4 or 15NO 3 supplied as ammonium nitrate. New Phytol 167:897–912

    Article  PubMed  CAS  Google Scholar 

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford (UK), pp 3–30

    Google Scholar 

  • Izquierdo L, Caravaca F, Alguacil MM, Hernandez G, Roldan A (2005) Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol 30:3–10

    Article  Google Scholar 

  • Jamaludheen V, Kumar BM (1999) Litter of multipurpose trees in Kerala, India: variations in the amount, quality, decay rates and release of nutrients. For Ecol Manag 115:1–11

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson LAS (1980) Notes on Casuarinaceae I. Telopea 2:83–84

    Google Scholar 

  • Johnson LAS (1982) Notes on Casuarinaceae II. J Adel Bot Gard 6:73–87

    Google Scholar 

  • Johnson LAS (1988) Notes on Casuarinaceae III. The new genus Ceuthostoma. Telopea 3:133–137

    Google Scholar 

  • Kahindi JHP, Woomer P, George T, de Souza MFM, Karanja NK, Giller KE (1997) Agricultural intensification, soil biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing bacteria. Appl Soil Ecol 6:55–76

    Article  Google Scholar 

  • Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of boreal ectomycorhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:43–51

    Article  Google Scholar 

  • Kohls SJ, Thimmapuram JC, Buschens CA, Paschke MW, Dawson JO (1994) Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant Soil 162:229–239

    Article  Google Scholar 

  • Laplaze L, Gherbi H, Frutz T, Pawlowski K, Franche C, Macheix J-J, Auguy F, Bogusz D, Duhoux G (2000) Flavan-containing cells delimit Frankia infected compartments in Casuarina glauca nodules. In: Pedrosa FO et al (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, pp 455–456

    Google Scholar 

  • Lemmens RHMJ, Wulijarni-Soetjipto N (1992) Plant resources of South-East Asia No. 3: dye and tannin producing plants. PROSEA Foundation, Bogor (Indonesia)

    Google Scholar 

  • Liang ZC, Chen XH (1984) Selection of clones of Casuarina for resistance to bacterial wilt. J South China Agric Coll 5:53–59

    Google Scholar 

  • Mailly D, Margolis HA (1992) Forest floor mineral soil improvement in Casuarina equisetifolia plantations on the coastal sand dunes in Senegal. For Ecol Manag 55:259–278

    Article  Google Scholar 

  • Mansour SR (2003) Survival of Frankia strains under different soil conditions. Online J Biol Sci 3:618–626

    Google Scholar 

  • Mele PM, Yunusa IAM, Kingston KB, Rab MA (2004) Response of soil fertility indices to a short phase of Australian woody species, continuous annual crop rotations or a permanent pasture. Soil Tillage Res 72:21–30

    Article  Google Scholar 

  • Midgley SJ, Turnbull WJ, Hartney VJ (1986) Fuel-wood species for salt affected sites. Reclam Reveg Res 5:285–303

    Google Scholar 

  • Myrold DD (1994) Frankia and the actinorhizal symbiosis. In: Weaver RW et al (eds) Methods of soil analysis, part 2: microbiological and biochemical properties. Soil Sci Soc America, Madison, WI, USA, pp 291–328

    Google Scholar 

  • National Research Council (1984) Casuarina: nitrogen-fixing trees for adverse sites. Natl Acad Sci USA, Washington, DC

    Google Scholar 

  • Nickel A, Pelz O, Hahn D, Saurer M, Siegwolf R, Zeyer J (2001) Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil. Appl Environ Microbiol 67:2603–2609

    Article  PubMed  CAS  Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species—a review. For Ecol Manag 139:1–19

    Article  Google Scholar 

  • Oliveira RS, Dodd JC, Castro PML (2001) The mycorhizal status of Phragmites australis in several polluted soils and sediments of an industrialized region of Northern Portugal. Mycorrhiza 10:241–247

    Article  CAS  Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient recycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Lucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77

    Article  Google Scholar 

  • Pawlowski K (2009) Induction of actinorhizal nodules by Frankia. Microbiol Monogr 8:127–154

    Article  Google Scholar 

  • Pinyopusarerk K, House APN (1993) Casuarina: an annotated bibliography of C. equisetifolia, C. cunninghamiana and C. oligodon. International Center for Research in Agroforestry, Nairobi

  • Pinyopusarerk K, Williams ER (2000) Range-wide provenance variation in growth and morphological characteristics of Casuarina equisetifolia growth in Northern Australia. For Ecol Manag 134:219–232

    Article  Google Scholar 

  • Rajendran K (2001) Litter production and nutrient return in an age series of Casuarina equisetifolia in the East Coast of India. Asian J Microbiol Biotechnol Environ Sci 3:87–90

    Google Scholar 

  • Rajendran K, Devaraj P (2004) Biomass and nutrient distribution and their return of Casuarina equisetifolia inoculated with biofertilizers in farm land. Biomass Bioenergy 26:235–249

    Article  CAS  Google Scholar 

  • Rajendran K, Sugavanam V, Devaraj P (2003) Effect of microbial inoculation on quality seedling production of Casuarina equisetifolia. Trop Forest Sci 15:82–96

    Google Scholar 

  • Reddell P, Bowen GD (1985a) Host–Frankia specificity within the Casuarinaceae. Plant Soil 93:293–298

    Article  Google Scholar 

  • Reddell P, Bowen GD (1985b) Frankia source affects growth, nodulation and nitrogen fixation in Casuarina species. New Phytol 100:115–122

    Article  Google Scholar 

  • Reddell P, Foster RC, Bowen GD (1986a) The effects of sodium chloride on growth and nitrogen fixation in Casuarina obesa Miq. New Phytol 102:397–408

    Article  CAS  Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1986b) Nodulation of Casuarinaceae in relation to host species and soil properties. Austral J Bot 34:435–444

    Article  Google Scholar 

  • Reddell P, Yun Y, Shipton WA (1997) Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirements than those supplied with adequate fertilizer nitrogen. Plant Soil 189:213–219

    Article  CAS  Google Scholar 

  • Saleh NAM, El-Lakany MH (1979) A quantitative variation in the flavonoids and phenolics of some Casuarina species. Biochem Syst Ecol 7:13–15

    Article  CAS  Google Scholar 

  • Sanginga N, Danso SKA, Bowen GD (1989) Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132

    Article  Google Scholar 

  • Santo AVD, Ruigliano FA, Berg B, Fioretto A, Puppi G, Alfani A (2002) Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests. Acta Oecol Int J Ecol 23:247–259

    Article  Google Scholar 

  • Santra S, Nandi B (1975a) Decomposition of lignin and cellulose components of wood of Swietenia mahagoni, Casuarina equisetifolia and Mimusops elegani by Fomes durissimus Lloyd. Holzforschung 29:205–209

    Article  CAS  Google Scholar 

  • Santra S, Nandi B (1975b) Microstructural and microchemical studies of wood decay of Casuarina equisetifolia by Fomes durissimus. Transact British Mycol Soc 65:507–509

    Article  Google Scholar 

  • Sayed WF (2003) Effects of land irrigation with partially-treated wastewater on Frankia survival and infectivity. Plant Soil 254:19–25

    Article  CAS  Google Scholar 

  • Sayed WF, Wheeler CT (1999) Effect of the flavonoid quercetin on culture and isolation of Frankia from Casuarina root nodules. Folia Microbiol 44:59–62

    Article  CAS  Google Scholar 

  • Sayed WF, Wheeler CT, Zahran HH, Shoreit AAM (1997) Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biol Fertil Soils 25:349–353

    Article  Google Scholar 

  • Sayed WF, Mohawad SM, Abd El-Karim MM (2000) Effect of Al, Co, and Pb ions on growth of Frankia spp. in a mineral medium. Folia Microbiol 45:153–156

    Article  CAS  Google Scholar 

  • Sayed WF, EL-Sharouny HM, Zahran HH, Ali WM (2002a) Composition of Casuarina leaf litter and its influence on FrankiaCasuarina symbiosis in soil. Folia Microbiol 47:429–434

    Article  CAS  Google Scholar 

  • Sayed WF, EL-Sharouny HM, Zahran HH, Ali WM (2002b) Changes in growth of Frankia strains, its infectivity and effectiveness on Casuarina equisetifolia after incubation at high temperatures and different desiccation regimes. Proc 2nd Intl Conf Biol Sci Tanta Univ, Egypt 2:478–490

    Google Scholar 

  • Sayed WF, Wheeler CT, El-Sharouny HM, Mohawad SM, Abd El-Karim MM (2002c) Effects of storage time and temperature on the infectivity and effectiveness of Frankia entrapped in polyacrylamide gel. Folia Microbiol 47:545–550

    Article  CAS  Google Scholar 

  • Sayed WF, Zahran HH, Salem WM (2006) The use of Frankia spores as inocula for Casuarina equisetifolia plants. Catrina 1:67–73

    Google Scholar 

  • Sayed WF, Zahran HH, Salem WM (2007) Dominant rhizospheric microorganisms under some casuarinas and its effect on Frankia growth and nodulation capacity. Egypt J Biotechnol 2:201–218

    Google Scholar 

  • Sayed WF, Zahran HH, Salem WM (2008) Rhizospheric microbiota and FrankiaCasuarina symbiosis. Catrina 3:101–110

    Google Scholar 

  • Schwencke J, Caru M (2001) Advances in actinorhizal symbiois: host plant–Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res Manag 15:285–327

    Article  CAS  Google Scholar 

  • Shafiq Y, Dahab AMA, Omran F (1974) Effects of light intensity on the growth of seedlings of Pinus brutia, Cupressus simpervirens and Casuarina equisetifolia. Iraqi J Agric Sci Zanco 9:73–85

    Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188

    Article  PubMed  CAS  Google Scholar 

  • Siqueira JO, Nair MG, Hmmerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant–soil–microbial systems. CRC Plant Sci 10:63–121

    Article  CAS  Google Scholar 

  • Slattery WJ, Surapaneni A (2002) Effect of soil management practices on the sequestration of carbon in duplex soils of Southern Australia. In: Kimble JM, Lal R, Follett RF (eds) Agricultural practices and policies for carbon sequestration in soil. Lewis Public, Washington, DC, pp 107–117

    Google Scholar 

  • Solans M (2007) Discaria trinervisFrankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:297–303

    Article  Google Scholar 

  • Srinivasan K, Ramasamy M, Shantha R (1990) Tolerance of pulse crops to allelochemicals of tree species. Ind J Pul Res 3:40–44

    Google Scholar 

  • Subbarao NS, Rodriguez-Barrueco C (1995) Casuarinas. Science Publishers, Inc, Lebanon, NH, USA, p 240

    Google Scholar 

  • Swaminath MH, Vadivaj BA (1989) Studies on the N, P, and K uptake by forestry species under irrigated and unirrigated conditions. Myforest 25:135–143

    Google Scholar 

  • Thiagalingam K (1983) Role of Casuarina in agroforestry. In: Midgley SJ, Turnbull JW, Johnston RD (eds) Casuarina ecology, management and utilization. CSIRO, Melbourne, pp 175–177

    Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manag 170:307–312

    Article  Google Scholar 

  • Tomar OS, Minhas PS (1998) Afforestation of salt-affected soils. In: Tyagi NK, Minhas PS (eds) Agricultural salinity management in India. Salinity Research Institute, Karnal, India, pp 453–472

    Google Scholar 

  • Tomar OS, Minhas PS, Sharma VK, Singh YP, Gupta RK (2003) Performance of 31 tree species and soil conditions in a plantation established with saline irrigation. For Ecol Manag 177:333–346

    Article  Google Scholar 

  • Valdez M (2008) Frankia ecology. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, Berlin, Germany, pp 49–72

    Chapter  Google Scholar 

  • Vestgarden LS (2001) Carbon and nitrogen turnover in the early stages of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen. Soil Biol Biochem 33:465–474

    Article  CAS  Google Scholar 

  • Waid JS (1997) Metabolic interactions in plant litter systems. In: Heal OW, Anderson JM, Swift MJ (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, pp 145–153

    Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, Berlin, Germany, pp 147–166

    Chapter  Google Scholar 

  • Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pretense. Symbiosis 29:91–105

    Google Scholar 

  • Warren MW, Zou X (2002) Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manag 170:161–171

    Article  Google Scholar 

  • Yadav JSP (1983) Soil limitations for successful establishment and growth of Casuarina plantations. In: Midgley SJ, Turnbull JW, Johnston RD (eds) Casuarina ecology, management and utilization. CSIRO, Melbourne, pp 138–157

    Google Scholar 

  • Yang T, Yan C, Li Y, Liang J, Tang H (2003) Na+ and Cl accumulation and salt resistance of Casuarina equisetifolia seedlings under salt stress. Fujian J Agric Sci 18:155–159

    Google Scholar 

  • Yuehua C, Yangian X (1990) Research on Casuarina plantations and nitrogen fixation in China. In: El-Lakany MH, Turnbull JW, Brewbaker JL (eds) Advances in Casuarina research and utilization. Desert Development Center, AUC, Cairo, Egypt, pp 165–173

    Google Scholar 

  • Zhang Y, Chen Y, Li G, Chen Z, Zhang C (2006) Mycorrhizal fungal screening and inoculant effectiveness for Casuarina junghhuhniana. Forest Res 19:392–396

    Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Article  Google Scholar 

  • Zimpfer J, Kaelke C, Smyth C, Dawson J (2001) The biotic community increases the infectivity of Frankia. Soil Ecol 21:67–78

    Google Scholar 

  • Zimpfer J, Kaelke C, Smyth C, Hahn D, Dawson J (2003) Frankia inoculation, soil biota, and host tissue amendment influence Casuarina nodulation capacity of tropical soil. Plant Soil 254:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. F. Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed, W.F. Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review. Folia Microbiol 56, 1–9 (2011). https://doi.org/10.1007/s12223-011-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-011-0002-8

Keywords

Navigation