Skip to main content

Thermophilic Fungal Lignocellulolytic Enzymes in Biorefineries

  • Chapter
  • First Online:
Progress in Mycology

Abstract

Lignocellulose-based (2G) ethanol plants have become operational at commercial and demonstration scale. Some of the major companies, such as Raizen-Iotech, Novozymes, Clariant, DSM POET, and PRAJ, have taken the lead in this venture. However, the research and development for reducing the cost of lignocellulosic ethanol is a hotly pursued area. Technological innovations for improved pretreatment of the lignocellulosic substrates and bioprospecting and developing robust catalytically active lignocellulolytic enzymes for efficient hydrolysis of cellulose are desired to make lignocellulose-based white biotechnology a reality in the near future. This chapter discusses the current scenario of two of the key components of the bioconversion platform, i.e., pretreatment and enzyme hydrolysis approaches, being followed in the existing facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aachmann FL, Sorlie M et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. PNAS 109:18779–18784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adsul M, Sandhu SK et al (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzym Microb Technol 133:109442

    Article  CAS  Google Scholar 

  • Agrawal R, Semwal S et al (2018) Synergistic enzyme cocktail to enhance hydrolysis of steam exploded wheat straw at pilot scale. Front Energy Res 6:1–11

    Article  Google Scholar 

  • Agrawal D, Kaur B et al (2020) An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. Bioresour Technol 308:123257

    Article  CAS  PubMed  Google Scholar 

  • Balan V, Sousa LDC (2019) De-esterification of biomass prior to ammonia pretreatment and systems and products related thereto. US Patent Application 16/029,452

    Google Scholar 

  • Banerjee G, Car S et al (2010) Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol Bioeng 106:707–720

    Article  CAS  PubMed  Google Scholar 

  • Basotra N, Kaur B et al (2016) Mycothermus thermophilus (Syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. Bioresour Technol 222:413–421

    Article  CAS  PubMed  Google Scholar 

  • Basotra N, Joshi S et al (2018) Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics. Int J Biol Macromol 108:185–192

    Article  CAS  PubMed  Google Scholar 

  • Basotra N, Dhiman SS et al (2019) Characterization of a novel lytic polysaccharide monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res 478:46–53

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Beukes N, Pletschke BI (2010) Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases. Bioresour Technol 101:4472–4478

    Article  CAS  PubMed  Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213

    Article  CAS  PubMed  Google Scholar 

  • Bevers LE, Appledoorn M et al (2019) Enzyme composition. Patent Application WO 2018/096019 Al

    Google Scholar 

  • Billard H, Faraj A et al (2012) Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol Biofuels 5:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissaro B, Røhr AK et al (2017) Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol 13:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Boonvitthya N, Bozonnet S et al (2013) Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeast Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol 54:158–169

    Article  CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN et al (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borin GP, Sanchez CC et al (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10:1–20

    Article  Google Scholar 

  • Brar KK, Kaur S, Chadha BS (2016) A novel staggered hybrid SSF approach for efficient conversion of cellulose/hemicellulosic fractions of corncob into ethanol. Renew Energy 98:16–22

    Article  CAS  Google Scholar 

  • Bussamra BC, Freitas S, da Costa AC (2015) Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour Technol 187:173–181

    Article  CAS  PubMed  Google Scholar 

  • Chadha BS, Kaur B et al (2019) Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresour Technol 277:195–203

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Chandrasekhar G et al (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Antunes FA et al (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 7:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang L, Ding M et al (2011) Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90:1933–1942

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeter Biodegrad 59:85–89

    Article  CAS  Google Scholar 

  • Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71:411–415

    Article  CAS  Google Scholar 

  • Chen X, Kuhn E et al (2016) DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g/L) during enzymatic hydrolysis and high ethanol concentration (>10% v/v) during fermentation without hydrolyzate purification or concentration. Energy Environ Sci 9:1237–1245

    Article  CAS  Google Scholar 

  • Cheng Y, Song X et al (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Chundawat SP, Lipton MS et al (2011) Proteomics-based compositional analysis of complex cellulase–hemicellulase mixtures. J Proteome Res 10:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Chundawat SP, Uppugundla N et al (2017) Shotgun approach to increasing enzymatic saccharification yields of ammonia fiber expansion pretreated cellulosic biomass. Front Energy Res 5:9

    Article  Google Scholar 

  • Chylenski P, Petrović DM et al (2017) Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnol Biofuels 10:177

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva AS, Espinheira RP et al (2020) Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol Biofuels 13:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis R, Tao L et al (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid prehydrolysis and enzymatic hydrolysis deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy Laboratory, Golden, CO, NREL/TP-5100-60223

    Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17

    Article  CAS  PubMed  Google Scholar 

  • dos Santos AC, Ximenes E et al (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37:518–531

    Article  CAS  PubMed  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Emalfarb MA, Ben-Bassat A et al (1998) Cellulase compositions and methods of use. US Patent Application US5811381A

    Google Scholar 

  • Ezeilo UR, Zakaria II et al (2017) Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol Biotechnol Equip 31:647–662

    CAS  Google Scholar 

  • Fang X, Yano S et al (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261

    Article  CAS  PubMed  Google Scholar 

  • Fanuel M, Garajova S et al (2017) The Podospora anserina lytic polysaccharide monooxygenases PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans. Biotechnol Biofuels 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Filiatrault-Chastel C, Navarro D et al (2019) AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels 12:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Sørlie M et al (2019) Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol 59:54–64

    Article  CAS  PubMed  Google Scholar 

  • Gandla M, Martín C, Jonsson L (2018) Analytical enzymatic saccharification of lignocellulosic biomass for conversion to biofuels and bio-based chemicals. Energies 11:2936

    Article  CAS  Google Scholar 

  • Gao D, Chundawat SPS et al (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101:2770–2781

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Uppugundla N et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:1–11

    Article  CAS  Google Scholar 

  • Gao L, Li Z et al (2017) Combining manipulation of transcription factors and over expression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol Biofuels 10:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Aparicio MP, Ballesteros M et al (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137:353–365

    PubMed  Google Scholar 

  • Glass NL, Schmoll M et al (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the wall. New Phytol 178:473–485

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Zhang H et al (2015) Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177:1252–1271

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk LM, Oliveira RA, Da Silva Bon EP (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78

    Article  CAS  Google Scholar 

  • Harris PV, Welner D et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Harris PV, Xu F et al (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Eng 19:162–170

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY (2007) Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Hinz SWA, Pouvreau L et al (2009) Hemicellulase production in Chrysosporium lucknowense C1. J Cereal Sci 50:318–323

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G et al (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu TC, Guo GL et al (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels 4:36

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Chandra R et al (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153

    Article  CAS  PubMed  Google Scholar 

  • Huttner S, Várnai A et al (2019) Functional characterization of AA9 LPMOs in the thermophilic fungus Malbranchea cinnamomea reveals specific xylan activity. Appl Environ Microbiol. https://doi.org/10.1128/aem.01408-19

  • Igarashi K, Uchihashi T et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Decker SR et al (2014) Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol Biofuels 7:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Thiagarajan S et al (2009) Cloning and expression of GH11 xylanase gene from Aspergillus fumigates MKU1 in Pichia pastoris. J Biosci Bioeng 108:24–29

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Nguyen NPT et al (2010) Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresour Technol 101:8742–8749

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Sousa LC et al (2016) Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem 18:957–966

    Article  CAS  Google Scholar 

  • Johansen KS (2016) Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem Soc Trans 44:143–149

    Article  CAS  PubMed  Google Scholar 

  • Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  Google Scholar 

  • Kallioinen A, Puranen T, Siika-aho M (2014) Mixtures of thermostable enzymes show high performance in biomass saccharification. Appl Biochem Biotechnol 173:1038–1056

    Article  CAS  PubMed  Google Scholar 

  • Kameshwar AKS, Ramos LP, Qin W (2019) CAZymes-based ranking of fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresour Bioprocess 6:1–10

    Article  Google Scholar 

  • Kaur B, Sharma M et al (2013) Proteome based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Appl Biochem Biotechnol 169:393–407

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lee CM et al (2008a) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008b) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99(13):5694–5702

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Jung JY et al (2015) Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess Biosyst Eng 38:929–937

    Article  CAS  PubMed  Google Scholar 

  • Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lambertz C, Garvey M et al (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Langston JA, Shaghasi T et al (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laothanachareon T, Bunterngsoo B et al (2015) Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation. Bioresour Technol 198:682–690

    Article  CAS  PubMed  Google Scholar 

  • Laser M, Schulman D et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Lethio J, Wernerus H et al (2001) Directed immobilization of recombinant Staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. FEMS Microbiol Lett 195:197–204

    Article  Google Scholar 

  • Levasseur A, Drula E et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BZ, Balan V et al (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Lima LHF, Serpa VI et al (2013) Small-angle X-ray scattering and structural modeling of full-length: Cellobiohydrolase I from Trichoderma harzianum. Cellulose 20:1573–1585

    Article  CAS  Google Scholar 

  • Liu D, Li J et al (2013a) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang L et al (2013b) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng 39:133–140

    Article  PubMed  Google Scholar 

  • Lombard V, Golaconda-Ramulu H et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Mahajan C, Basotra N et al (2016) Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour Technol 200:55–63

    Article  CAS  PubMed  Google Scholar 

  • Marx IJ, Van-Wyk N et al (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew AK, Parameshwaran B et al (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20

    Article  CAS  PubMed  Google Scholar 

  • Mello BL, Polikarpov I (2014) Family I carbohydrate binding-modules enhance saccharification rates. AMB Express 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  PubMed  Google Scholar 

  • Mokomele T, da-Costa SL et al (2018) Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. Biotechnol Biofuels 11:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgenstern I, Powlowski J, Tsang A (2014) Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH 61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genom 13:471–481

    Article  CAS  Google Scholar 

  • Morrison JM, Elshahed MS, Youssef NH (2016) Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep 6:29217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller G, Chylenski P et al (2018) The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnol Biofuels 11:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy C, Powlowski J et al (2011) Curation of characterized glycoside hydrolases of fungal origin. Database 2011:bar020

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray P, Aro N et al (2004) Expression in Trichoderma reesei and characterization of a thermostablefamily 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248–257

    Article  CAS  PubMed  Google Scholar 

  • Ogunmolu FE, Kaur I et al (2015) Proteomics insights into the biomass hydrolysis potentials of a hypercellulolytic fungus Penicillium funiculosum. J Proteome Res 14:4342–4358

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Joy S et al (2016) Pretreatment and enzymatic process modification strategies to improve efficiency of sugar production from sugarcane bagasse. 3 Biotech 6:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan X, Gilkes N et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  CAS  PubMed  Google Scholar 

  • Payne CM, Knott BC et al (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Peciulyte A, Pisano M et al (2017) Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 39:1403–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins JB, Kumar M et al (2012) Talaromyces strains and enzyme compositions. US Patent Application 13/381,871

    Google Scholar 

  • Poidevin L, Feliu J et al (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserine. Appl Environ Microbiol 79:4220–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polizeli ML, Rizzatti AC et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Polizeli MDLTM, Somera AF, Lucas RCD, Nozawa MSF, Michelin M (2017) Enzymes involved in the biodegradation of sugarcane biomass: challenges and perspectives. In: Buckeridge MS, Souza AP (eds) Advances of basic science for second generation bioethanol from sugarcane. Springer, Cham, pp 55–79

    Chapter  Google Scholar 

  • Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, B-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol 146:151–164

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD et al (2011) Insights into the oxidative degradation of cellulose by metalloenzyme that exploits biomass components. PNAS 108:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raheja Y, Kaur B et al (2020) Secretome analysis of Talaromyces emersonii reveals distinct CAZymes profile and enhanced cellulase production through response surface methodology. Ind Crop Prod 152:112554

    Article  CAS  Google Scholar 

  • Rai R, Kaur B et al (2016) Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. Bioresour Technol 216:958–967

    Article  CAS  PubMed  Google Scholar 

  • Raj K, Krishnan C (2019) Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production. Ind Crop Prod 131:32–40

    Article  CAS  Google Scholar 

  • Rajendran K, Drielak E et al (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production—a review. Biomass Conver Biorefin 8:471–483

    Article  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  • Ravalason H, Jan G et al (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719–733

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Sosa FM, Morales ML et al (2017) Management of enzyme diversity in high performance cellulolytic cocktails. Biotechnol Biofuels 10:156–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Romani A, Garrote G (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712

    Article  CAS  PubMed  Google Scholar 

  • Rosgaard L, Andric P et al (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143:27–40

    Article  CAS  PubMed  Google Scholar 

  • Samayan IP, Schall CA (2010) Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour Technol 101:3561–3566

    Article  Google Scholar 

  • Sammond DW, Payne CM et al (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7:e48615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanhueza C, Carvajal G et al (2018) The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase. Enzym Microb Technol 113:75–82

    Article  CAS  Google Scholar 

  • Satlewal A, Agrawal R et al (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289

    Article  CAS  PubMed  Google Scholar 

  • Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8:1–30

    Article  Google Scholar 

  • Selig MJ, Adney WS et al (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722

    Article  CAS  Google Scholar 

  • Sills DL, Gossett JM (2012) Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses. Biotechnol Bioeng 109:894–903

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Cheng G et al (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:62

    Article  Google Scholar 

  • Singhania RR, Patel AK et al (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  CAS  PubMed  Google Scholar 

  • Sjöde A, Frolander A et al (2013) Lignocellulosic biomass conversion by sulfite pretreatment. Patent Application EP2376642 B1

    Google Scholar 

  • Song W, Han X et al (2016) Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I et al (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  • Timo S, Raphael G et al (2017) Thermoascus aurantiacus is an intriguing host for the industrial production of cellulases. Curr Biotechnol 6:89–97

    Article  Google Scholar 

  • Vaaje-Kolstad G, Westereng B et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Van Solingen P, Meijer D et al (2001) Cloning and expression of an endocellulase gene from a novel Streptomycete isolated from an east African soda lake. Extremophiles 5:333–341

    Article  CAS  PubMed  Google Scholar 

  • Visser H, Joosten V et al (2011) Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol 7:214–223

    Article  CAS  Google Scholar 

  • Vu VV, Beeson WT et al (2014) Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 136:562–565

    Article  CAS  PubMed  Google Scholar 

  • Weiss ND, Felby C, Thygesen LG (2019) Enzymatic hydrolysis is limited by biomass–water interactions at high-solids: improved performance through substrate modifications. Biotechnol Biofuels 12:1–13

    Article  Google Scholar 

  • Winger AM, Heazlewood JL et al (2014) Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. J Ind Microbiol Biot 41:1687–1696

    Article  CAS  Google Scholar 

  • Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding effects). Appl Catal A 317:70–81

    Article  CAS  Google Scholar 

  • Xu H, Xu F et al (2015) Process for increasing enzymatic hydrolysis of cellulosic material. Patent Application No. PCT/US2014/054067

    Google Scholar 

  • Yang JS, Valente C, Polishchuk RS (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13:996–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yennamalli RM, Rader AJ et al (2011) Thermostability in endoglucanases is fold-specific. BMC Struct Biol 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yennamalli RM, Rader AJ et al (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Qin W et al (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Ding W et al (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support for the research work through different government funding agencies (DBT, DST, ICAR (AMAAS), UGC) documented in our research publications that are referred in this chapter is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basotra, N., Raheja, Y., Kaur, B., Chadha, B.S. (2021). Thermophilic Fungal Lignocellulolytic Enzymes in Biorefineries. In: Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V. (eds) Progress in Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3307-2_2

Download citation

Publish with us

Policies and ethics