Skip to main content

Advancements in Diatom Algae Based Biofuels

  • Chapter
  • First Online:
Bioenergy Research: Commercial Opportunities & Challenges

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 486 Accesses

Abstract

Rapid increase in the growth of the population, the demand of the energy is also increasing but the available fossil fuels are declining rapidly. The demand of biofuels produced from the biomass is extensively measured as one of the main substitutable alternatives of the fossil fuels with potential of energy conservation, economic balancing and ecological friendly. The concept of biofuel production from diatoms are very appreciable and substitutable because they have acquire huge biomass yield, oils which contain large amount of lipids, rapid growth rate, prospect of using uncultivable fields, ability to grow in wastewater, marine water as well as in moist soil, capability of solar light utilization and acceptance of carbon dioxide as a source of their nutrient. This chapter elaborates the potential application of diatom as a viable source of energy for the purpose of biofuel production and the technological advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Ji MK, Kim HC, Paeng KJ, Jeon BJ (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manag 115:257–264

    Article  CAS  Google Scholar 

  • Abu-Ghosh S, Dubinsk Z, Banet G, Iluz D (2018) Optimizing photon dose and frequency to enhance lipid productivity of thermophilic algae for biofuel production. Bioresour Technol:S0960852418304723. https://doi.org/10.1016/j.biortech.2018.03.110

  • Adams C, Bugbee B (2014) Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol 26:1351–1357

    Article  CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Alonso DL, Segura del Castillo CI, Grima EM, Cohen Z (1996) First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. J Phycol 32:339–345. https://doi.org/10.1111/j.0022-3646.1996.00339.x

    Article  CAS  Google Scholar 

  • Ambati RR, Gogisetty D, Aswathanarayana RG et al (2018) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59:1–22

    Google Scholar 

  • Aoyagi K, Omokawa M (1992) Neogene diatoms as the important source of petroleum in Japan. J Pet Sci Eng 7:247–262

    Article  CAS  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N et al (2012) The magnitude of global marine species diversity. Curr Biol 22(23):2189–2202

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetables oils in India. Renew Sust Energ Rev 9:363–378

    Article  Google Scholar 

  • Berg JP, Bourgougnon N, Carbonnelle D, Le Bert V, Tomasoni C, Durand P et al (1997) Antiproliferative effects of an organic extract from the marine diatom Skeletonema costatum (Grev.) Cleve. Against a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Anticancer Res 17:2115–2120

    Google Scholar 

  • Berg JP, Bourgougnon N, Pojer F, Billaudel S, Chermann JC, Robert JM, Franz G (1999) Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Haslea ostrearia. Planta Med 65:604–609

    Article  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Broadfoot C (2020) An assessment of the overall feasibility of algal biofuels. Algal Biofuels

    Google Scholar 

  • Calder PC (2015) Functional roles of fatty acids and their effects on human health. J Parenter Enter Nutr 39(1):18S–32S

    Article  Google Scholar 

  • Chatsungnoen T, Chisti Y (2016) Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. J Appl Phycol 28(5):2697–2705. https://doi.org/10.1007/s10811-016-0823-6

    Article  CAS  Google Scholar 

  • Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208e214. https://doi.org/10.1016/J.Biortech.2012.02.033

    Article  Google Scholar 

  • Chisti Y (1980) An unusual hydrocarbon. J Ramsay Soc 81(27–28):24–26

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Coombs J, Darley WM, Holm-Hansen O, Volcani BE (1967) Studies on the biochemistry and ne structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon-starvation synchrony. Plant Physiol 42:1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Ippolito G, la Sardo A, Paris D, Vella FM, Adelfi MG, Botte P et al (2015) Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol Biofuels 8:1–10. https://doi.org/10.1186/s13068-015-0212-4

    Article  CAS  Google Scholar 

  • Damste JS, Muyzer G, Abbas B, Rampen SW, Masse G, Allard WG et al (2004) The rise of the rhizosolenid diatoms. Science 304(5670):584–587

    Article  PubMed  CAS  Google Scholar 

  • De La Pena MR (2007) Cell growth and nutritive value of the tropical benthic ~ diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations. J Appl Phycol:647e655. https://doi.org/10.1007/s10811-007-9189-0

  • Delgado C, Pardo I, García L (2012) Diatom communities as indicators of ecological status in Mediterranean temporary streams (Balearic Islands, Spain). Ecol Indic 15:131e139. https://doi.org/10.1016/J.ECOLIND.2011.09.037

    Article  Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Pror Energy Combust Sci 31(5–6):466–487

    Article  CAS  Google Scholar 

  • Domergue F, Spiekermann P, Lerchl J et al (2003) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Deltal2-fatty acid desaturases. Plant Physiol 131:1648–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drum RW, Pankratz HS (1964) Post mitotic fine structure of Gomphonema parvulum. J Ultrastruct Res 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS et al (1996a) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechol 57/58:223–231

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996b) Manipulation of microalgal lipid production using genetic engineering. In: Proceedings of the seventeenth symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 223–231. https://doi.org/10.1007/978-1-4612-0223-3_20

  • Ezzati J, Dolatabadi N, De la Guardia M (2011) Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trends Anal Chem 30:1538–1548

    Article  CAS  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous H2 photoproduction by Chlamydomonas reinhardtii using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 121124:403–412

    Article  Google Scholar 

  • Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oil. Waste Manag 26(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Sevilla JM, Ceron Garcia MC, Sanchez Miron A et al (2004) Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol Prog 20:728–736

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  CAS  PubMed  Google Scholar 

  • Fields FJ, Kociolek JP (2015) An evolutionary perspective on selecting high-lipidcontent diatoms (Bacillariophyta). J Appl Phycol 27:2209e2220. https://doi.org/10.1007/s10811-014-0505-1

    Article  CAS  Google Scholar 

  • Fuhrmann T, Landwehr S, Rharbi-Kucki ME, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B Lasers Opt 78:257–260

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology- a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  PubMed  Google Scholar 

  • Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22(1):43–51. https://doi.org/10.1016/j.ejpe.2012.07.001

    Article  Google Scholar 

  • Ghirardi ML, Zhang JP, Lee JW, Flynn T, Seibert M, Greenbaum E (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  PubMed  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507. https://doi.org/10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Hausmann S, Charles DF, Gerritsen J, Belton TJ (2016) A diatom-based biological condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams. Sci Total Environ 562:914e927. https://doi.org/10.1016/j.scitotenv.2016.03.173

    Article  CAS  Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240

    Article  CAS  Google Scholar 

  • Hossain ABMS, Boyce AN (2009) Comparative study of biodiesel production from pure palm oil and waste palm oil. Arab Gulf J Sci Res 27:33–38

    Google Scholar 

  • Hossain A, Salleh A, Boyce A, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from microalgae as renewable energy. Am J Biochem Biotechnol 4:250–254

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huntley M, Johnson Z, Brown S, Sills D, Gerber L, Archibald I et al (2015) Demonstrated large scale production of marine microalgae for fuels and feed. Algal Res 10:249–265

    Article  Google Scholar 

  • Imada N, Kobayashi K, Isdmura K, Saito H, Imura S, Tahara K, Oshima Y (1992) Isolation and identification of an autoinhibitor produced by Skeletonema costatum. Nippon Suisan Gakkai Shi 58:1687–1692

    Article  Google Scholar 

  • Jiang X, Han Q, Gao X, Gao G (2016) Conditions optimising on the yield of biomass, total lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chem 194:723–732. https://doi.org/10.1016/j.foodchem.2015.08.073

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ Fuel 23(10):294–306

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kinney AJ, Clemente TE (2005) Biodiesel processing and production. Fuel Process Technol 86:1137

    Article  CAS  Google Scholar 

  • Kooistra WHCF, Gersonde R, Medina M, Mann DG (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski P, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic Press, Burlington, pp 207–249

    Chapter  Google Scholar 

  • Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131(12):3303–3306

    Article  CAS  PubMed  Google Scholar 

  • Krassen D (2007) GreenFuel technologies: a case study for industrial photosynthetic energy capture, March 2007, Brisbane, Australia

    Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  CAS  Google Scholar 

  • Kröger N, Sandhage KH (2010) From diatom biomolecules to bioinspired syntheses of silic aand titania-based materials. MRS Bull 35:122–126

    Article  Google Scholar 

  • Kroth P (2007) Molecular biology and the biotechnological potential of diatoms. Adv Exp Med Biol:23–33. https://doi.org/10.1007/978-0-387-75532-8_3

  • Kruk C, Huszar VLM, Peeters ETHM, Bonnila S, Costa L, Lurling M et al (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil – an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Lebeau T, Robert JM (2003) Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl Microbiol Biotechnol 60:612–623. https://doi.org/10.1007/s00253-002-1176-4

    Article  CAS  PubMed  Google Scholar 

  • Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124

    Article  CAS  PubMed  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing micro heterotrophs. J Microbiol Methods 43(2):107–116. https://doi.org/10.5772/intechopen.73012247

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Marella TK, Tao L, Peng L, Song CF, Dai LL, Tiwari A, Li G (2017) A novel growth method for diatom algae in aquaculture wastewater for natural food development and nutrient removal. Water Sci Technol 75:2777e2783. https://doi.org/10.2166/wst.2017.156

    Article  CAS  Google Scholar 

  • Lin Q, Zhuo WH, Wang X, Chen CP, Gao Y, Liang JR (2018) Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species T. weissflogii and Chaetoceros muelleri. Bioprocess Biosyst Eng 41:1213–1224

    Article  CAS  PubMed  Google Scholar 

  • Lincoln RA, Strupinski K, Walker JM (1990) Biologically active compounds from diatoms. Diatom Res 5:337–349

    Article  Google Scholar 

  • Lorenz RT, Cysewski GR (2003) Commercial potential for Haematococcus microalga as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  Google Scholar 

  • Lu X, Sun H, Zhao WY et al (2018) A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar Drugs 6(7):219

    Article  CAS  Google Scholar 

  • Mangas-Sanchez J, Adlercreutz P (2015) Highly efficient enzymatic biodiesel production promoted by particle-induced emulsification. Biotechnol Biofuels 8:58. https://doi.org/10.1186/s13068-015-0247-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour MP, Frampton DM, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300. https://doi.org/10.1007/s10811-005-6625-x

    Article  CAS  Google Scholar 

  • Marella TK, Tiwari A (2020) Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour Technol 307:123245. https://doi.org/10.1016/j.biortech.2020.123245

    Article  CAS  PubMed  Google Scholar 

  • Marella TK, Parine NR, Tiwari A (2018) Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from wastewater. Saudi J Biol Sci 25(4):704–709. https://doi.org/10.1016/j.sjbs.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ (2015) Fucoxanthin and its metabolite fucoxanthinol in cancer pre- vention and treatment. Mar Drugs 13:4784–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Sugiyama H, Maeda Y et al (2010) Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490. https://doi.org/10.1007/s12010-009-8766-x

    Article  CAS  PubMed  Google Scholar 

  • McClure DD, Luiz A, Gerber B et al (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res Biomass Biofuels Bioprod 29:41–48

    Google Scholar 

  • McGinnis KM, Dempster TA, Sommerfeld MR (1997) Characterisation of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 9:19–24

    Article  CAS  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Mekhalfi M, Amara S, Robert S, Carriere F, Gontero B (2013) Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie 10:21–30

    Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Miao XL, QY W (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS (2017) All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01239

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen depri- vation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W, Kondrad S, Buyer J, Luthria D (2009) Optimization of an oil extraction process for microalgae from the treatment of manure effluent. J Am Oil Chem Soc 86:909–915

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol 24–5:355–361

    Article  Google Scholar 

  • Naviner M, Berg JP, Durand P, Le Bris H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174:15–24

    Article  CAS  Google Scholar 

  • Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimenta- tion. Glob Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Pesando D (1990) Antibacterial and antifungical activities of marine algae. In: Akatsuka I (ed) Introduction to applied phycology. pp 3–26

    Google Scholar 

  • Pienkos PT, Al Darzins (2009) The promise and challenges of microalgal derived biofuels. https://onlinelibrary.wiley.com/doi/abs/10.1002/bbb.159

  • Princen LH (1982) Producing diatoms using an open production system. Econ Bot 36:302–312

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandra TV, Mahapatra DM, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48(19):8769–8788. https://doi.org/10.1021/ie900044j

    Article  CAS  Google Scholar 

  • Remmers IM, Martens DE, Wijffels RH et al (2017) Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One 12(4):e0175630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro, Andre L, da Silva PP (2011) Innovative biofuel technologies: micro algae analysis, proceedings paper

    Google Scholar 

  • Rodolfi L, Zittelli G-C, Bassi N, Padovani G, Biondi N, Bonini G (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Rowland SJ, Belt ST, Wraige EJ, Mass G, Roussakis C, Robert JM (2001) Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia. Phytochemistry 56:597–602

    Article  CAS  PubMed  Google Scholar 

  • Sankaran R, Parra-Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476. https://doi.org/10.1016/j.biortech.2019.122476

    Article  CAS  PubMed  Google Scholar 

  • Saranya G, Ramachandra TV (2020) Novel biocatalyst for optimal biodiesel production from diatoms. Renew Energy 153:913–934. https://doi.org/10.1016/j.renene.2020.02.053

    Article  CAS  Google Scholar 

  • Saranya G, Subashchandran MD, Mesta P, Ramachandra TV (2018) Prioritization of prospective third-generation biofuel diatom strains. Energ Ecol Environ. https://doi.org/10.1007/s40974-018-0105-z

  • Saxena A, Tiwari A, Kaushik R, Iqbal, Hafiz MN, Parra-Saldivar R (2020) Diatoms recovery from wastewater: overview from an ecological and economic perspective. J Water Process Eng:101705. https://doi.org/10.1016/j.jwpe.2020.101705

  • Scholz B, Liebezeit G (2013) Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthorn tidal € flat (southern North Sea). J Appl Phycol 25:453e465. https://doi.org/10.1007/s10811-012-9879-0

    Article  CAS  Google Scholar 

  • Scragg A, Illman A, Carden A, Shales S (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23(1):67–73

    Article  CAS  Google Scholar 

  • Sheehan JT, Dunahay J, Benemann, Roessler PG (1998) US Department of Energy’s Office of Fuels Development, July 1998. A Look Back at the US Department of Energy’s Aquatic Species Program-Biodiesel from Algae, Close Out Report TP-580-24190. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Sicko-Goad LM, Schelske CL, Stoermer EF (1984) Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol Oceanogr 29(6):1170–1178

    Article  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 4:361–402

    Article  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610. https://doi.org/10.1016/j.rser.2010.06.014

    Article  CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Song MM, Pei HY, Hu WR et al (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  PubMed  Google Scholar 

  • Spitzer S (2015) An analysis of diatom growth rate and the implications for the biodiesel industry. Occam’s Razor 5(6). https://cedar.wwu.edu/orwwu/vol5/iss1/6

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sriharan S, Bagga D, Sriharan TP (1990) Effects of nutrients and temperature on lipid and fatty acid production in the diatom Hantzschia DI-60. Appl Biochem Biotechnol 24/25:309–316

    Article  Google Scholar 

  • Stonik V, Stonik I (2015) Low-molecular-weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar Drugs 13:3672–3709. https://doi.org/10.3390/md13063672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumper M, Brunner E (2008) Silica biomineralization in diatoms: The model organism Thalassiosira pseudonana. Chem BioChem 9:1187–1194

    CAS  Google Scholar 

  • Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syvertsen KE (2001) Optimizing fatty acid production in diatom Chaetoceros spp. by modifying growth environment. In: Biosystems engineering 2001. University of Hawaii at Minoa, Honolulu

    Google Scholar 

  • Tan X, Xia X, Zhao Q, Zhang Q (2014) Temporal variations of benthic diatom community and its main influencing factors in a subtropical river. China Environ Sci Pollut Control Ser 21:434e444. https://doi.org/10.1007/s11356-013-1898-0

    Article  Google Scholar 

  • Tan X, Zhang Q, Burford MA, Sheldon F, Bunn SE (2017) Benthic diatom-based indices for water quality assessment in two subtropical streams. Front Microbiol 8:–601. https://www.frontiersin.org/article/10.3389/fmicb.2017.00601

  • Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Marechal E et al (2015) Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27(1):162–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JC, Prygiel J, Vosloo A, de la Rey PA, van Rensburg L (2007) Can diatombased pollution indices be used for biomonitoring in South Africa? A case study of the crocodile west and Marico water management area. Hydrobiologia 592:455e464. https://doi.org/10.1007/s10750-007-0788-1

    Article  Google Scholar 

  • Tiwari A, Marella TK (2018) Biofuels from microalgae. Adv Biofuels Bioenergy. https://doi.org/10.5772/intechopen.73012

  • Tokushima H, Inoue-Kashino N, Nakazato Y, Masuda A, Ifuku K, Kashino Y (2016) Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnol Biofuels 9(1). https://doi.org/10.1186/s13068-016-0649-0

  • Tolboom SN, Nieves DC, Alanis MJR, Quiroz RC, Barcelo D, Iqbal HMN, Saldivar RP (2019) Algal-based removal strategies for hazardous contaminants from the environment–a review. Sci Total Environ 665:358–366

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Harvey D, Larson TR et al (2002) A long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemstry 61:15–24

    Article  CAS  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M et al (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110(49):19748–19753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  • Vasudevan PT, Fu B (2010) Environmentally sustainable biofuels: advances in biodiesel. Waste Biomass Valorization 1:47–63

    Article  CAS  Google Scholar 

  • Vilchez C, Forjan E, Cuaresma M et al (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9(3):319–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréach G et al (2015) Diatom milking: a review and new approaches. Mar Drugs 13:2629–2665. https://doi.org/10.3390/md13052629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viso AC, Pesando D, Baby C (1987) Antibacterial and antifungal properties of some marine diatoms in culture. Bot Mar 30:41–45

    Article  Google Scholar 

  • Vu CHT, Lee HG, Chang YK, Oh HM (2018) Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv 36:380–396

    Article  CAS  PubMed  Google Scholar 

  • Walter TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactor. Plant Cell Rep 24:629–641

    Article  CAS  Google Scholar 

  • Wang JK, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10(1). https://doi.org/10.1186/s13068-017-0699-y

  • Wang Y, Cai J, Jiang Y, Jiang X, Zhang D (2013) Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97:453–460

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Verma SK, Said IH et al (2018) Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light emitting diode light. Microb Cell Factories 17(1):110

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegradation 85:506–510

    Article  CAS  Google Scholar 

  • Wu N, Faber C, Sun X, Qu Y, Wang C, Ivetic S, Riis T, Ulrich U, Fohrer N (2016) Importance of sampling frequency when collecting diatoms. Sci Rep 6:36950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Gao BY, Li AF et al (2014) Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar Drugs 12(9):4883–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao-li L, Marella TK, Ling T, Rong L, Tiwari A, Gu L (2017) Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycol Res 65(3):177–187

    Article  CAS  Google Scholar 

  • Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD et al (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom. J Appl Phycol 26:73–82

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Li DW, Chen TT et al (2019) Overproduction of bioactive algal chrysolaminarin by the critical carbon flux regulator phosphoglucomutase. Biotechnol J 14(3):1800220

    Article  CAS  Google Scholar 

  • Yao Y, Lu Y, Peng K, Huang T, Niu Y, Xie W, Yang W, Liu J (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:1–9

    Article  CAS  Google Scholar 

  • Yodsuwan N, Sawayama S (2017) Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric Nat Resour 51:190–197

    Google Scholar 

  • Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW (2009) Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacilariophyceae) during starvation. J Appl Phycol 21:669–681

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C et al (2001) Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liang Y, Gao Q, Luo Y, Yu C, Chen L, Sun (2016) Variations in the total lipid content and biological characteristics of diatom species for potential biodiesel production. Fund Renew Energy Appl 6:22e26. https://doi.org/10.4172/20904541.1000201

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Department of Biotechnology (DBT), New Delhi, India for providing financial assistance under project Grant No: BT/PR/15650/AAQ/3/815/2016.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P.K., Tiwari, A. (2021). Advancements in Diatom Algae Based Biofuels. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Commercial Opportunities & Challenges . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1190-2_4

Download citation

Publish with us

Policies and ethics