Skip to main content

Micropropagation of Bamboos and Clonal Fidelity Assessment Using Molecular Markers

  • Chapter
  • First Online:
Biotechnological Advances in Bamboo

Abstract

Bamboos, the non-timber forest trees, are economically important plants with over 4000 traditional uses and 1500 commercial applications. Even though bamboos are fast-growing plants, their populations are diminishing at an alarming rate due to extensive forest habitat destruction, rampant illegal collection, and mismanagement of bamboo resources. Conservation of bamboo natural resources through rapid and mass propagation is the need of the hour. However, conventional propagation through seeds and other vegetative methods is besotted with several limitations, and bamboo production will not be sufficient to meet the demands of bamboo stocks. Micropropagation of bamboos provides an excellent alternative to ineffective classical propagation methods by in vitro propagating bamboos rapidly on a large scale. However, somaclonal variation may appear among the in vitro bamboo clones as they are constantly confronted with diverse culture conditions. Assessing the clonal fidelity remains one of the most important prerequisites as heterogeneity can severely limit the purpose of bamboo micropropagation. Several molecular markers have been efficaciously employed to evaluate the clonal fidelity of the bamboo clones so that only the elite, genetically identical plants are propagated. This chapter highlights the recent advancement in bamboo micropropagation and the application of DNA molecular markers in clonal fidelity assessment of the in vitro propagated bamboos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulminam AH, Nirmala C, Sharma ML (2009) Control of in vitro contamination in bamboos. Plant Cell Biotechnol Mol Biol 10:119–124

    CAS  Google Scholar 

  • Agnihotri RK, Mishra J, Nandi SK (2009) Improved in vitro shoot multiplication and rooting of Dendrocalamus hamiltonii Nees et Arn. Ex Munro: production of genetically uniform plants and field evaluation. Acta Physiol Plant 31:961–967

    Article  CAS  Google Scholar 

  • Ahmadi E, Nasr SMH, Jalilvand H, Savadkoohi SK (2012) Contamination control of microbe Ziziphus spina [christi] seed in vitro culture. Trees 26:1299–1304

    Article  CAS  Google Scholar 

  • Alexander MP, Rao TC (1968) In vitro culture of bamboo embryos. Curr Sci 37:415

    Google Scholar 

  • Ali H, Nirmala C, Sharma ML (2009) Control of in vitro contamination in bamboos. Plant Cell Biotechnol Mol Biol 10:119–124

    Google Scholar 

  • Amom T, Nongdam P (2017) The use of molecular marker methods in plants: a review. Int J Cur Res Rev 9:1–7

    CAS  Google Scholar 

  • Amom T, Tikendra L, Apana N, Goutam M, Sonia P, Koijam AS, Potshangbam AM, Rahaman H, Nongdam P (2020) Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of north-East India. Phytochemistry 174:112330

    Article  CAS  PubMed  Google Scholar 

  • Amom T, Tikendra L, Rahaman H, Potshangbam A, Nongdam P (2018) Evaluation of genetic relationship between 15 bamboo species of north-East India based on ISSR marker analysis. Mol Biol Res Commun 7:7–15

    PubMed  PubMed Central  Google Scholar 

  • Anand M, Brar J, Sood A (2013) In vitro propagation of an edible bamboo Bambusa bambos and assessment of clonal fidelity through molecular markers. J Med Bioeng 2:257–261

    CAS  Google Scholar 

  • Ankur V, Meena B, Harsh NSK (2014) Identification and bioassay of fungal contaminants observed during in vitro propagation of Saraca asoca (Roxb.) De Wilde. Biotechnol Int 7:35–42

    Google Scholar 

  • Arnhold-Schmitt B (1993) Rapid changes in amplification and methylation pattern of genomic DNA in cultured carrot root explants (Daucus carota L.). Theor Appl Genet 85:793–800

    Article  Google Scholar 

  • Arshad SM, Kumar A, Bhatnagar SK (2005) Micropropagation of Bambusa wamin through proliferation of mature nodal explants. J Biol Res 3:59–66

    CAS  Google Scholar 

  • Arya ID, Kaur B, Arya S (2012) Rapid and mass propagation of economically important bamboo Dendrocalamus hamiltonii. Indian J Energy 1:11–16

    Google Scholar 

  • Arya S, Rana PK, Sharma R, Arya ID (2006) Tissue culture technology for rapid multiplication of Dendrocalamus giganteus Munro. Indian For 3:345–357

    Google Scholar 

  • Arya S, Satsangi R, Arya ID (2008) Direct regeneration of shoots from immature inflorescences in Dendrocalamus asper (edible bamboo) leading to mass propagation. Bamboo Sci Cult 21:14–20

    Google Scholar 

  • Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A (2020) Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Funct Plant Biol 47:508–523

    Article  CAS  PubMed  Google Scholar 

  • Babaolu M, Yorgancılar M, Akbudak MA (2001) Dokukültürü: Temellaboratuarteknikleri (Plant tissue culture: Basic laboratory techniques).- In: Babaolu M, Gürel E, Özcan S (eds), Bitki Biyoteknolojisi: Doku Kültürüve Uygulamaları (Biotechnology of Plant: Plant Tissue Culture and Application). Selçuk Üniversitesi Vakfı Yayınları Konya pp 1–35

    Google Scholar 

  • Bag N, Palni LMS, Chandra S, Nandi SK (2012) Somatic embryogenesis in ‘maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr Sci 102:1279–1287

    Google Scholar 

  • Banerjee M, Gantait S, Pramanik BR (2011) A two step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol Mol Biol Plants 17:387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banik RL (2015) Bamboo silviculture. In: Liese W, Köhl M (eds) Bamboo. Tropical forestry, vol 10. Springer, Cham, pp 113–174

    Google Scholar 

  • Beena DB, Rathore TS (2012) In vitro cloning of Bambusa pallida Munro through axillary shoot proliferation and evaluation of genetic fidelity by random amplified polymorphic DNA markers. Int J Plant Biol 3:6

    Article  CAS  Google Scholar 

  • Bejoy M, Anish NP, Radhika BJ, Nair GM (2012) In vitro propagation of Ochlandra wightii (Munro) Fisch.: an endemic reed of southern Western Ghats India. Biotechnol 11:67–73

    Article  CAS  Google Scholar 

  • Bisht MS, Nirmala C, Nongdam P (2012) Bamboo shoot as a source of health food and socio economic development in North –East India. Proceedings of 9th World Bamboo Congress, Antwerp, Belgium, 393–402

    Google Scholar 

  • Bisht P, Pant M, Kant A (2010) In vitro propagation of Gigantochloa atroviolacea Widjaja through nodal explants. J Am Sci 6:1019–1025

    Google Scholar 

  • Bornman CH, Vogelmann TC (1984) Effect of rigidity of gel medium on benzyladenine-induced adventitious bud formation and vitrification in vitro in Picea abies. Physiol Plant 61:505–512

    Article  CAS  Google Scholar 

  • Brand MH (1993) Agar and ammonium nitrate influence hyperhydricity, tissue nitrate and total nitrogen content of serviceberry (Amelanchier arborea) shoots in vitro. Plant Cell Tissue Organ Cult 35:203–209

    Article  CAS  Google Scholar 

  • Brar J, Anand M, Sood N (2013) In vitro seed germination of economically important edible bamboo Dendrocalamus membranaceus Munro. Indian J Exp Biol 51:88–96

    CAS  PubMed  Google Scholar 

  • Brar J, Shafi A, Sood P, Anand M, Sood A (2014) In-vitro propagation, biochemical studies and assessment of clonal fidelity through molecular markers in Bambusa balcooa. J Trop For Sci 26:115–124

    Google Scholar 

  • Butenko RG, Popov AS, Volkova LA, Chernyak ND, Nosov AM (1984) Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng in liquid nitrogen. Plant Sci Lett 33:285–292

    Article  CAS  Google Scholar 

  • Chambers SM, Heuch JHR, Pirrle A (1991) Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltonii Munro. Plant Cell Tissue Organ Cult 27:45–48

    Article  CAS  Google Scholar 

  • Chaturvedi HC (1984) Some aspects of morphogenesis in rapid multiplication and germplasm preservation of economic plants through tissue culture. In: Dutta PC (ed) Proceedings of National Symposium on applied biotechnology of medicinal, aromatic and timber yielding plants. Calcutta University, Calcutta, pp 179–188

    Google Scholar 

  • Choudhary AK, Priyanka K, Ashish R (2017) Refinement of protocol for rapid clonal regeneration of economical bamboo, Bambusa balcooa in the agroclimatic conditions of Bihar, India. Afr J Biotechnol 16:450–462

    CAS  Google Scholar 

  • Choudhury D, Sahu JK, Sharma GD (2012) Value addition to bamboo shoots: a review. J Food Sci Technol 49:407–414

    Article  CAS  PubMed  Google Scholar 

  • Clark LG, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Liese W, Köhl M (eds) Bamboo. Tropical forestry, vol 10. Springer, Cham, pp 1–30

    Google Scholar 

  • Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159

    Article  Google Scholar 

  • Das M, Pal A (2005) In vitro regeneration of Bambusa balcooa Roxb., factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult 81:109–112

    Article  CAS  Google Scholar 

  • Desai P, Desai S, Patel A, Mankad M, Gajera B, Patil G, Narayanan S (2019) Development of efficient micropropagation protocol through axillary shoot proliferation for Bambusa vulgaris ‘wamin’ and Bambusa bambos and assessment of clonal fidelity of the micropropagated plants through RAPD markers. ANRES 53:26–32

    Google Scholar 

  • Devi WS, Sharma GJ (2009) In vitro propagation of Arundinaria callosa Munro- an edible bamboo from nodal explants of mature plants. TOPSJ 3:35–39

    Article  CAS  Google Scholar 

  • Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukherjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. S Afr J Bot 123:259–269

    Article  CAS  Google Scholar 

  • Dey A, Nandy S, Nongdam P, Tikendra L, Mukherjee A, Mukherjee S, Pandey DK (2020a) Methyl jasmonate and salicylic acid elicit indole alkaloid production and modulate antioxidant defence and biocidal properties in Rauvolfia serpentina Benth. Ex Kurz. In vitro cultures. S Afr J Bot 135:1–17

    Article  CAS  Google Scholar 

  • Dey A, Nongdam P, Nandy S, Mukherjee S, Mukherjee A, Tikendra L, Hazra AK, Pandey DK (2020b) Polyamine elicited aristolochic acid production in in vitro clonally fidel Aristolochia indica L.: an ISSR and RAPD markers and HPTLC based study. S Afr J Bot. https://doi.org/10.1016/j.sajb.2020.06.018

  • Eeuwens CJ, Lord S, Donough CR, Rao V, Vallejo G, Nelson S (2002) Effects of tissue culture conditions during embryoid multiplication on the incidence of “mantled” flowering in clonally propagated oil palm. Plant Cell Tissue Organ Cult 70:311–323

    Article  CAS  Google Scholar 

  • Evans DA, Elgi JE, Kut SA, Sharp WR, Flick CK (1981) In vitro regeneration of the ornamental tobacco Nicotiana alata. Hortic Sci 16:425

    Google Scholar 

  • Farahani F, Yari R, Masoud S (2011) Somaclonal variation in Dezful cultivar of olive (Olea europaea subsp. europaea). Gene Conserve 10:216–221

    Google Scholar 

  • Fisse J, Batalle A, Pera J (1987) Endogenous bacteria elimination in ornamental plants. Acta Hortic 212:87–90

    Article  Google Scholar 

  • Franclet A (1991) Biotechnology in ‘rejuvenation’: hope for the micropropagation of difficult woody plants. Acta Hortic 289:273–282

    Article  Google Scholar 

  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. Et Zucc. Stems in relation to earlywood/latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    Article  CAS  Google Scholar 

  • Gantait S, Pramanik BR, Banerjee M (2018) Optimization of planting materials for large scale plantation of Bambusa balcooa Roxb.: influence of propagation methods. J Saudi Soc Agric Sci 17:79–87

    Google Scholar 

  • Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q, Kimatu JN, Wang L (2010) In vitro micropropagation of Freesia hybrid and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul 29:257–267

    Article  CAS  Google Scholar 

  • Gaspar T, Kevers C, Bisbis B, Franck T, Crèvecoeur M, Greppin H, Dommes J (2000) Loss of plant organogenic totipotency in the course of in vitro neoplastic progression. In Vitro Cell Dev Biol Plant 36:171–181

    Article  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1, technology. Exegetics Ltd., England, pp 121–145

    Google Scholar 

  • George EF, Debergh PC (2008) Micropropagation: uses and methods. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture. Springer, New York, pp 29–64

    Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AAA (2020) Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-020-00981-w

  • Giachino RRA (2019) Investigation of the genetic variation of anise (Pimpinella anisum L.) using RAPD and ISSR markers. Genet Resour Crop Evol 67:763–780

    Article  CAS  Google Scholar 

  • Gogoi B, Wann SB, Saikia SP (2020) Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of north East India. Mol Biol Rep 47:7365–7377

    Article  CAS  PubMed  Google Scholar 

  • Goyal AK, Brahma BK (2014) Antioxidant and nutraceutical potential of bamboo: an overview. Int J Fund Appl Sci 3:2–10

    Google Scholar 

  • Goyal AK, Pradhan S, Basistha BC, Sen A (2015) Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 5:473–482

    Article  PubMed  Google Scholar 

  • Goyal AK, Sen A (2016) In vitro regeneration of bamboos, the “green gold”: an overview. Indian J Biotechnol 15:9–16

    CAS  Google Scholar 

  • Gu D, He W, Huang K, Otieno D, Zhou C, He C, Huang Y (2019) Transpiration of Moso bamboo in southern China is influenced by ramet age, phenology, and drought. For Ecol Manage 450:117526

    Article  Google Scholar 

  • Hassan AAEL, Debergh P (1987) Embryogenesis and plantlet development in the bamboo Phyllostachys viridis (Young) McClure. Plant Cell Tissue Organ Cult 10:73–77

    Article  Google Scholar 

  • Herman EB (1996) Recent advances in plant tissue culture, IV: Microbial contamination of plant tissue cultures. N.Y. Agritech Consultants, Mohegan Lake

    Google Scholar 

  • Hu CY, Wang PJ (1983) Meristem shoot tip and bud culture. In: Evans DA, Shard WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. MacMillan Publishing Company, New York, pp 177–227

    Google Scholar 

  • Huang LC, Huang BL, Chen WL (1989) Tissue culture investigations of bamboo—IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environ Exp Bot 29:307–315

    Article  Google Scholar 

  • Huang LC, Lee YL, Huang BL, Kuo CI, Shaw JF (2002) High polyphenol oxidase activity and low titratable acidity in browning bamboo tissue culture. In Vitro Cell Dev Biol Plant 38:358–365

    Article  CAS  Google Scholar 

  • Jha A, Das S, Kumar B (2013) Micropropagation of Dendrocalamus hamiltonii through nodal explants. Glob J Bio-Sci Biotechnol 2:580–582

    Google Scholar 

  • Jiménez VM, Castillo J, Tavares E, Guevara E, Montiel M (2006) In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell Tissue Organ Cult 86:389–395

    Article  Google Scholar 

  • Jiménez VM, Guevara E (2007) Micropropagation of bamboo species through axillary shoot proliferation. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 465–476

    Chapter  Google Scholar 

  • Jullien F, Van KTT (1994) Micropropagation and embryoid formation from young leaves of Bambusa glaucescens golden goddess. Plant Sci 98:199–207

    Article  CAS  Google Scholar 

  • Kahsay B, Mekibib F, Teklewold A (2017) In vitro propagation of Oxytenanthera abyssinica (a. rich. Munro) from seed culture. BJI 18:1–13

    Article  Google Scholar 

  • Kane M (2003) Bacterial and fungal indexing of tissue cultures. http://plant-c.cfansumn.edu/listerv/1996/log9612/indeing.htm

  • Kant A, Arya S, Arya ID (2009) Micropropagation protocol for Melocanna baccifera using nodal explants from mature clump. In: 8th World Bamboo Congress, Thailand, pp 2-12

    Google Scholar 

  • Kapoor P, Rao IU (2006) In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var. gigantea bennet and gaur by using growth regulators and sucrose. Plant Cell Tissue Organ Cult 85:211–217

    Article  CAS  Google Scholar 

  • Kaur D, Thapa P, Sharma M, Bhattacharya A, Sood A (2014) In vitro flowering- a system for tracking floral organ development in Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Indian J Exp Biol 52:825–834

    PubMed  Google Scholar 

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult 77:181–191

    Article  Google Scholar 

  • Komatsu YH, Batagin-Piotto KD, Brondani GE, Gonçalves AN, de Almeida M (2011) In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. J For Res 22:209–215

    Article  CAS  Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3. Biotech 6:54

    Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Leifert C, Camotta H, Waites WM (1992) Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell Tissue Organ Cult 29:153–160

    Article  CAS  Google Scholar 

  • Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva AR, Rinaldi LMR (eds) Recent advances in plant in vitro culture. INTECH Open Access Publisher, Croatia, pp 123–150

    Chapter  Google Scholar 

  • Lin CS, Chang WC (1998) Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep 17:617–620

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. Hortscience 42:1243–1246

    Article  CAS  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2004) Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76:75–82

    Article  CAS  Google Scholar 

  • Lin S, Liu G, Guo T, Zhang L, Wang S, Ding Y (2019) Shoot proliferation and callus regeneration from nodular buds of Drepanostachyum luodianense. J For Res 30:1997–2005

    Article  CAS  Google Scholar 

  • Luna C, Collavino M, Mroginski L, Sansberro P (2008) Identification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis. Plant Cell Tissue Organ Cult 95:13–19

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • McClure FA (1966) The bamboos: a fresh perspective. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Mehta R, Sharma V, Sood A, Sharma M, Sharma RK (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans Wall., using AFLP markers. Eur J For Res 130:729–736

    Article  Google Scholar 

  • Mirani Z, Urooj S, Khan M, Khan A, Shaikh I, Siddiqui A (2020) An effective weapon against biofilm consortia and small colony variants of MRSA. Iran J Basic Med Sci 23:1494–1498

    PubMed  PubMed Central  Google Scholar 

  • Mishra Y, Patel P, Ansari SA (2011) Acclimatization and macroproliferation of micropropagated plants of Bambusa tulda Roxb. Asian J Exp Biol Sci 2:498–501

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mudoi KD, Borthakur M (2012) Factors affecting the frequency of in vitro flowering of Bambusa balcooa Roxb. Indian J Plant Physiol 17:37–43

    Google Scholar 

  • Mudoi KD, Saikia SP, Borthakur M (2014) Effect of nodal positions, seasonal variations, shoot clump and growth regulators on micropropagation of commercially important bamboo, Bambusa nutans wall. Ex. Munro. Afr J Biotechnol 13:1961–1972

    Article  CAS  Google Scholar 

  • Mudoi KD, Saikia SP, Goswami A, Gogoi A, Bora D, Borthakur M (2013) Micropropagation of important bamboos: a review. Afr J Biotechnol 12:2770–2785

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murata M, Tsurutani M, Hagiwara S, Homma S (1997) Subcellular location of polyphenol oxidase in apples. Biosci Biotechnol Biochem 61:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Nadha HK, Kumar R, Sharma RK, Anand M, Sood A (2011) Evaluation of clonal fidelity of in vitro raised plants of Guadua angustifolia Kunth using DNA-based markers. J Med Plants Res 5:563–5641

    Google Scholar 

  • Nadha HK, Kumar R, Sharma RK, Anand M, Sood A (2013) In vitro propagation of Dendrocalamus asper and testing the clonal fidelity using RAPD and ISSR markers. Int J Curr Res 5:2060–2067

    CAS  Google Scholar 

  • Negi D, Saxena S (2010) Ascertaining clonal fidelity of tissue culture raised plants of Bambusa balcooa Roxb. Using inter simple sequence repeat markers. New For 40:1–8

    Article  Google Scholar 

  • Negi D, Saxena S (2011) In vitro propagation of Bambusa nutans Wall. Ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5:35–43

    Article  Google Scholar 

  • Niedz R (1998) Using isothiazolone biocides to control microbial and fungal contaminants in plant tissue cultures. Hortic Technol 8:598–601

    Google Scholar 

  • Nilkanta H, Amom T, Tikendra L, Rahaman H, Nongdam P (2017) ISSR marker based population genetic study of Melocanna baccifera (Roxb.) Kurz: a commercially important bamboo of Manipur, North-East India. Scientifica 2017. Article ID 3757238

    Google Scholar 

  • Nirmala C, Ali AH, Badal T (2011) De novo organogenesis in the form of rhizome in Dendrocalamus asper and D. membranaceus. Curr Sci 100:468–470

    Google Scholar 

  • Nogueira JS, Gomes HT, Scherwinski-Pereira JE (2019) Micropropagation, plantlets production estimation and ISSR marker-based genetic fidelity analysis of Guadua magna and G. angustifólia. Pesqui Agropecu Trop 49:e53743

    Article  Google Scholar 

  • Nongdam P (2015) Traditional fermented bamboo shoot foods of North-East India and their characteristic natural microbial flora. 10th World Bamboo Congress, Korea

    Google Scholar 

  • Nongdam P, Tikendra L (2014) The nutritional facts of bamboo shoots and their usage as important traditional foods of Northeast India. Int Sch Res Notices 2014:1–17

    Article  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Obsuwan K, Duangmanee A, Thepsithar C (2019) In vitro propagation of a useful tropical bamboo, Thyrsostachys siamensis gamble, through shoot-derived callus. Hortic Environ Biotechnol 60:261–267

    Article  CAS  Google Scholar 

  • Ogita S (2005) Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnol 22:119–125

    Article  CAS  Google Scholar 

  • Ojha A, Verma N, Kumar A (2009) In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments explants. Res Crops 10:430–436

    Google Scholar 

  • Omamor IB, Asemota AO, Eke CR, Eziashi EI (2007) Fungal contaminants of the oil palm tissue culture in Nigerian Institute for Oil Palm Research (NIFOR). Afr J Biotechnol 2:534–537

    Google Scholar 

  • Oprins J, Grunewald W, Gillis K, Delaere P, Peeters H, Gielis J (2004) Micropropagation: a general method for commercial bamboo production. In: 7th world bamboo congress, New Delhi

    Google Scholar 

  • Pandey BN, Singh NB (2012) Micropropagation of Dendrocalamus strictus nees from mature nodal explants. JANS 4:5–9

    Article  CAS  Google Scholar 

  • Pasqualini APA, dos Santos MC, SantAnna-Santos BF, Fraga HPF, Quoirin M (2019) In vitro culture and diversity of endophytic fungi in Bambusa oldhamii. Pesqui Agropecu Trop 49:1–9

    Article  Google Scholar 

  • Patel B, Gami B, Patel N, Bariya V (2015) One step pre-hardening micro propagation of Bambusa balcooa Roxb. J Phytology 7:1–9

    Article  CAS  Google Scholar 

  • Rajput BS, Jani MD, Gujjar MR, Shekhawat MS (2019a) Effective and large scale in vitro propagation of Dendrocalamus strictus (Roxb.) Nees using nodal segments as explants. World Sci News 130:238–249

    CAS  Google Scholar 

  • Rajput BS, Jani MD, Sasikumar K, Manokari M, Shekhawat MS (2019b) An improved micropropagation protocol for manga bamboo-Pseudoxytenanthera stocksii (Munro) T.Q. Nguyen. WNOFNS 25:141–154

    CAS  Google Scholar 

  • Raju RI, Roy SK (2017) Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. Jahangirnagar Univ J Biol Sci 5:15–26

    Article  Google Scholar 

  • Ramanayake SMSD, Yakandawala K (1997) Micropropagation of the giant bamboo (Dendrocalamus giganteus Munro) from nodal explants of field grown culms. Plant Sci 129:213–223

    Article  CAS  Google Scholar 

  • Rathore NS, Rai MK, Phulwaria M, Rathore N, Shekhawat NS (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559

    Article  CAS  Google Scholar 

  • Rawat JM, Rawat B, Mehrotra S, Chandra A, Nautiyal S (2013) ISSR and RAPD based evaluation of genetic fidelity and active ingredient analysis of regenerated plants of Picrorhiza kurroa. Acta Physiol Plant 35:1797–1805

    Article  CAS  Google Scholar 

  • Ray SS, Ali MN, Banerjee M, Yeasmin L (2018) In vitro and in vivo assessment of thidiazuron mediated micro-clones of Dendrocalamus asper, an ornamental bamboo species. J Crop Weed 14:150–157

    Google Scholar 

  • Ray SS, Ali Md N, Mukherjee S, Chatterjee G, Banerjee M (2017) Elimination and molecular identification of endophytic bacterial contaminants during in vitro propagation of Bambusa balcooa. World J Microbiol Biotechnol 33:31

    Article  PubMed  CAS  Google Scholar 

  • Reed BM, Mentzer J, Tanprasert P, Yu X (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tissue Organ Cult 52:67–70

    Article  CAS  Google Scholar 

  • Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S, Personne A, Dussert S, Beule T, Durand-Gasselin T, Tregear JW, Jaligot E (2013) Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368

    Article  CAS  PubMed  Google Scholar 

  • Saboori S, Noormohammadi Z, Sheidai M, Marashi S (2020) SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultivars. Genet Resour Crop Evol 67:73–82

    Article  CAS  Google Scholar 

  • Saini H, Arya ID, Arya S, Sharma R (2016) In vitro micropropagation of Himalayan weeping bamboo, Drepanostachyum falcatum. AJPS 7:1317–1324

    Article  CAS  Google Scholar 

  • Sandhu M, Wani SH, Jiménez VM (2018) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Organ Cult 132:27–53

    Article  CAS  Google Scholar 

  • Saravanan S, Sarvesan R, Vinod MS (2011) Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian J Sci Technol 4:1241–1245

    Article  Google Scholar 

  • Sato M, Hosokawa M, Doi M (2011) Somaclonal variation is induced de novo via the tissue culture process: a study quantifying mutated cells in Saintpaulia. PLoS One 6:e23541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawarkar AD, Shrimankar DD, Kumar A, Kumar A, Singh E, Singh L, Kumar S, Kumar R (2020) Commercial clustering of sustainable bamboo species in India. Ind Crop Prod 154:112693

    Article  Google Scholar 

  • Saxena S (1990) In vitro propagation of bamboo (Bambusa tulda Roxb.) through shoot propagation. Plant Cell Rep 9:431–434

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Bhojwani SS (1993) In vitro clonal multiplication of four year old plants of the Dendrocalamus longispathus Kurz. In Vitro Cell Dev Biol Plant 290:135–142

    Article  Google Scholar 

  • Saxena S, Dhawan V (1999) Regeneration and large-scale propagation of bamboo (Dendrocalamus strictus Nees) through somatic embryogenesis. Plant Cell Rep 18:438–443

    Article  CAS  Google Scholar 

  • Scheidt GN, Silva ALL, Oliveira Y, Costa JL, Biasi LA, Soccol CR (2011) In vitro growth of Melaleuca alternifolia Cheel in bioreactor of immersion by bubbles. Pak J Bot 43:2937–2939

    Google Scholar 

  • Sharma P, Sarma KP (2011) In vitro propagation of Bambusa balcooa for a better environment. In: International conferences on advances in biotechnology and pharmaceutical sciences (ICABPS’11). Bangkok, pp 248–252

    Google Scholar 

  • Sharma P, Sarma KP (2013) In vitro propagation of Bambusa tulda: an important plant for better environment. J Environ Res Dev 7:1216–1223

    Google Scholar 

  • Shields R, Robinson SJ, Anslow PA (1984) Use of fungicides in plant tissue culture. Plant Cell Rep 3:33–36

    Article  CAS  PubMed  Google Scholar 

  • Silva TCR, Carvalho CR (2014) Vertical heterogeneity of DNA ploidy level assessed by flow cytometry in calli of Passiflora cincinnata. In Vitro Cell Dev Biol Plant 50:158–165

    Article  Google Scholar 

  • Silveira AAC, Lopes FJF, Sibov ST (2020) Micropropagation of Bambusa oldhamii Munro in heterotrophic, mixotrophic and photomixotrophic systems. Plant Cell Tissue Organ Cult 141:315–326

    Article  CAS  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012a) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. Ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17:9–21

    CAS  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012b) Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol Plant 35:419–430

    Article  CAS  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012c) Micropropagation of Dendrocalamus asper (Schult. &Schult. F. Backer ex K Heyne): an exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013a) Ascertaining clonal fidelity of micropropagated plants of Dendrocalamus hamiltonii Nees et Arn. Ex Munro using molecular markers. In Vitro Cell Dev Biol Plant 49:572–583

    Article  CAS  Google Scholar 

  • Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013b) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19:21–41

    Article  CAS  PubMed  Google Scholar 

  • Somashekar PV, Rathore TS, Fatima T (2018) In vitro plant regeneration of Dendrocalamus stocksii (Munro) M. Kumar, Remesh & Unnikrisnan, through somatic embryogenesis. AJPS 9:2429–2445

    Article  CAS  Google Scholar 

  • Sood A, Nadha HK, Sood S, Walia A, Parkash O (2014) Large scale propagation of an exotic edible bamboo, Phyllostachys pubescens mazel ex H. De Lehale (Moso bamboo) using seeds. Indian J Exp Biol 52:755–758

    PubMed  Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137

    Article  Google Scholar 

  • Sun S, Zhong J, Li S, Wang X (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Bot Stud 54:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur R, Sood A (2006) An efficient method for explant sterilization for reduced contamination. Plant Cell Tissue Organ Cult 84:369–371

    Article  Google Scholar 

  • Thapa N, Gauchan DP, Suwal MM, Bhuju S, Upreti A, Byanju B, Lamichhane J (2018) In vitro assessment of Bambusa balcooa Roxb. For micropropagation. J Emerg Technol Innov Res 5:464–469

    Google Scholar 

  • Tikendra L, Amom T, Nongdam P (2019b) Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw.—a rare medicinal orchid, using RAPD and ISSR markers. Plant Gene 19:100196

    Article  CAS  Google Scholar 

  • Tikendra L, Koijam AS, Nongdam P (2019a) Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene 20:100562

    Article  Google Scholar 

  • Tognetti VB, Mühlenbock P, van Breusegem F (2012) Stress homeostasis—the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  CAS  PubMed  Google Scholar 

  • Torres GRC, De Lemos EEP (2017) Physical and chemical methods for contaminant control during the in vitro introduction and establishment of Bambusa vulgaris Schrad. Ex J. C. Wendl. Científica 45:368

    Article  Google Scholar 

  • Torres GRC, Houllou LM, De Souza RA (2016) Control of contaminants during introduction and establishment of Bambusa vulgaris in vitro. Res Biotechnol 7:58–67

    Article  Google Scholar 

  • Vazquez AM (2001) Insight into somaclonal variation. Plant Biosyst 135:57–62

    Article  Google Scholar 

  • Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: a recalcitrant bamboo species. J Genet Eng Biotechnol 13:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waikhom SD, Bengyella L, Sharma GJ (2012) In vitro seed germination and micropropagation of edible bamboo Dendrocalamus giganteus Munro using seeds. Biotechnology 11:74–80

    Article  CAS  Google Scholar 

  • Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci World J 2014:1–8

    Article  CAS  Google Scholar 

  • Wang H, Jin J, Yu P, Fu W, Morrison L, Lin H, Meng M, Zhou X, Lv Y, Wu J (2020) Converting evergreen broad-leaved forests into tea and Moso bamboo plantations affects labile carbon pools and the chemical composition of soil organic carbon. Sci Total Environ 711:135225

    Article  CAS  PubMed  Google Scholar 

  • Weckx S, Inzé D, Maene L (2019) Tissue culture of oil palm: finding the balance between mass propagation and somaclonal variation. Front Plant Sci 10:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Cao J, Qian W, Xu M, Li Z, Ding Y (2015) Establishment of an efficient micropropagation and callus regeneration system from the axillary buds of Bambusa ventricosa. Plant Cell Tissue Organ Cult 122:1–8

    Article  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Young PM, Hutchins AS, Canfield ML (1984) Use of antibiotics to control the bacteria in shoot cultures of woody plants. Plant Sci Lett Repo 34:203–209

    Article  CAS  Google Scholar 

  • Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso bamboo. PLoS One 8:e81954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zayova E, Vassilevska IR, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in eggplant (Solanum melongena L.). Biol Divers Conserv 3:1–5

    Google Scholar 

Download references

Acknowledgments

LT and PN are thankful to SERB (Science and Engineering Research Board) New Delhi, India, for their financial support.

Conflict of Interest

There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tikendra, L., Choudhary, R., Sanayaima Devi, R., Dey, A., Potshangbam, A.M., Nongdam, P. (2021). Micropropagation of Bamboos and Clonal Fidelity Assessment Using Molecular Markers. In: Ahmad, Z., Ding, Y., Shahzad, A. (eds) Biotechnological Advances in Bamboo. Springer, Singapore. https://doi.org/10.1007/978-981-16-1310-4_7

Download citation

Publish with us

Policies and ethics