Skip to main content

Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels

  • Chapter
  • First Online:
Microbial Strategies for Techno-economic Biofuel Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Microalgae, cyanobacteria are vital organisms for sustainable production of various value-added products, e.g. food, chemicals and biofuels are also well known to meet out high energy requirements. These organisms can be a sustainable tool for reducing our current dependency on fossil fuels with growing world populations and environmental concerns. In recent times, the huge exploitation of algae as third-generation feedstocks for producing biofuels, e.g. biodiesel, biohydrogen, bioethanol and bioethanol, are underway. The biofuels have similar combustion properties, the energy content that is present in the fossil fuels furthers their transportation, and the storage is well suited with the existing infrastructure. The metabolic and genetic engineering of algal cultures can be manipulated for the advancement in the development of promising strains to produce alternative biofuels. This chapter includes the detailed account of various aspects of biofuel production using valuable algal feedstock, such as open and closed cultivation, stock availability, intercellular components (carbohydrates and lipids, etc.), challenges and future prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W (2017) Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 35(7):647

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Browne J, Hynes S, Murphy J (2013) The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 33(11):2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Ardalan Y, Jazini M, Karimi K (2018) Sargassum angustifolium brown macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. Algal Res 36:29–36

    Article  Google Scholar 

  • Assacute L, Romagnoli F, Cappelli A, Ciocci C (2018) Algae-based biorefinery concept: an LCI analysis for a theoretical plant. Energy Procedia 147:15–24

    Article  CAS  Google Scholar 

  • Azizi K, Moraveji MK, Najafabadi HA (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sust Energ Rev 82:3046–3059

    Article  CAS  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:463074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benemann JR, Tillett DM, Weissman JC (1987) Microalgae biotechnology. Trends Biotechnol 5(2):47–53

    Article  CAS  Google Scholar 

  • Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. In: Progress in industrial microbiology, vol 35. Elsevier, Amsterdam, pp 313–321

    Google Scholar 

  • Bowyer J, Howe J, Levins R, Groot H, Fernholz K, Pepke E, Henderson C (2018) Third generation biofuels implications for wood-derived fuels. Dovetail Partners, Inc, Minneapolis, MN

    Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, BiÅ¡ová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit Rev Microbiol 10(4):317–391

    Article  Google Scholar 

  • Change IC (2014) Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1454

    Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Cheung SL, Allen DG, Short SM (2020) Specific quantification of Scenedesmus obliquus and Chlorella vulgaris in mixed-species algal biofilms. Bioresour Technol 295:122251

    Article  CAS  PubMed  Google Scholar 

  • Chia SR, Ong HC, Chew KW, Show PL, Phang S-M, Ling TC, Nagarajan D, Lee D-J, Chang J-S (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129:838–852

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chong WC, Mohammad AW, Mahmoudi E, Chung YT, Kamarudin KF, Takriff MS (2019) Nanohybrid membrane in algal-membrane photoreactor: microalgae cultivation and wastewater polishing. Chin J Chem Eng 27:2799–2806

    Google Scholar 

  • Chowdhury H, Loganathan B (2019) 3rd generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39-44

    Google Scholar 

  • Chowdhury H, Loganathan B, Mustary I, Alam F, Mobin SM (2019) Algae for biofuels: the third generation of feedstock. In: Second and third generation of feedstocks. Elsevier, Amsterdam, pp 323–344

    Chapter  Google Scholar 

  • Das S, Das S, Ghangrekar M (2019) Quorum-sensing mediated signals: a promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell. Bioresour Technol 294:122138

    Article  CAS  PubMed  Google Scholar 

  • De Godos I, Mendoza J, Acién F, Molina E, Banks C, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314

    Article  PubMed  CAS  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, New York, pp 3–33

    Chapter  Google Scholar 

  • Dong T, Knoshaug EP, Davis R, Laurens LM, Van Wychen S, Pienkos PT, Nagle N (2016) Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res 19:316–323

    Article  Google Scholar 

  • Droop M (1968) The kinetics of uptake, growth and inhibition in Monachryais lutheri. J Mar Biol Ass 48:680–733

    Article  Google Scholar 

  • Dyhrman ST, Ruttenberg KC (2006) Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization. Limnol Oceanogr 51(3):1381–1390

    Article  CAS  Google Scholar 

  • Fukuda S, Hirasawa E, Takemura T, Takahashi S, Chokshi K, Pancha I, Tanaka K, Imamura S (2018) Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae. Sci Rep 8(1):12410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    Article  CAS  PubMed  Google Scholar 

  • Gee CW, Niyogi KK (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc Natl Acad Sci 114(17):4537–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6(10):e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol Biofuels 7(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall P (1986) Technology, innovation and economic policy. Philip Allan, Oxford

    Google Scholar 

  • Han Y, Hoekman SK, Cui Z, Jena U, Das P (2019) Hydrothermal liquefaction of marine microalgae biomass using co-solvents. Algal Res 38:101421

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Hirose M, Mukaida F, Okada S, Noguchi T (2013) Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race A). Eukaryot Cell 12(8):1132–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Chen F, Kuang Y, He H, Qin A (2016) Current techniques of growing algae using flue gas from exhaust gas industry: a review. Appl Biochem Biotechnol 178(6):1220–1238

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Cheng J, Lu H, He Y, Zhou J, Cen K (2017) Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2. Biotechnol Biofuels 10(1):181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hulst C (2013) Microalgae cultivation systems analysis of microalgae cultivation systems and LCA for biodiesel production (Master’s thesis)

    Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12(4):573–608

    Article  Google Scholar 

  • Ji F, Zhou Y, Pang A, Ning L, Rodgers K, Liu Y, Dong R (2015) Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour Technol 184:116–122

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Article  CAS  PubMed  Google Scholar 

  • Kao P-H, Ng I-S (2017) CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol 245:1527–1537

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 62:146–152

    Article  CAS  PubMed  Google Scholar 

  • Kumar RP, Gnansounou E, Raman JK, Baskar G (2019) Refining biomass residues for sustainable energy and bioproducts: technology, advances, life cycle assessment, and economics. Academic Press, United Kingdom

    Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Khoo CG, Lee KT (2019) Scale-up and commercialization of algal cultivation and biofuels production. In: Biofuels from algae. Elsevier, Amsterdam, pp 475–506

    Chapter  Google Scholar 

  • Langholtz M, Stokes B, Eaton L (2016) 2016 Billion-ton report: advancing domestic resources for a thriving bioeconomy, vol 1: economic availability of feedstock. Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy. pp 1–411

    Google Scholar 

  • Lassing M, Hulteberg C, MÃ¥rtensson P, Karlsson H, Børre E, Børresen T, Svensson M, Eklund H (2008) Final report on biodiesel production from microalgae: a feasibility study. StatoilHydro ASA, Oslo, Norway

    Google Scholar 

  • Légeret B, Schulz-Raffelt M, Nguyen H, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y (2016) Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ 39(4):834–847

    Article  PubMed  CAS  Google Scholar 

  • Li B, Brett MT (2013) The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environ Pollut 182:37–44

    Article  CAS  PubMed  Google Scholar 

  • Li J, Han D, Wang D, Ning K, Jia J, Wei L, Jing X, Huang S, Chen J, Li Y (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26(4):1645–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang X, Wang X, Sun C (2016) Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 20(4):437–450

    Article  CAS  PubMed  Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev 82:3863–3885

    Article  CAS  Google Scholar 

  • Markou G (2015) Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour Technol 193:35–41

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Monlau F (2019) Nutrient recycling for sustainable production of algal biofuels. In: Biofuels from algae. Elsevier, Amsterdam, pp 109–133

    Chapter  Google Scholar 

  • Markou G, Depraetere O, Muylaert K (2016) Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: a study on chlorophyll fluorescence and electron transport. Algal Res 16:449–457

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A (2015) Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 31(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Nagappan S, Devendran S, Tsai P-C, Dahms H-U, Ponnusamy VK (2019) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349

    Article  CAS  Google Scholar 

  • Oh Y-K, Hwang K-R, Kim C, Kim JR, Lee J-S (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Srivastava S, Kumar S (2019) Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: a sustainable approach. Bioresour Technol 293:121998

    Article  CAS  PubMed  Google Scholar 

  • Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31(3):134–138

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Poong S-W, Lee K-K, Lim P-E, Pai T-W, Wong C-Y, Phang S-M, Chen C-M, Yang C-H, Liu C-C (2018a) RNA-Seq-mediated transcriptomic analysis of heat stress response in a polar Chlorella sp. (Trebouxiophyceae, Chlorophyta). J Appl Phycol 30(6):3103–3119

    Article  CAS  Google Scholar 

  • Poong S-W, Lim P-E, Phang S-M, Wong C-Y, Pai T-W, Chen C-M, Yang C-H, Liu C-C (2018b) Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress. J Appl Phycol 30(1):87–99

    Article  CAS  Google Scholar 

  • Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS One 11(10):e0164673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae–defining the polyphosphate dynamics. Water Res 43(17):4207–4213

    Article  CAS  PubMed  Google Scholar 

  • Puente-Sánchez F, Olsson S, Aguilera A (2016) Comparative transcriptomic analysis of the response of Dunaliella acidophila (Chlorophyta) to short-term cadmium and chronic natural metal-rich water exposures. Microb Ecol 72(3):595–607

    Article  PubMed  CAS  Google Scholar 

  • Puente-Sánchez F, Díaz S, Penacho V, Aguilera A, Olsson S (2018) Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquat Toxicol 200:62–72

    Article  PubMed  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Rahbari M (2009) Physical characteristics of Pleurochrysis carterae in relation to harvesting potential for biodiesel production (Doctoral dissertation)

    Google Scholar 

  • Rahimi V, Shafiei M (2019) Techno-economic assessment of a biorefinery based on low-impact energy crops: a step towards commercial production of biodiesel, biogas, and heat. Energy Convers Manag 183:698–707

    Article  Google Scholar 

  • Ramaraj R, Unpaprom Y, Dussadee N (2016) Cultivation of green microalga, Chlorella vulgaris for biogas purification. Int J N Technol Res 2(3):117–122

    Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88(10):3507–3514

    Article  CAS  Google Scholar 

  • Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the southwest. Algal Res 1(1):93–100

    Article  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Wiley Online Library, New York

    Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z (2017) Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res 23:196–202

    Article  Google Scholar 

  • Shin H, Hong S-J, Kim H, Yoo C, Lee H, Choi H-K, Lee C-G, Cho B-K (2015) Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour Technol 194:57–66

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Hong S-J, Yoo C, Han M-A, Lee H, Choi H-K, Cho S, Lee C-G, Cho B-K (2016) Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci Rep 6:37770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E, Sim SJ (2019) Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour Technol 271:368–374

    Article  CAS  PubMed  Google Scholar 

  • Shively J (1988) [17] Inclusions: granules of polyglucose, polyphosphate, and poly-β-hydroxybutyrate. In: Methods in enzymology, vol 167. Elsevier, London, pp 195–203

    Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24(7):4062–4077

    Article  CAS  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16(6):4316–4342

    Article  CAS  Google Scholar 

  • Takemura T, Imamura S, Tanaka K (2019) Identification of a chloroplast fatty acid exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae. Algal Res 38:101396

    Article  Google Scholar 

  • Tan KWM, Lee YK (2017) Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J Biotechnol 247:60–67

    Article  CAS  PubMed  Google Scholar 

  • Tan S-I, Han Y-L, Yu Y-J, Chiu C-Y, Chang Y-K, Ouyang S, Fan K-C, Lo K-H, Ng I-S (2018) Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process Biochem 73:38–46

    Article  CAS  Google Scholar 

  • Thrane JE, Hessen DO, Andersen T (2017) Plasticity in algal stoichiometry: experimental evidence of a temperature-induced shift in optimal supply N: P ratio. Limnol Oceanogr 62(4):1346–1354

    Article  CAS  Google Scholar 

  • Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27(3):1109–1119

    Article  CAS  Google Scholar 

  • Tran N-AT, Padula MP, Evenhuis CR, Commault AS, Ralph PJ, Tamburic B (2016) Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata. Algal Res 19:1–11

    Article  Google Scholar 

  • Urtubia HO, Betanzo LB, Vásquez M (2016) Microalgae and cyanobacteria as green molecular factories: tools and perspectives. In: Algae: organisms for imminent biotechnology, 1

    Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae:(Bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424

    Article  CAS  Google Scholar 

  • Vergara-Fernández A, Vargas G, Alarcón N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32(4):338–344

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang D-J, Bae H-J (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100(24):6658–6660

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Lu Y, Lee Y-Y, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10(12):1523–1539

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189

    Article  CAS  Google Scholar 

  • Xue J, Balamurugan S, Li D-W, Liu Y-H, Zeng H, Wang L, Yang W-D, Liu J-S, Li H-Y (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221

    Article  CAS  PubMed  Google Scholar 

  • Yang D-W, Syn J-W, Hsieh C-H, Huang C-C, Chien L-F (2019) Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT. Int J Hydrogen Energy 44(5):2533–2545

    Article  CAS  Google Scholar 

  • Yazdani P, Zamani A, Karimi K, Taherzadeh MJ (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202

    Article  CAS  PubMed  Google Scholar 

  • Yu X-J, Sun J, Sun Y-Q, Zheng J-Y, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    Article  CAS  Google Scholar 

  • Yun C-J, Hwang K-O, Han S-S, Ri H-G (2019) The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenergy 127:105277

    Article  CAS  Google Scholar 

  • Yunus IS, Jones PR (2018) Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 49:59–68

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen Y, Li M, Hu C (2020) Production of high-quality biofuel via ethanol liquefaction of pretreated natural microalgae. Renew Energy 147:293–301

    Article  CAS  Google Scholar 

  • Zhu S, Feng S, Xu Z, Qin L, Shang C, Feng P, Wang Z, Yuan Z (2019) Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioresour Technol 285:121353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PV is thankful to DBT (Grant No. BT/304/NE/TBP/2012; Grant No. BT/PR7333/PBD/26/373/2012), NB and KA are thankful to Central University of Rajasthan, Ajmer, India.

Competing Interests: All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, N., Agrawal, K., Verma, P. (2020). Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels. In: Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K. (eds) Microbial Strategies for Techno-economic Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_7

Download citation

Publish with us

Policies and ethics