Skip to main content

Advertisement

Log in

Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is the most abundant renewable energy bioresources available today. Due to its recalcitrant structure, lignocellulosic feedstocks cannot be directly converted into fermentable sugars. Thus, an additional step known as the pretreatment is needed for efficient enzyme hydrolysis for the release of sugars. Various pretreatment technologies have been developed and examined for different biomass feedstocks. One of the major concerns of pretreatments is the degradation of sugars and formation of inhibitors during pretreatment. The inhibitor formation affects in the following steps after pretreatments such as enzymatic hydrolysis and fermentation for the release of different bioenergy products. The sugar degradation and formation of inhibitors depend on the types and conditions of pretreatment and types of biomass. This review covers the structure of lignocellulose, followed by the factors affecting pretreatment and challenges of pretreatment. This review further discusses diverse types of pretreatment technologies and different applications of pretreatment for producing biogas, biohydrogen, ethanol, and butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  2. Zhang Y-HP, Ding S-Y, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Article  Google Scholar 

  3. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815

    Article  Google Scholar 

  4. Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126

    Article  Google Scholar 

  5. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6, 465–482.

  6. Himmel ME, (ed) (2009) Biomass recalcitrance, Blackwell

  7. Taherzadeh MJ, Jeihanipour A (2012) Recalcitrance of lignocellulosic biomass to anaerobic digestion. Biogas production: pretreatment methods in anaerobic digestion, 27–54

  8. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211

  9. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  10. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  Google Scholar 

  11. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  Google Scholar 

  12. Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

  13. Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803

    Article  Google Scholar 

  14. Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry 2:48–53

    Article  Google Scholar 

  15. Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84

    Article  Google Scholar 

  16. Ding SY, Himmel ME (2009) Anatomy and ultrastructure of maize cell walls: an example of energy plants. Biomass Recalcitrance:38–60

  17. Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  Google Scholar 

  18. Aslanzadeh S, Rajendran K, Taherzadeh MJ (2013) Pretreatment of lignocelluloses for biogas and ethanol processes. 125–150

  19. Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. Bioprocessing of Renewable Resources to Commodity Bioproducts, 43–75

  20. Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199

    Article  Google Scholar 

  21. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203

    Article  Google Scholar 

  22. Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci, Part A: Polym Chem 42:487–495

    Article  Google Scholar 

  23. Kontturi EJ (2005) Surface chemistry of cellulose: from natural fibres to model surfaces. Technische Universiteit, Eindhoven

    Google Scholar 

  24. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  Google Scholar 

  25. Gross AS, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341

    Article  Google Scholar 

  26. Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220

    Article  Google Scholar 

  27. Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65

    Article  Google Scholar 

  28. Yoo C, Pan X (2016) Pretreatment of Lignocellulosic Feedstocks. In: Li Y, Khanal SK (eds) Bioenergy: principles and applications. Wiley-Blackwell, Hoboken

    Google Scholar 

  29. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  30. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568

    Google Scholar 

  31. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  32. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  33. Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    Google Scholar 

  34. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  Google Scholar 

  35. Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231

    Article  Google Scholar 

  36. Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR (2007) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 97:265–278

    Article  Google Scholar 

  37. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  Google Scholar 

  38. Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275

    Article  Google Scholar 

  39. Choi CH, Oh KK (2012) Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresour Technol 110:349–354

    Article  Google Scholar 

  40. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  41. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels. Springer Berlin, Heidelberg, pp 41–65

  42. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579

    Article  Google Scholar 

  43. Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3:199–208

    Article  Google Scholar 

  44. Kumakura M, Kaetsu I (1984) Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose. Agricultural wastes 9:279–287

    Article  Google Scholar 

  45. Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Biofuels: Methods and Protocols, 61–77

  46. Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for biofuels 4:27

    Article  Google Scholar 

  47. Lavarack B, Griffin G, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380

    Article  Google Scholar 

  48. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  49. Sierra R, Granda CB, Holtzapple MT (2009) Lime pretreatment. Methods in Molecular Biology: Biofuels 581:115–124

    Article  Google Scholar 

  50. Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, (ed C. E. Wyman), John Wiley & Sons, Ltd, Chichester, UK, 201–222.

  51. Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456

    Article  Google Scholar 

  52. Contreras QH, Nagieb Z, Sanjuán DR (1997) Delignification of bagasse with acetic acid and ozone. Part 1. Acetic acid pulping. Polym-Plast Technol Eng 36:297–307

    Article  Google Scholar 

  53. Vila C, Santos V, Parajó JC (2000) Optimization of beech wood pulping in catalyzed acetic acid media. Can J Chem Eng 78:964–973

    Article  Google Scholar 

  54. Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw. Ind Crop Prod 14:139–144

    Article  Google Scholar 

  55. Sun XF, Sun R, Tomkinson J, Baird M (2004) Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polym Degrad Stab 83:47–57

    Article  Google Scholar 

  56. Pan X, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263

    Article  Google Scholar 

  57. Saad M, Oliveira L, Cândido R, Quintana G, Rocha G, Gonçalves A (2008) Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzym Microb Technol 43:220–225

    Article  Google Scholar 

  58. Abad S, Santos V, Parajó J (2000) Formic acid-peroxyformic acid pulping of aspen wood: an optimization study. Holzforschung 54:544–552

    Article  Google Scholar 

  59. Lam HQ, Le Bigot Y, Delmas M (2001) Formic acid pulping of rice straw. Ind Crop Prod 14:65–71

    Article  Google Scholar 

  60. Jahan MS (2006) Formic acid pulping of bagasse. Bangladesh Journal of Scientific and Industrial Research 41:245–250

    Google Scholar 

  61. Ligero P, Villaverde J, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99:5687–5693

    Article  Google Scholar 

  62. Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl Biochem Biotechnol 162:2313–2323

    Article  Google Scholar 

  63. Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532

    Article  Google Scholar 

  64. Wang K, Bauer S, R-c S (2011) Structural transformation of Miscanthus× giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152

    Article  Google Scholar 

  65. Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107:67–73

    Article  Google Scholar 

  66. Qin L, Liu Z-H, Li B-Z, Dale BE, Yuan Y-J (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326

    Article  Google Scholar 

  67. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  Google Scholar 

  68. Huijgen WJJ, Smit AT, Reith JH, Hd U (2011) Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J Chem Technol Biotechnol 86:1428–1438

    Article  Google Scholar 

  69. Janesko BG (2011) Modeling interactions between lignocellulose and ionic liquids using DFT-D. PCCP 13:11393–11401

    Article  Google Scholar 

  70. Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875

    Article  Google Scholar 

  71. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280

    Article  Google Scholar 

  72. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  Google Scholar 

  73. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  Google Scholar 

  74. Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259

    Google Scholar 

  75. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  76. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159

    Article  Google Scholar 

  77. Danon B, Van der Aa L, De Jong W (2013) Furfural degradation in a dilute acidic and saline solution in the presence of glucose. Carbohydr Res 375:145–152

    Article  Google Scholar 

  78. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  Google Scholar 

  79. Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172

    Article  Google Scholar 

  80. Sompong O, Boe K, Angelidaki I (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654

    Article  Google Scholar 

  81. Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production-a review. Biofuel Research Journal 3:394–402

    Article  Google Scholar 

  82. Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PA, Koukios EG (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102:521–528

    Article  Google Scholar 

  83. Kumar G, Bakonyi P, Periyasamy S, Kim S, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737

    Article  Google Scholar 

  84. De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for biofuels 2:12

    Article  Google Scholar 

  85. Cao G, Ren N, Wang A, Lee D-J, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188

    Article  Google Scholar 

  86. Ren N-Q, Cao G-L, Guo W-Q, Wang A-J, Zhu Y-H, Liu B-f XJ-F (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712

    Article  Google Scholar 

  87. C-z L, Cheng X-y (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952

    Article  Google Scholar 

  88. Datar R, Huang J, Maness P-C, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939

    Article  Google Scholar 

  89. Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35:2663–2669

    Article  Google Scholar 

  90. Wang Y, Wang H, Feng X, Wang X, Huang J (2010) Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. Int J Hydrog Energy 35:3092–3099

    Article  Google Scholar 

  91. Ma S, Wang H, Wang Y, Bu H, Bai J (2011) Bio-hydrogen production from cornstalk wastes by orthogonal design method. Renew Energy 36:709–713

    Article  Google Scholar 

  92. Pan C-M, Ma H-C, Fan Y-T, Hou H-W (2011) Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int J Hydrog Energy 36:4852–4862

    Article  Google Scholar 

  93. Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254

    Article  Google Scholar 

  94. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  Google Scholar 

  95. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Research Journal 3:347–356

    Article  Google Scholar 

  96. Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453

    Article  Google Scholar 

  97. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  Google Scholar 

  98. Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208

    Article  Google Scholar 

  99. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  Google Scholar 

  100. Qureshi N, Bowman M, Saha B, Hector R, Berhow M, Cotta M (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540

    Article  Google Scholar 

  101. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  Google Scholar 

  102. Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110–115

    Article  Google Scholar 

  103. Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204

    Article  Google Scholar 

  104. Karimi K, Tabatabaei M, Sárvári Horváth I, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Research Journal 2:301–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, K., Drielak, E., Sudarshan Varma, V. et al. Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conv. Bioref. 8, 471–483 (2018). https://doi.org/10.1007/s13399-017-0269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0269-3

Keywords

Navigation