Skip to main content
Log in

Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new gene, RuCelA, encoding a bifunctional xylanase/endoglucanase, was cloned from a metagenomic library of yak rumen microorganisms. RuCelA showed activity against xylan and carboxymethylcellulose (CMC), suggesting bifunctional xylanase/endoglucanase activity. The optimal conditions for xylanase and endoglucanase activities were 65°C, pH 7.0 and 50°C, pH 5.0, respectively. In addition, the presence of Co+ and Co2+ can greatly improve RuCelA's endoglucanase activity, while inhibits its xylanase activity. Further examination of substrate preference showed a higher activity against barley glucan and lichenin than against xylan and CMC. Using xylan and barley glucan as substrates, RuCelA displayed obvious synergistic effects with β-1,4-xylosidase and β-1,4-glucosidase. Generation of soluble oligosaccharides from lignocellulose is the key step in bioethanol production, and it is greatly notable that RuCelA can produce xylo-oligosaccharides and cello-oligosaccharides in the continuous saccharification of pretreated rice straw, which can be further degraded into fermentable sugars. Therefore, the bifunctional RuCelA distinguishes itself as an ideal candidate for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An DD, Dong XZ, Dong ZY (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analysis. Anaerobe 11:207–215

    Article  CAS  Google Scholar 

  • Avalos OP, Sanchez-Herrera LM, Salgado LM, Ponce-Noyola T (2008) A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Current Microbiol 57:39–44

    Article  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Berger E, Zhang D, Zverlov VV, Schwarz WH (2007) Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyze crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buck GE, O'Hara LC, Summersgill JT (1992) Rapid simple method for treating clinical specimens containing Mycobacterium tuberculosis to remove DNA for polymerase chain reaction. J Clin Microbiol 30:1331–1334

    Article  CAS  Google Scholar 

  • Chen HG, Yan X, Liu XY, Wang MD, Huang HM, Jia XC, Wang JA (2006) Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J Microbiol Biotechnol 16:1132–1138

    CAS  Google Scholar 

  • Daniel R (2004) The soil metagenome—a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204

    Article  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  Google Scholar 

  • Flint HJ, Martin J, Mcpherson CA, Daniel AS, Zhang JX (1993) A bifunctional enzyme with separate xylanase and β-(1, 3/1, 4)-glucanase domains, encoded by the XynD gene of Ruminococcus xavefaciens. J Bacteriol 175:2943–2951

    Article  CAS  Google Scholar 

  • George NS (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2002) Improvement of flour quality through carbohydrases treatment during wheat tempering. J Agric Food Chem 50:4126–4130

    Article  CAS  Google Scholar 

  • Hrmova M, Fincher G (2001) Plant enzyme structure: explaining substrate specificity and the evolution of function. Plant Physiol 125:54–57

    Article  CAS  Google Scholar 

  • Khandeparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35:635–644

    Article  CAS  Google Scholar 

  • Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    Article  CAS  Google Scholar 

  • Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:1–14

    Article  Google Scholar 

  • Krause DO, Denmana SE, Mackiec RI, Morrisond M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen, microbiology, ecology and genomics. FEMS Microbiol Rev 27:663–693

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lamed R, Bayer EA (1988) The cellulosome concept: exocellular enzyme reactor centers for efficient binding and cellulolysis. In: Aubert JP (ed) Biochemistry and genetics of cellulose degradation. Academic, London, pp 101–116

    Google Scholar 

  • Leggio LL, Kalogiannis S, Eckert K, Teixeira SC, Bhat MK, Andrei C, Pickersgillm RW, Larsen S (2001) Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett 509:303–308

    Article  Google Scholar 

  • Lin LL, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 84:197–204

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu JR, Yu B, Zhao X, Cheng KJ (2007) Coexpression of rumen microbial β-glucanase and xylanase genes in Lactobacillus reuteri. Appl Microbiol Biotechnol 77:117–124

    Article  CAS  Google Scholar 

  • Tuffin M, Anderson D, Heath C, Cowan D (2009) Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 4:1671–1683

    Article  CAS  Google Scholar 

  • Mathlouthi N, Juin H, Larbier M (2003) Effect of xylanase and β-glucanase supplementation of wheat- or wheat- and barley-based diets on the performance of male turkeys. Br Poult Sci 44:291–298

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 5:193–219

    Google Scholar 

  • Saha BC, Cotta MA (2009) Comparison of pretreatment strategies for enzymatic saccharification and fermentation from barley straw to ethanol. N Biotechnol 27:11–16

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B (2010) Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 76:3620–3624

    Article  CAS  Google Scholar 

  • Shipkowski S, Brenchl JE (2005) Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol 71:4225–4232

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    Article  CAS  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  CAS  Google Scholar 

  • You C, Huang Q, Xue H, Xu Y, Lu H (2010) Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. Biotechnol Bioeng 105:861–870

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese High-tech Research and Development Program 2007AA021302.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungang Zhou or Hong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Ding, M., Bao, L. et al. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90, 1933–1942 (2011). https://doi.org/10.1007/s00253-011-3182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3182-x

Keywords

Navigation