Skip to main content
Log in

Customized optimization of cellulase mixtures for differently pretreated rice straw

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lignocellulose contains a large amount of cellulose but is recalcitrant to enzymatic hydrolysis, which yields sugars for fuels or chemicals. Various pretreatment methods are used to improve the enzymatic digestibility of cellulose in lignocellulose. Depending on the lignocellulose types and pretreatment methods, biomass compositions and physical properties significantly vary. Therefore, customized enzyme mixtures have to be employed for the efficient hydrolysis of pretreated lignocellulose. Here, using three recombinant model enzymes consisting of endoglucanase, cellobiohydrolase, and xylanase with a fixed amount of β-glucosidase, the optimal formulation of enzyme mixtures was designed for two differently pretreated rice straws (acid-pretreated or alkali-pretreated rice straw) by the mixture design methodology. As a result, different optimal compositions for the enzyme mixtures were employed depending on the type of pretreatment of rice straw. These results suggest that customized enzyme mixtures for pretreated lignocellulosic biomass are necessary to obtain increased sugar yields and should be considered in the industrial utilization of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  2. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    CAS  Google Scholar 

  3. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  4. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  5. Kim IJ, Ko H-J, Kim T-W, Nam KH, Choi I-G, Kim KH (2013) Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl Microbiol Biotechnol 97:5381–5388

    Article  CAS  Google Scholar 

  6. Kim KH, Tucker M, Nguyen Q (2005) Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresour Technol 96:1249–1255

    Article  CAS  Google Scholar 

  7. Kim KH, Tucker MP, Nguyen QA (2002) Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18:489–494

    Article  CAS  Google Scholar 

  8. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 137–140:81–92

    Google Scholar 

  9. Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  CAS  Google Scholar 

  10. Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287:28802–28815

    Article  CAS  Google Scholar 

  11. Kostylev M, Wilson D (2011) Synergistic interactions in cellulose hydrolysis. Biofuels 3:61–70

    Article  Google Scholar 

  12. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Cri Rev Biotechnol 22:33–64

    Article  CAS  Google Scholar 

  13. Hong J, Ladisch MR, C-s Gong, Wankat PC, Tsao GT (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788

    Article  CAS  Google Scholar 

  14. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22

    Article  Google Scholar 

  15. Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S (2012) Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol Biofuels 5:9

    Article  CAS  Google Scholar 

  16. Gao D, Chundawat SPS, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101:2770–2781

    Article  CAS  Google Scholar 

  17. Genencor (2007) Accellerase. http://www.genencor.com/cms/connect/genencor/products_and_services/agri_processing/renewable_fuels/new_products_ethanol/cellulosic_ethanol_en.htm

  18. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    Article  CAS  Google Scholar 

  19. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  CAS  Google Scholar 

  20. Ko JK, Jung MW, Kim KH, Choi I-G (2009) Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). New Biotechnol 26:157–164

    Article  CAS  Google Scholar 

  21. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415

    Article  CAS  Google Scholar 

  22. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch MR (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60

    Article  CAS  Google Scholar 

  23. Ruiz R, Ehrman T (1996) LAP-002: Determination of carbohydrates in biomass by high performance liquid chromatography. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  24. Templeton D, Ehrman T (1995) LAP-003: Determination of acid-insoluble lignin in biomass. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  26. Gräslund S, Nordlund P, Weigelt J, Bray J, Hallberg BM, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, Dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang DY, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5:135–146

    Article  Google Scholar 

  27. Aslanidis L, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  CAS  Google Scholar 

  28. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  29. Cornell JA (2002) Experiments with mixtures: designs, models, and the analysis of mixture data, 3rd edn. Wiley, USA

    Book  Google Scholar 

  30. Dejaegher B, Vander Heyden Y (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158

    Article  CAS  Google Scholar 

  31. Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotech 3:722–726

    Article  CAS  Google Scholar 

  32. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817

    Article  CAS  Google Scholar 

  33. Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  Google Scholar 

  34. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3

    Article  CAS  Google Scholar 

  35. Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23:1270–1276

    Article  CAS  Google Scholar 

  36. Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6:112

    Article  CAS  Google Scholar 

  37. Murnen HK, Balan V, Chundawat SPS, Bals B, da Costa Sousa L, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23:846–850

    Article  CAS  Google Scholar 

  38. Ko JK, Ximenes E, Kim Y, Ladisch MR (2014) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng. doi:10.1002/bit.25359

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Research Foundation of Korea (2013M1A2A2072597) and the Ministry of Trade, Industry and Energy (10049674). Experiments were performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I.J., Jung, J.Y., Lee, H.J. et al. Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess Biosyst Eng 38, 929–937 (2015). https://doi.org/10.1007/s00449-014-1338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1338-7

Keywords

Navigation