Skip to main content
Log in

Heterotrophic growth of microalgae: metabolic aspects

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae are considered photoautotrophic organisms, however several species have been found living in environments where autotrophic metabolism is not viable. Heterotrophic cultivation, i.e. cell growth and propagation with the use of an external carbon source under dark conditions, can be used to study the metabolic aspects of microalgae that are not strictly related to photoautotrophic growth and to obtain high value products. This manuscript reviews studies related to the metabolic aspects of heterotrophic grow of microalga. From the physiological and metabolic perspective, the screening of microalgal strains in different environments and the development of molecular and metabolic engineering tools, will lead to an increase in the number of known microalgae species that growth under strict heterotrophic conditions and the variety of carbon sources used by these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albertano P, Ciniglia C, Pinto G, Pollio A (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: and update. Hydrobiologia 433:137–143

    Article  Google Scholar 

  • Armbrust E, Berges J, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  Google Scholar 

  • Barbier G, Oesterhelt C, Larson M (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 37:460–474

    Article  Google Scholar 

  • Benedict C (1978) Nature of obligate photoautotrophy. Annu Rev Plant Physiol Plant Mol Biol 29:67–93

    Article  CAS  Google Scholar 

  • Blanc G, Duncan G, Agarkova I et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:412–426

    Article  Google Scholar 

  • Chen G, Chen F (2006) Growing phototrophics cells without light. Biotechnol Lett 28:607–616

    Article  CAS  Google Scholar 

  • Chen T, Liu H, Lü P, Xue L (2009) Construction of Dunaliella salina heterotrophic expression vectors and identification of heterotrophycally transformed algal strains. Chinese J Biotechnol (Chinese edition) 25:392–398

    CAS  Google Scholar 

  • Cheng Y, Zhou W, Gao C et al (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. Soc Chem Ind 84:777–781

    CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z et al (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    Article  CAS  Google Scholar 

  • Ciniglia C, Yoon H, Pollio A et al (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13:1827–1838

    Article  CAS  Google Scholar 

  • de Swaaf M, Grobben G, Eggink G et al (2001) Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl Microbiol Biotechnol 57:395–400

    Article  Google Scholar 

  • de Swaaf ME, Pronk JT, Sijtsma L (2003a) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    Article  Google Scholar 

  • de Swaaf ME, Sijtsma L, Pronk JT (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  Google Scholar 

  • Doebbe A, Rupprecht J, Beckmann J et al (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Bedaiwy MY, Osman ME, Ismail MM (2012) Mixotrophic growth of some microalgae using extract of fungal-treated wheat bran. Int J Recycl Org Waste Agric 1:12

    Article  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  • Graverholt O, Eriksen N (2007) Heterotrophic high cell-density fed-batch and continuous flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75

    Article  CAS  Google Scholar 

  • Gross W, Oesterhelt C (1999) Ecophysiological studies on the red alga Galdieria sulphuraria isolated from South–West Iceland. Plant Biol 1:694–700

    Article  Google Scholar 

  • Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638

    CAS  Google Scholar 

  • Gross W, Küver J, Tischendorf G et al (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33:25–31

    Article  Google Scholar 

  • Gruber P, Frederick S, Tolbert N (1974) Enzymes related to lactate metabolism in green algae and lower land plants. Plant Physiol 53:167–170

    Article  CAS  Google Scholar 

  • Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol 53:14–20

    Article  CAS  Google Scholar 

  • Hallmann A, Sumper M (1996) The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. Proc Natl Acad Sci USA 93:669–673

    Article  CAS  Google Scholar 

  • Hiyama T, Nishimura M, Chance B (1969) Energy and electron transfer systems of Chlamydomonas reinhardtii. I. Photosynthetic and respiratory cytochrome systems of the pale green mutant. Plant Physiol 44:527–534

    Article  CAS  Google Scholar 

  • Hong S, Lee C (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173

    Article  CAS  Google Scholar 

  • Hong W-K, Heo S-Y, Oh B-R et al (2013) A transgene expression system for the marine microalgae Aurantiochytrium sp. KRS101 using a mutant allele of the gene encoding ribosomal protein L44 as a selectable transformation marker for cycloheximide resistance. Bioprocess Biosyst Eng 36:1191–1197

    Article  CAS  Google Scholar 

  • Im C, Vincent D, Regentin R, Coragliotti A (2012) Heterotrophic cultivation of hydrocarbon-producing microalgae. US Patent 8278090

  • Ip P-F, Chen F (2005a) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Ip P-F, Chen F (2005b) Peroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3595–3599

    Article  CAS  Google Scholar 

  • Jia Z, Liu Y, Daroch M et al (2014) Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Appl Biochem Biotechnol 173:1667–1679

    Article  CAS  Google Scholar 

  • Johnson R, Tuchman N, Peterson C (1997) Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J North Am Benthol Soc 16:503–519

    Article  Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  • Komor E, Tanner W (1978) The hexose-proton symport system of Chlorella vulgaris. Eur J Biochem 44:219–223

    Article  Google Scholar 

  • Konings W (2006) Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90:325–342

    Article  CAS  Google Scholar 

  • Lee Y (2004) Algal nutrition, heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, pp 116–124

    Google Scholar 

  • Lewin R (1962) Physiology and biochemistry of algae, first edit. Academic Press, New York

    Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y et al (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101:3623–3627

    Article  CAS  Google Scholar 

  • Lu Y, Ding Y, Wu Q (2010) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23:115–121

    Article  Google Scholar 

  • Marsh HV, Galmiche JM, Gibbs M (1965) Effect of light on the tricarboxylic acid cycle in Scenedesmus. Plant Physiol 40:1013–1022

    Article  CAS  Google Scholar 

  • Mendes A, Guerra P, Madeira V et al (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215

    Article  CAS  Google Scholar 

  • Mojtaba A, Mohd S, Rosfarizan M et al (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53:187–195

    Article  Google Scholar 

  • Morales-Sánchez D, Tinoco R, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6(100):1–12

    Google Scholar 

  • Morales-Sánchez D, Tinoco-Valencia R, Caro-Bermúdez MA, Martinez A (2014) Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. Algal Res 5:61–69

    Article  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628

    Article  CAS  Google Scholar 

  • Neilson A, Lewin R (1974) The uptake and utilization of organic carbon by algae; an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the host-spring red alga Cyanidioschyzon merolae. BMC Biol 5:1–8

    Article  Google Scholar 

  • Oesterhelt C, Schnarrenberger C, Gross W (1999) Characterization of a sugar/polyol-uptake system in the red alga Galdieria sulphuraria. Eur J Phycol 34:271–277

    Article  Google Scholar 

  • Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  CAS  Google Scholar 

  • Palmisano A, SooHoo J, White D et al (1985) Shade adapted benthic diatoms beneath Antarctica sea ice. J Phycol 21:664–667

    Article  Google Scholar 

  • Perez-Garcia O, Escalante F, De-Bashan L, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Biores Technol 137:139–146

    Article  CAS  Google Scholar 

  • Prathima DM, Venkata SG, Venkata MS (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energy 43:276–283

    Article  Google Scholar 

  • Prochnik SE, Umen U, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson R, Darzins A, Posewitz M (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  Google Scholar 

  • Rigano C, Fuggi A, Rigano V, Aliotta G (1976) Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Arch Microbiol 107:133–138

    Article  CAS  Google Scholar 

  • Rigano C, Aliotta G, Rigano V et al (1977) Heterotrophic growth patterns in the unicellular alga Cyanidium caldarium. A possible role for threonine dehydrase. Arch Microbiol 113:191–196

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  • Ryu B-G, Kim K, Kim J, Han J-I, Yang J-W (2013) Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour Technol 129:351–359

    Article  CAS  Google Scholar 

  • Sauer N (1986) Hexose transport deficient mutants of Chlorella vulgaris. Planta 168:139–144

    Article  CAS  Google Scholar 

  • Schilling S, Oesterhelt C (2007) Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga. Biochem J 406:325–331

    Article  CAS  Google Scholar 

  • Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  CAS  Google Scholar 

  • Shi X-M, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Li Y-T et al (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Syrett P, Merrett M, Bocks S (1963) Enzymes of the glyoxylate cycle in Chlorella vulgaris. J Exp Bot 14:249

    Article  CAS  Google Scholar 

  • Tanner W (2000) Chlorella hexose/H+-symporters. Int Rev Cytol 200:101–141

    Article  CAS  Google Scholar 

  • Tuchman N, Schollett M, Steven T, Geddes P (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 1:38–43

    Google Scholar 

  • Van Baalam C, Pulish W (1973) Heterotrophic growth of the microalgae. Crit Rev Microbiol 2:229–254

    Article  Google Scholar 

  • Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093

    Article  Google Scholar 

  • Wasmund N (1987) Live algae in deep sediment layers. Int Rev der Gesamten Hydrobiol 4:589–597

    Google Scholar 

  • Wei A, Zhang X, Wei D et al (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383–1389

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2001) A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Appl Microbiol Biotechnol 57:316–322

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28

    Article  CAS  Google Scholar 

  • Wen Z, Jiang Y, Chen F (2002) High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development. Process Biochem 37:1447–1453

    Article  CAS  Google Scholar 

  • Wood A, Aurikko J, Kelly D (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanoltrophy? FEMS Microbiol Rev 28:335–352

    Article  CAS  Google Scholar 

  • Wu Z-Y, Shi C-L, Shi X-M (2007) Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  Google Scholar 

  • Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microbial cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  Google Scholar 

  • Yoon H, Hackett J, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    Article  CAS  Google Scholar 

  • Yoon H, Hackett J, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  Google Scholar 

  • Zaslavskaia L, Lippmeier J, Shih C et al (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  CAS  Google Scholar 

  • Zhang C, Jeanjean R, Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol Lett 161:285–292

    Article  CAS  Google Scholar 

  • Zhang Q, Gradinger R, Zhou Q (2003) Competition within the marine microalgae over the polar dark period in the Greenland Sea of high Arctic. Acta Oceanol Sin 22:233–242

    Google Scholar 

Download references

Acknowledgments

We thank Shirley Ainsworth for providing support for this review. This work was supported by the Universidad Nacional Autónoma de México (UNAM), Grant DGAPA/PAPIIT/UNAM IT200312, and Aeropuertos y Servicios Auxiliares—Consejo Nacional de Ciencia y Tecnología (ASA-CONACyT) Grant 2014-244329. DMS held a scholarship (Number 170123) from CONACyT-México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Sánchez, D., Martinez-Rodriguez, O.A., Kyndt, J. et al. Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 31, 1–9 (2015). https://doi.org/10.1007/s11274-014-1773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1773-2

Keywords

Navigation