Skip to main content

Advertisement

Log in

Environmentally Sustainable Biofuels: Advances in Biodiesel Research

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Due to diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from fossil-based fuels, research on renewable and environmentally friendly fuels has received a lot of impetus in recent years. With oil at high prices, alternate renewable energy has become very attractive. Many of these are eco-friendly. Besides ethanol, other unconventional choices are: biodiesel made from non-edible sources or waste cooking oil that can be blended with diesel; biobutanol; and gas-to-liquids from the abundance of natural gas, coal, or biomass. In this paper, we examine advances made in research on biodiesel. Current research on the synthesis of biodiesel can be classified into five areas: (i) the source of substrates, namely triglyceride and acyl-acceptors, (ii) reaction mechanism, (iii) catalysts for transesterification, including the application of inorganic base and acid catalysts as well as biocatalysts, (iv) solvent effects on biodiesel synthesis, especially in enzyme-catalyzed processes, and (v) operations and reactors involving traditional batch reactors, continuous reactors, novel membrane reactors and micro-channel reactors. Each of these areas is reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Proved Reserves of Oil and Natural Gas, Most Recent Estimates. http://www.eia.doe.gov/emeu/international/reserves.html. Accessed September 28, 2009

  2. Statistics. Oil Gas J. 106(36), 72–74 (2008)

    Google Scholar 

  3. Statistics. Oil Gas J. 106(33), 74–76 (2008)

    Google Scholar 

  4. Zittel, W.: The Future of the Worldwide Oil Suppy in Bulletin of the Energy Watch Group. http://www.energywatchgroup.org/fileadmin/global/pdf/2008-08_EWG_Bulletin_3_E.pdf. Accessed September 28, 2009

  5. Lee, K.T., Foglia, T.A., Chang, K.S.: Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem.Soc. 79(2), 191–195 (2002)

    Google Scholar 

  6. Ngo, H.L., Zafiropoulos, N.A., Foglia, T.A., Samulski, E.T., Lin, W.B.: Efficient two-step synthesis of biodiesel from greases. Energy Fuels 22(1), 626–634 (2008)

    Google Scholar 

  7. Aryee, A.N.A., de Voort, F.R.V., Simpson, B.K.: FTIR determination of free fatty acids in fish oils intended for biodiesel production. Process Biochem. 44(4), 401–405 (2009)

    Google Scholar 

  8. Lu, J.K., Nie, K.L., Xie, F., Wang, F., Tan, T.W.: Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem. 42(9), 1367–1370 (2007)

    Google Scholar 

  9. Zhao, X.Y., El-Zahab, B., Brosnahan, R., Perry, J., Wang, P.: An organic soluble lipase for water-free synthesis of biodiesel. Appl. Biochem. Biotechnol. 143(3), 236–243 (2007)

    Google Scholar 

  10. Wen, Z.Z., Yu, X.H., Tu, S.T., Yan, J.Y., Dahlquist, E.: Intensification of biodiesel synthesis using zigzag micro-channel reactors. Bioresour. Technol. 100(12), 3054–3060 (2009)

    Google Scholar 

  11. Wei, Z.K., Xu, C.L., Li, B.X.: Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol. 100(11), 2883–2885 (2009)

    Google Scholar 

  12. Deng, L., Xu, X.B., Haraldsson, G.G., Tan, T.W., Wang, F.: Enzymatic production of alkyl esters through alcoholysis: a critical evaluation of lipases and alcohols. J. Am. Oil Chem.Soc. 82(5), 341–347 (2005)

    Google Scholar 

  13. Granados, M.L., Alonso, D.M., Alba-Rubio, A.C., Mariscal, R., Ojeda, M., Brettes, P.: Transesterification of triglycerides by CaO: increase of the reaction rate by biodiesel addition. Energy Fuels 23, 2259–2263 (2009)

    Google Scholar 

  14. Cao, P., Dube, M.A., Tremblay, A.Y.: Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87(6), 825–833 (2008)

    Google Scholar 

  15. Dizge, N., Keskinler, B.: Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass Bioenergy 32(12), 1274–1278 (2008)

    Google Scholar 

  16. Ilgen, O., Akin, A.N.: Transesterification of Canola oil to biodiesel using MgO loaded with KOH as a heterogeneous catalyst. Energy Fuels 23, 1786–1789 (2009)

    Google Scholar 

  17. Shah, S., Gupta, M.N.: Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 42(3), 409–414 (2007)

    MathSciNet  Google Scholar 

  18. Talukder, M.M.R., Beatrice, K.L.M., Song, O.P., Puah, S., Wu, J.C., Won, C.J., Chow, Y.: Improved method for efficient production of biodiesel from palm oil. Energy Fuels 22(1), 141–144 (2008)

    Google Scholar 

  19. Lara, P.V., Park, E.Y.: Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system. Enzyme Microb.Technol. 34(3–4), 270–277 (2004)

    Google Scholar 

  20. Sanchez, F., Vasudevan, P.T.: Enzyme catalyzed production of biodiesel from olive oil. Appl. Biochem. Biotechnol. 135(1), 1–14 (2006)

    Google Scholar 

  21. Royon, D., Daz, M., Ellenrieder, G., Locatelli, S.: Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98(3), 648–653 (2007)

    Google Scholar 

  22. Sun, J., Ju, J.X., Ji, L., Zhang, L.X., Xu, N.P.: Synthesis of biodiesel in capillary microreactors. Ind. Eng. Chem. Res. 47(5), 1398–1403 (2008)

    Google Scholar 

  23. Antczak, M.S., Kubiak, A., Antczak, T., Bielecki, S.: Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renew. Energy 34(5), 1185–1194 (2009)

    Google Scholar 

  24. Moreira, A.B.R., Perez, V.H., Zanin, G.M., de Castro, H.F.: Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on silica-PVA composite. Energy Fuels 21(6), 3689–3694 (2007)

    Google Scholar 

  25. Vegetable oil used as fuel from Wikipedia home page. http://en.wikipedia.org/wiki/Vegetable_oil_used_as_fuel. Accessed June 19, 2009

  26. Fu, B., Vasudevan, P.T.: Effect of organic solvents on enzyme-catalyzed synthesis of biodiesel. Energy Fuels 23(8), 4105–4111 (2009)

    Google Scholar 

  27. Hara, M.: Environmentally benign production of biodiesel using heterogeneous catalysts. Chemsuschem 2(2), 129–135 (2009)

    MathSciNet  Google Scholar 

  28. Ghadge, S.V., Raheman, H.: Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour. Technol. 97(3), 379–384 (2006)

    Google Scholar 

  29. Wang, Y., Ou, S.Y., Liu, P.Z., Zhang, Z.S.: Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers. Manag. 48(1), 184–188 (2007)

    Google Scholar 

  30. Hsu, A.F., Jones, K., Foglia, T.A., Marmer, W.N.: Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnol. Appl. Biochem. 36, 181–186 (2002)

    Google Scholar 

  31. Chen, G.Y., Ying, M., Li, W.Z.: Enzymatic conversion of waste cooking oils into alternative fuel-biodiesel. Appl. Biochem. Biotechnol. 132(1–3), 911–921 (2006)

    Google Scholar 

  32. Openshaw, K.: A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19(1), 1–15 (2000)

    Google Scholar 

  33. Tiwari, A.K., Kumar, A., Raheman, H.: Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31(8), 569–575 (2007)

    Google Scholar 

  34. Vasudevan, P.T., Briggs, M.: Biodiesel production-current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35(5), 421–430 (2008)

    Google Scholar 

  35. Biodiesel from Wikipedia home page. http://en.wikipedia.org/wiki/Biodiesel. Accessed July 6, 2009

  36. Chisti, Y.: Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26(3), 126–131 (2008)

    Google Scholar 

  37. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)

    Google Scholar 

  38. Li, X.F., Xu, H., Wu, Q.Y.: Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnol. Bioeng. 98(4), 764–771 (2007)

    Google Scholar 

  39. Liu, Z.Y., Wang, G.C., Zhou, B.C.: Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99(11), 4717–4722 (2008)

    Google Scholar 

  40. Lewin, R.A.: Production of hydrocarbons by micro-algae: isolation and characterization of new and potentially useful algal strains. SERI/CP-231-2700 pp. 43–51 (1985)

  41. Sheehan, J.: A Look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. NREL/TP-580-24190 (1998)

  42. Dunahay, T.G.: Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57–58, 223–231 (1996)

    Google Scholar 

  43. Huntley, M.E., Redalje, D.G.: CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strat. Glob. Change 12(4), 573–608 (2007)

    Google Scholar 

  44. Benemann, J., Oswald, W.J.: Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final Report No. DE-FG22-93PC93204. Pittsburgh Energy Technology Center (1994)

  45. Biodiesel handling and use guide, 4th ed. http://www.nrel.gov/vehiclesandfuels/npbf/pdfs/43672.pdf. Accessed July 1, 2009

  46. Du, W., Xu, Y.Y., Liu, D.H., Zeng, J.: Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B 30(3–4), 125–129 (2004)

    Google Scholar 

  47. Jegannathan, K.R., Abang, S., Poncelet, D., Chan, E.S., Ravindra, P.: Production of biodiesel using immobilized lipaseA critical review. Crit. Rev. Biotechnol. 28(4), 253–264 (2008)

    Google Scholar 

  48. Vicente, G., Martinez, M., Aracil, J.: Kinetics of Brassica carinata oil methanolysis. Energy Fuels 20(4), 1722–1726 (2006)

    Google Scholar 

  49. Komers, K., Skopal, F., Stloukal, R., Machek, J.: Kinetics and mechanism of the KOH—catalyzed methanolysis of rapeseed oil for biodiesel production. Eur. J. Lipid Sci.Technol. 104(11), 728–737 (2002)

    Google Scholar 

  50. Cao, P.G., Tremblay, A.Y., Dube, M.A.: Kinetics of canola oil transesterification in a membrane reactor. Ind. Eng. Chem. Res. 48(5), 2533–2541 (2009)

    Google Scholar 

  51. Noureddini, H., Zhu, D.: Kinetics of transesterification of soybean oil. J. Am. Oil Chem.Soc. 74(11), 1457–1463 (1997)

    Google Scholar 

  52. Stiefel, S., Dassori, G.: Simulation of biodiesel production through transesterification of vegetable oils. Ind. Eng. Chem. Res. 48(3), 1068–1071 (2009)

    Google Scholar 

  53. Tan, T.W., Nie, K.L., Wang, F.: Production of biodiesel by immobilized Candida sp lipase at high water content. Appl. Biochem. Biotechnol. 128(2), 109–116 (2006)

    Google Scholar 

  54. Xu, Y.Y., Du, W., Liu, D.H.: Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. J. Mol. Catal. B 32(5–6), 241–245 (2005)

    Google Scholar 

  55. Al-Zuhair, S., Ling, F.W., Jun, L.S.: Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem. 42(6), 951–960 (2007)

    Google Scholar 

  56. Vicente, G., Martinez, M., Aracil, J.: Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92(3), 297–305 (2004)

    Google Scholar 

  57. Rashid, U., Anwar, F.: Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87(3), 265–273 (2008)

    Google Scholar 

  58. Georgogianni, K.G., Kontominas, A.G., Pomonis, P.J., Avlonitis, D., Gergis, V.: Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel. Energy Fuels 22(3), 2110–2115 (2008)

    Google Scholar 

  59. Yan, S.L., Salley, S.O., Ng, K.Y.S.: Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl. Catal. A 353(2), 203–212 (2009)

    Google Scholar 

  60. Albuquerque, M.C.G., Jimenez-Urbistondo, I., Santamaria-Gonzalez, J., Merida-Robles, J.M., Moreno-Tost, R., Rodriguez-Castellon, E., Jimenez-Lopez, A., Azevedo, D.C.S., Cavalcante, C.L., Maireles-Torres, P.: CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl. Catal. A 334(1–2), 35–43 (2008)

    Google Scholar 

  61. Li, E., Rudolph, V.: Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts. Energy Fuels 22(1), 145–149 (2008)

    Google Scholar 

  62. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E.: Heterogeneous catalysts for biodiesel production. Energy Fuels 22(1), 207–217 (2008)

    Google Scholar 

  63. Katada, N., Hatanaka, T., Ota, M., Yamada, K., Okumura, K., Niwa, M.: Biodiesel production using heteropoly acid-derived solid acid catalyst H4PNbW11O40–WO3–Nb2O5. Appl. Catal. A 363(1–2), 164–168 (2009)

    Google Scholar 

  64. Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., Santacesaria, E.: Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind. Eng. Chem. Res. 45(9), 3009–3014 (2006)

    Google Scholar 

  65. Kouzu, M., Yamanaka, S., Hidaka, J., Tsunomori, M.: Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Appl. Catal. A 355(1–2), 94–99 (2009)

    Google Scholar 

  66. Soldi, R.A., Oliveira, A.R.S., Ramos, L.P., Ce’sar-Oliveira, M.A.F.: Soybean oil and beef tallow alcoholysis by acid heterogeneous catalysis. Appl. Catal. A 361, 42–48 (2009)

    Google Scholar 

  67. Li, E., Xu, Z.P., Rudolph, V.: MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Appl. Catal. B 88(1–2), 42–49 (2009)

    Google Scholar 

  68. Yan, S.L., Kim, M., Salley, S.O., Ng, K.Y.S.: Oil transesterification over calcium oxides modified with lanthanum. Appl. Catal. A 360(2), 163–170 (2009)

    Google Scholar 

  69. Babu, N.S., Sree, R., Prasad, P.S.S., Lingaiah, N.: Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy Fuels 22(3), 1965–1971 (2008)

    Google Scholar 

  70. Kawashima, A., Matsubara, K., Honda, K.: Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol. 99(9), 3439–3443 (2008)

    Google Scholar 

  71. Wan, T., Yu, P., Wang, S.G., Luo, Y.B.: Application of sodium aluminate as a heterogeneous base catalyst for biodiesel production from soybean oil. Energy Fuels 23(1), 1089–1092 (2009)

    Google Scholar 

  72. Cui, L.F., Xiao, G.M., Xu, B., Teng, G.Y.: Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy Fuels 21(6), 3740–3743 (2007)

    Google Scholar 

  73. de Almeida, R.M., Noda, L.K., Goncalves, N.S., Meneghetti, S.M.P., Meneghetti, M.R.: Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl. Catal. A 347(1), 100–105 (2008)

    Google Scholar 

  74. Zhang, J.J., Jiang, L.F.: Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresour. Technol. 99(18), 8995–8998 (2008)

    MathSciNet  Google Scholar 

  75. Chung, K.H., Chang, D.R., Park, B.G.: Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresour. Technol. 99(16), 7438–7443 (2008)

    Google Scholar 

  76. Kiss, A.A., Dimian, A.C., Rothenberg, G.: Solid acid catalysts for biodiesel production—towards sustainable energy. Adv. Synth. Catal. 348(1–2), 75–81 (2006)

    Google Scholar 

  77. Park, Y.M., Lee, J.Y., Chung, S.H., Park, I.S., Lee, S.Y., Kim, D.K., Lee, J.S., Lee, K.Y.: Esterification of used vegetable oils using the heterogeneous WO3–ZrO2 catalyst for production of biodiesel. Bioresour. Technol. (2009). doi: 10.1016/j.biortech.2009.04.025

  78. Park, Y.M., Lee, D.W., Kirn, D.K., Lee, J.S., Lee, K.Y.: The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 131(1–4), 238–243 (2008)

    Google Scholar 

  79. Pesaresi, L., Brown, D.R., Lee, A.F., Montero, J.M., Williams, H., Wilson, K.: Cs-doped H4SiW12O40 catalysts for biodiesel applications. Appl. Catal. A 360(1), 50–58 (2009)

    Google Scholar 

  80. Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G.: Esterification and transesterification on tungstated zirconia: effect of calcination temperature. J. Catal. 247(1), 43–50 (2007)

    Google Scholar 

  81. Jacobson, K., Gopinath, R., Meher, L.C., Dalai, A.K.: Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B 85(1–2), 86–91 (2008)

    Google Scholar 

  82. Melero, J.A., Bautista, L.F., Morales, G., Iglesias, J., Briones, D.: Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts. Energy Fuels 23(1), 539–547 (2009)

    Google Scholar 

  83. Chai, F., Cao, F.H., Zhai, F.Y., Chen, Y., Wang, X.H., Su, Z.M.: Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Adv. Synth. Catal. 349(7), 1057–1065 (2007)

    Google Scholar 

  84. Li, L.L., Du, W., Liu, D.H., Wang, L., Li, Z.B.: Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B 43(1–4), 58–62 (2006)

    Google Scholar 

  85. Nie, K.L., Xie, F., Wang, F., Tan, T.W.: Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J. Mol. Catal. B 43(1–4), 142–147 (2006)

    Google Scholar 

  86. De Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa, C., Bender, J.P., Lipke, N., Menoncin, S., Amroginski, C., De Oliveira, J.V.: Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl. Biochem. Biotechnol. 113–16, 771–780 (2004)

    Google Scholar 

  87. Li, N.W., Zong, M.H., Wu, H.: Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 44(6), 685–688 (2009)

    Google Scholar 

  88. Shimada, Y., Watanabe, Y., Sugihara, A., Tominaga, Y.: Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B 17(3–5), 133–142 (2002)

    Google Scholar 

  89. Ranganathan, S.V., Narasimhan, S.L., Muthukumar, K.: An overview of enzymatic production of biodiesel. Bioresour. Technol. 99(10), 3975–3981 (2008)

    Google Scholar 

  90. Salis, A., Pinna, M., Monduzzi, M., Solinas, V.: Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. J. Mol. Catal. B 54(1–2), 19–26 (2008)

    Google Scholar 

  91. Fjerbaek, L., Christensen, K.V., Norddahl, B.: A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 102(5), 1298–1315 (2009)

    Google Scholar 

  92. Shen, X.P., Vasudevan, P.T.: Transesterification of waste olive oil by candida lipase. Bull. Sci. Tech. Soc. 28, 521–528 (2008)

    Google Scholar 

  93. Water activity from Wikipedia home page. http://en.wikipedia.org/wiki/Water_activity. Accessed June 22, 2009

  94. Ma, L., Persson, M., Adlercreutz, P.: Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme Microb.Technol. 31(7), 1024–1029 (2002)

    Google Scholar 

  95. Su, E., Wei, D.Z.: Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. J. Mol. Catal. B 55(3–4), 118–125 (2008)

    Google Scholar 

  96. Al-Zuhair, S., Jayaraman, K.V., Krishnan, S., Chan, W.H.: The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem. Eng. J. 30(2), 212–217 (2006)

    Google Scholar 

  97. Lu, J., Nie, K.L., Wang, F., Tan, T.W.: Immobilized lipase Candida sp 99–125 catalyzed methanolysis of glycerol trioleate: solvent effect. Bioresour. Technol. 99(14), 6070–6074 (2008)

    Google Scholar 

  98. Sigma-Aldrich home page. http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=L4777|SIGMA&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC. Accessed July 6, 2009

  99. Dizge, N., Aydiner, C., Imer, D.Y., Bayramoglu, M., Tanriseven, A., Keskinlera, B.: Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour. Technol. 100(6), 1983–1991 (2009)

    Google Scholar 

  100. Kawakami, K., Takahashi, R., Shakeri, M., Sakai, S.: Application of a lipase-immobilized silica monolith bioreactor to the production of fatty acid methyl esters. J Mol Catal B 57(1–4), 194–197 (2009)

    Google Scholar 

  101. Macario, A., Moliner, M., Corma, A., Giordano, G.: Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic-inorganic system. Microporous Mesoporous Mater. 118(1–3), 334–340 (2009)

    Google Scholar 

  102. Sheldon, R.A.: Cross-linked enzyme aggregates (CLEA (R) s): stable and recyclable biocatalysts. Biochem. Soc. Trans. 35, 1583–1587 (2007)

    Google Scholar 

  103. Schoevaart, R., Wolbers, M.W., Golubovic, M., Ottens, M., Kieboom, A.P.G., van Rantwijk, F., van der Wielen, L.A.M., Sheldon, R.A., van Rantwijk, F., van der Wielen, L.A.M., Sheldon, R.A.: Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 87(6), 754–762 (2004)

    Google Scholar 

  104. Kaul, P., Stolz, A., Banerjee, U.C.: Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Adv. Synth. Catal. 349(13), 2167–2176 (2007)

    Google Scholar 

  105. Sangeetha, K., Abraham, T.E.: Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. Int. J. Biol. Macromol. 43(3), 314–319 (2008)

    Google Scholar 

  106. Kumari, V., Shah, S., Gupta, M.N.: Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21(1), 368–372 (2007)

    Google Scholar 

  107. Lopez-Serrano, P., Cao, L., van Rantwijk, F., Sheldon, R.A.: Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol. Lett. 24(16), 1379–1383 (2002)

    Google Scholar 

  108. Wilson, L., Fernandez-Lorente, G., Fernandez-Lafuente, R., Illanes, A., Guisan, J.M., Palomo, J.M.: CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzyme Microb.Technol. 39(4), 750–755 (2006)

    Google Scholar 

  109. Yu, H.W., Chen, H., Wang, X., Yang, Y.Y., Ching, C.B.: Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J. Mol. Catal. B 43(1–4), 124–127 (2006)

    Google Scholar 

  110. Kim, M.I., Kim, J., Lee, J., Shin, S., Bin Na, H., Hyeon, T., Park, H.G., Chang, H.N.: One-dimensional crosslinked enzyme aggregates in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Microporous Mesoporous Mater. 111(1–3), 18–23 (2008)

    Google Scholar 

  111. Tutorial in Nanomaterials. http://www.sigmaaldrich.com/materials-science/nanomaterials/tutorial.html. Accessed July 2, 2009

  112. Nanomaterials from Wikipedia home page. http://en.wikipedia.org/wiki/Nanomaterials. Accessed July 2, 2009

  113. Reddy, C., Reddy, V., Oshel, R., Verkade, J.G.: Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuels 20(3), 1310–1314 (2006)

    Google Scholar 

  114. Verziu, M., Cojocaru, B., Hu, J.C., Richards, R., Ciuculescu, C., Filip, P., Parvulescu, V.I.: Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem. 10(4), 373–381 (2008)

    Google Scholar 

  115. Vidruk, R., Landau, M.V., Herskowitz, M., Talianker, M., Frage, N., Ezersky, V., Froumin, N.: Grain boundary control in nanocrystalline MgO as a novel means for significantly enhancing surface basicity and catalytic activity. J. Catal. 263(1), 196–204 (2009)

    Google Scholar 

  116. Boz, N., Degirmenbasi, N., Kalyon, D.M.: Conversion of biomass to fuel—transesterification of vegetable oil to biodiesel using KF loaded nano-Al2O3 as catalyst. Appl. Catal. B 89, 590–596 (2009)

    Google Scholar 

  117. Wang, Y., Hu, S.Y., Guan, Y.P., Wen, L.B., Han, H.Y.: Preparation of mesoporous nanosized KF-CaO-MgO catalyst and its application for biodiesel production by transesterification. Catal. Lett. 131, 574–578 (2009)

    Google Scholar 

  118. Li, J., Wang, X.H., Zhu, W.M., Cao, F.H.: Zn1·2H0·6PW12O40 nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil. Chemsuschem 2(2), 177–183 (2009)

    Google Scholar 

  119. Tsang, S.C., Yu, C.H., Gao, X., Tam, K.: Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J. Phys. Chem. B 110(34), 16914–16922 (2006)

    Google Scholar 

  120. Kim, J.B., Grate, J.W., Wang, P.: Nanobiocatalysis and its potential applications. Trends Biotechnol. 26(11), 639–646 (2008)

    Google Scholar 

  121. Chen, Y.Z., Yang, C.T., Ching, C.B., Xu, R.: Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir 24(16), 8877–8884 (2008)

    Google Scholar 

  122. Herdt, A.R., Kim, B.S., Taton, T.A.: Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. Bioconjugate Chem. 18(1), 183–189 (2007)

    Google Scholar 

  123. Ge, J., Lu, D.A., Wang, J., Liu, Z.: Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 10(6), 1612–1618 (2009)

    Google Scholar 

  124. Xie, W.L., Ma, N.: Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels 23, 1347–1353 (2009)

    Google Scholar 

  125. Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J., Wu, H.: Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem. 9(5), 434–437 (2007)

    Google Scholar 

  126. Lou, W.Y., Zong, M.H., Duan, Z.Q.: Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 99(18), 8752–8758 (2008)

    Google Scholar 

  127. Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M.: Green chemistry—biodiesel made with sugar catalyst. Nature 438(7065), 178–178 (2005)

    Google Scholar 

  128. Liu, R., Wang, X.Q., Zhao, X., Feng, P.Y.: Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon 46(13), 1664–1669 (2008)

    Google Scholar 

  129. Prabhavathi, D.B.L., Gangadhar, K.N., Prasad, P.S.S., Jagannadh, B., Prasad, R.B.N.: A glycerol-based carbon catalyst for the preparation of biodiesel. ChemSusChem 2(7), 617–620 (2009)

    Google Scholar 

  130. Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M.: Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130(38), 12787–12793 (2008)

    Google Scholar 

  131. Soumanou, M.M., Bornscheuer, U.T.: Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb.Technol. 33(1), 97–103 (2003)

    Google Scholar 

  132. Du, W., Liu, D.H., Li, L.L., Dai, L.M.: Mechanism exploration during lipase-mediated methanolysis of renewable oils for biodiesel production in a tert-butanol system. Biotechnol. Progr. 23(5), 1087–1090 (2007)

    Google Scholar 

  133. Ionic liquid from Wikipedia home page. http://en.wikipedia.org/wiki/Ionic_liquid. Accessed July 2, 2009

  134. Zhang, L., Xian, M., He, Y.C., Li, L.Z., Yang, J.M., Yu, S.T., Xu, X.: A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour. Technol. 100, 4368–4373 (2009)

    Google Scholar 

  135. Ha, S.H., Lan, M.N., Lee, S.H., Hwang, S.M., Koo, Y.M.: Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb.Technol. 41(4), 480–483 (2007)

    Google Scholar 

  136. Gamba, M., Lapis, A.A.M., Dupont, J.: Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv. Synth. Catal. 350(1), 160–164 (2008)

    Google Scholar 

  137. Lapis, A.A.M., Oliveira, L.F., Neto, B.A.D., Dupont, J.: Ionic liquid supported acid-base-catalyzed production of biodiesel. ChemSusChem 1, 759–762 (2008)

    Google Scholar 

  138. Liang, X.Z., Gong, G.Z., Wu, H.H., Yang, J.G.: Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel 88(4), 613–616 (2009)

    Google Scholar 

  139. Han, M.H., Yi, W.L., Wu, Q., Liu, Y., Hong, Y.C., Wang, D.Z.: Preparation of biodiesel from waste oils catalyzed by a Bronsted acidic ionic liquid. Bioresour. Technol. 100(7), 2308–2310 (2009)

    Google Scholar 

  140. Groisman, Y., Gedanken, A.: Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C 112(24), 8802–8808 (2008)

    Google Scholar 

  141. Dube, M.A., Tremblay, A.Y., Liu, J.: Biodiesel production using a membrane reactor. Bioresour. Technol. 98(3), 639–647 (2007)

    Google Scholar 

  142. Singh, A.K., Fernando, S.D., Hernandez, R.: Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy Fuels 21(2), 1161–1164 (2007)

    Google Scholar 

  143. Mahamuni, N.N., Adewuyi, Y.G.: Transesterification of soybean oil using a multifrequency ultrasonic reactor. Energy Fuels 23, 2757–2766 (2009)

    Google Scholar 

  144. Demirbas, A.: Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions. Bioresour. Technol. 99(5), 1125–1130 (2008)

    Google Scholar 

  145. Kasim, N.S., Tsai, T.H., Gunawan, S., Ju, Y.H.: Biodiesel production from rice bran oil and supercritical methanol. Bioresour. Technol. 100(8), 2399–2403 (2009)

    Google Scholar 

  146. Tan, K.T., Lee, K.T., Mohamed, A.R.: Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass Bioenergy 33, 1096–1099 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Michael Briggs at the University of New Hampshire for his comments on the review pertaining to microalgae research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palligarnai T. Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, P.T., Fu, B. Environmentally Sustainable Biofuels: Advances in Biodiesel Research. Waste Biomass Valor 1, 47–63 (2010). https://doi.org/10.1007/s12649-009-9002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-009-9002-1

Keywords

Navigation