Skip to main content

Third-Generation Biofuel: Algal Biofuels as a Sustainable Energy Source

  • Chapter
  • First Online:
Biofuels: Greenhouse Gas Mitigation and Global Warming

Abstract

Algal biofuels are third-generation biofuels which do not require agricultural land and potable water resources. Recently, culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. Algae can grow in brackish, marine, and wastewater mostly unsuitable for cultivating of all of the traditional crops and a variety of climatic conditions. It can also grow in municipal, animal, and even industrial runoff and help in their purification. Autotrophic algae grow through photosynthesis – by converting plentiful available sunlight, CO2, and available nutrients, including nitrogen, potash and phosphorous, magnesium, iron, calcium, and sodium into the vital biomaterial known as the green biomass. Most algae can grow or can be made to grow in the dark using fermentable simple sugars and the complex starch as “heterotrophic” growth or even in combine of both growth modes through the process called the “mixotrophic” growth. Attempts are made in this review to list some of the recent advances on algal biofuel production theory and practice citing various examples of establishments. The authors acknowledge the works of various companies cited in his paper with purely academic intention of providing wider perspective to readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa MK, K Asaoka M Atsumi T Sakou (2007) Seaweed bioethanol production in Japan-the ocean sunrise project. In: IEEE Conference Proceedings, Vancouver, 4: pp 1e5

    Google Scholar 

  • Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32(7):1283–1300

    Article  Google Scholar 

  • Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31(9):789–793

    Article  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Article  Google Scholar 

  • El-Dalatony MM, Kurade MB, Abou-shanab RAI, Kim H, Salama E, Jeon B (2016) Bioresource technology long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol 219:98–105

    Article  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235

    Article  Google Scholar 

  • Gallego LJ, Escobar A, Penuela M, Pena JD, Rios LA (2015) King grass: promising material for the production of second generation butanol. Fuel 143:399–403

    Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energ Rev 14:842–848

    Article  Google Scholar 

  • Granata T (2017) Dependency of microalgal production on biomass and the relationship to yield and bioreactor scale-up for biofuels: a statistical analysis of 60+ years of algal bioreactor data. Bioenergy Res 10:267

    Article  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Royal Soc Interface 7:703–726

    Article  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  Google Scholar 

  • Hallmann A (2015) Algae biotechnology – green cell-factories on the rise. Curr Biotechnol 4(389–415):389

    Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31(10):3345–3348

    Article  Google Scholar 

  • Hoekman SK, Brocha A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169

    Article  Google Scholar 

  • Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249e254

    Article  Google Scholar 

  • Hu Q et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  Google Scholar 

  • Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139

    Article  Google Scholar 

  • Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29(4):346–351

    Article  Google Scholar 

  • Huo Y-X, Wernick DG, Liao JC (2014) Total nitrogen neutral biofuel production. Curr Opin Biotechnol 23(3):406–413

    Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182e190

    Article  Google Scholar 

  • Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol Bioeng 110(9):2317–2322

    Article  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29:124–141

    Article  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  Google Scholar 

  • Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 92:70–75

    Article  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2010a) Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res and Des 88:988–996

    Article  Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010b) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  Google Scholar 

  • Lee A, Lewis D, Ashman P (2012) Disruption of microalgal cells for the extraction of lipids: process and specific energy requirements. Biomass Bioenergy 46:89–101

    Google Scholar 

  • Lee JY, Li P, Lee J, Ryu HJ, Oh K (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technology 127:119e125

    Google Scholar 

  • Liu X, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

    Article  Google Scholar 

  • Los DA, Mironov KS (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5:554–567

    Article  Google Scholar 

  • Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29:542–549

    Article  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  Google Scholar 

  • Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44:3932–3939

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Muniraj IK, Xiao LW, Hu ZH, Zhan XM, Shi JH (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47:3477–3483

    Article  Google Scholar 

  • Muniraj IK, Uthandi SK, Hu Z, Xiao L, Zhan X (2015) Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environ Technol Rev 4(1):1–16

    Article  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  Google Scholar 

  • Potvin G, Zhang ZS (2010) Strategies for high level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918

    Google Scholar 

  • Quintana N et al (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  Google Scholar 

  • Razeghifard R (2013) Algal biofuels. Photosynth Res 117(1–3):207–219

    Article  Google Scholar 

  • Rizza LS, Smachetti MES, Nascimento MD, Salerno GL, Curatti L (2017) Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res 22:140–147

    Article  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  Google Scholar 

  • Ruffing AM, Jones HDT (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199

    Article  Google Scholar 

  • Sarsekeyeva FK, Usserbaeva AA, Zayadan BK, Mironov KS, Sidorov RA, Kozlova AY, Kupriyanova EV, Sinetova MA, Los DA (2014) Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition. Adv Microbiol 4:1033–1043

    Article  Google Scholar 

  • Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA (2015) Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynth Res 125(1–2):329–340

    Article  Google Scholar 

  • Sheridan C (2013) Big oil turns on biofuels. Nat Biotechnol 31(10):870–873

    Google Scholar 

  • Shukla R, Kumar M, Chakraborty S, Gupta R, Kumar S, Sahoo D, Kuhad RC (2016) Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol 220:584–589

    Article  Google Scholar 

  • Singh RSA, Pandey E, Gnansounou E, (2016) Biofuels. Production and future perspective. CRC Press, p 558

    Google Scholar 

  • Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol 24:341–348

    Article  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  Google Scholar 

  • Subba Rao PV, Mantri VA (2006) Indian seaweed resources and sustainable utilization: scenario at the dawn of a new century. Curr Sci 91:164–174

    Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68:269–273

    Article  Google Scholar 

  • Tan IS, Lee KT (2016) Comparison of different process strategies for bioethanol production from Eucheuma cottonii: an economic study. Bioresour Technol 199:336–346

    Article  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48:251–259

    Article  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30(5):1171–1184

    Article  Google Scholar 

  • Yanagisawa M, Ariga NO, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46:2111–2116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gajraj, R.S., Singh, G.P., Kumar, A. (2018). Third-Generation Biofuel: Algal Biofuels as a Sustainable Energy Source. In: Kumar, A., Ogita, S., Yau, YY. (eds) Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3763-1_17

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3761-7

  • Online ISBN: 978-81-322-3763-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics