Skip to main content

Advertisement

Log in

Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Stratospheric ozone depletion has led to increasing levels of ultraviolet radiation (UVR) reaching the Earth’s surface. Elevated UVR, particularly in the high latitudes, potentially causes shifts in species composition and diversity in various ecosystems, consequently altering the biogeochemical cycles. Microalgae are not only ecologically important as primary producers, generating atmospheric oxygen and sequestering carbon dioxide; they are also economically important as sources of health supplement, pigments, biofuel and others. Changes to the size and composition of algal communities can lead to profound impacts to the fisheries productivity. There have been studies on the effects of UVR on the growth, photosynthesis and biochemical composition of microalgae, but limited information on the underlying molecular mechanisms involved in the response and adaptation of microalgae to UVR is available. We employed RNA-seq to quantitatively evaluate and compare the transcriptomes of an Antarctic freshwater Chlorella sp. grown at ambient versus elevated UVR conditions. Differentially expressed genes, relating to the fatty acid degradation, amino acid metabolism, starch and sucrose metabolism and peroxisome pathways, suggest conservation and remobilisation of energy resources, maintenance of newly synthesised protein and inhibition of protein degradation, ensuring membrane lipid homeostasis and regulating antioxidative mechanisms, as the acclimation strategies in response to UVR. These findings expand current knowledge of gene expression in polar Chlorella sp. in response to short-term UVR. Studies on stress tolerance mechanisms are important to understand and predict future impacts of climate change. Genes, proteins and pathways identified from these adaptable polar algae have potentially far-reaching biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723

    Article  Google Scholar 

  • Alex D, Bach TJ, Chye ML (2000) Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive. Plant J 22:415–426

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Arts M, Rai H (1997) Effects of enhanced ultraviolet-B radiation on the production of lipid, polysaccharide and protein in three freshwater algal species. Freshw Biol 38:597–610

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Beardall J, Stojkovic S (2006) Microalgae under global environmental change: implications for growth and productivity, populations and trophic flow. ScienceAsia 32(Suppl 1):1–10

    Article  Google Scholar 

  • Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Binder S (2010) Branched-chain amino acid metabolism in Arabidopsis thaliana. The Arabidopsis Book:e0137. doi:10.1199/tab.0137

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Slamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, Hogan DA, Housman DE (2013) Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mol Biol 14:25. doi:10.1186/1471-2199-14-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:211402120

    Article  Google Scholar 

  • Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U (1998) High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J 15:583–591

    Article  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136:207S–211S

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou PY, Fasman GD (1973) Structural and functional role of leucine residues in proteins. J Mol Biol 74:263–281

    Article  CAS  PubMed  Google Scholar 

  • Cruces E, Huovinen P, Gómez I (2012) Stress proteins and auxiliary anti-stress compounds in intertidal macroalgae. Lat Am J Aquat Res 40:822–834

    Article  Google Scholar 

  • Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S et al (2015) Ensembl 2015. Nucl Acids Res 43:D662–D669

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Döhler G (1991) Uptake of 15N-ammonium and 15N-nitrate by Antarctic diatoms: dependence on the daytime and effect of UV-B radiation. Biochem Physiol Pfl 187:347–355

    Article  Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microb 78:2660–2668

    Article  CAS  Google Scholar 

  • Estevez MS, Malanga G, Puntarulo S (2001) UV-B effects on Antarctic Chlorella sp cells. J Photochem Photobiol B 62:19–25

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Cui Y, Huang J, Wang W, Yin W, Hu Z, Li Y (2012) Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition. PLoS One 7:e50414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder ME, Hoffmann GE (1999) Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Freund HR, Hanani M (2002) The metabolic role of branched-chain amino acids. Nutrition 18:287–288

    Article  PubMed  Google Scholar 

  • Gao K, Wu Y, Li G, Wu H, Villafane VE, Helbling EW (2007) Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol 144:54–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez LD, Baud S, Gilday A, Li Y, Graham IA (2006) Delayed embryo development in the Arabidopsis trehalose-6-phosphate synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J 46:69–84

    Article  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S 41:95–98

    CAS  Google Scholar 

  • Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC (2016) De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.) BMC Genomics 17:66. doi:10.1186/s12864-016-2368-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodač L, Hallmann C, Spitzer K, Elster J, Faßhauer F, Brinkmann N, Lepka D, Diwan V, Friedl T (2016) Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol 92. doi:10.1093/femsec/fiw122

  • Holm-Hansen O, Helbling EW, Lubin D (1993) Ultraviolet radiation in Antarctica: inhibition of primary production. Photochem Photobiol 58:567–570

    Article  CAS  Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207

    Article  PubMed  Google Scholar 

  • Hu YC, Kang CK, Tang CH, Lee TH (2015) Transcriptomic analysis of metabolic pathways in milkfish that respond to salinity and temperature changes. PLoS One 10:e0134959

    Article  PubMed  PubMed Central  Google Scholar 

  • Janknegt PJ, De Graaff CM, Van De Poll WH, Visser RJW, Rijstenbil JW, Buma AGJ (2009) Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation. Eur J Phycol 44:525–539

    Article  CAS  Google Scholar 

  • Jobb G, Von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozik A, Matvienko M, Kozik I, Van Leeuwen H, Van Deynze A, Michelmore R (2008) Eukaryotic ultra conserved orthologs and estimation of gene capture in EST libraries (abstract). Plant and Animal Genomes Conference 16:P6

    Google Scholar 

  • Kültz L (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Ledford HK, Niyogi KK (2005) Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1045

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang W, Wang Z, Lin X, Zhang F, Yang L (2016) De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp. J Appl Phycol 28:1649–1656

    Article  CAS  Google Scholar 

  • Liu CC, Chen CM, Yang CH, Pai TW, Lim PE, Phang SM, Poong SW, Lee KK (2016a) Biological pathway analysis for de novo transcriptomes through multiple reference species selections. Proceeding of 2016 I.E. 10th International Conference on Complex, Intelligent and Software Intensive Systems, Fukuoka, Japan. IEEE Computer Society, Piscataway NJ, pp.210–214.

  • Liu C, Wang X, Wang X, Sun C (2016b) Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 20:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chi X, Yang Q, Li Z, Liu S, Gan Q, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229–237

    Article  CAS  PubMed  Google Scholar 

  • Lyon B, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3:56–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Madronich S, McKenzie RL, Björn L, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B 46:5–19

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl Acids Res 41:D377–D386

    Article  CAS  PubMed  Google Scholar 

  • Midya S, Dey S, Chakraborty B (2012) Variation of the total ozone column during tropical cyclones over the Bay of Bengal and the Arabian Sea. Meteorog Atmos Phys 117:63–71

    Article  Google Scholar 

  • Monirujjaman M, Ferdouse A (2014) Metabolic and physiological roles of branched-chain amino acids. Adv Mol Biol. doi:10.1155/2014/364976

    Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, London, pp 7–24

    Google Scholar 

  • Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  Google Scholar 

  • Ouyang LL, Chen SH, Li Y, Zhou ZG (2013) Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics 14:396. doi:10.1186/1471-2164-14-396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  • Phang SM, Chu WL (2004) The University of Malaya Algae Culture Collection (UMACC) and potential applications of a unique Chlorella from the collection. Jap J Phycol 52:221–224

    Google Scholar 

  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal β-oxidation—a metabolic pathway with multiple functions. Biochim Biophys Acta—Molec Cell Res 1763:1413–1426

    Article  CAS  Google Scholar 

  • Poong SW, Lim PE, Lai JWS, Phang SM (2017) Optimization of high quality total RNA isolation from the microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) for next-generation sequencing. Phycol Res. doi:10.1111/pre.12165

    Google Scholar 

  • Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM et al (2014) RefSeq: an update on mammalian reference sequences. Nucl Acids Res 42:D756–D763

    Article  CAS  PubMed  Google Scholar 

  • Quigg A, Beardall J (2003) Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant Cell Environ 26:693–703

    Article  CAS  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148. doi:10.1186/1471-2164-12-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas C, Navarro N, Huovinen P, Gómez I (2016) Photosynthetic UV stress tolerance of the Antarctic snow alga Chlorella sp. modified by enhanced temperature? Rev Chil Hist Nat 89:7

    Article  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. doi:10.1186/gb-2010-11-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Salawitch RJ (1998) Ozone depletion: a greenhouse warming connection. Nature 392:551–552

    Article  CAS  Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A (2008) Photosynthetic electron flow affects H2O2 signalling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Wajapeyee N, Yadav V, Singh P (2003) Stress-induced changes in peptidyl-prolyl cis-trans isomerase activity of Sorghum bicolor seedlings. Biol Plantarum 47:367–371

    Article  CAS  Google Scholar 

  • Shelly K, Heraud P, Beardall J (2003) Interactive effects of PAR and UV-B radiation on PSII electron transport in the marine alga Dunaliella tertiolecta (Chlorophyceae). J Phycol 39:509–512

    Article  CAS  Google Scholar 

  • Simon DF, Domingos RF, Hauser C, Hutchins CM, Zerges W, Wilkinson KJ (2013) Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 79:4774–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wang W, Shen J, Xu N (2014) Transcriptome sequencing of the marine microalga, Chlorella pyrenoidosa (Chlorophyta), and analysis of carbonic anhydrase expression under salt stress. Bot Mar 57:403–412

    Article  CAS  Google Scholar 

  • Svanfeldt K, Lundqvist L, Rabinowitz C, Sköld HN, Rinkevich B (2014) Repair of UV-induced DNA damage in shallow water colonial marine species. J Exp Mar Biol Ecol 452:40–46

    Article  CAS  Google Scholar 

  • Talarski A, Manning SR, La Claire IIJW (2016) Transcriptome analysis of the euryhaline alga, Prymnesium parvum (Prymnesiophyceae): effects of salinity on differential gene expression. Phycologia 55:33–44

    Article  Google Scholar 

  • Tanabe AS (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol Ecol Notes 7:962–964

    Article  CAS  Google Scholar 

  • Tasi YC, Chao AHC, Chung CL, Liu XY, Lin YM, Liao PC, Pan HS, Chiang HS, Kuo PL, Lin YH (2013) Characterization of 3-hydroxyisobutyrate dehydrogenase, HIBADH, as a sperm-motility marker. J Assist Reprod Gen 30:505–512

    Article  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl Acids Res 29:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297

    Article  CAS  Google Scholar 

  • Vijay N, Poelstra JW, Künstner A, Wolf JB (2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification: a comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 22:620–634

    Article  CAS  PubMed  Google Scholar 

  • Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12

    Article  CAS  Google Scholar 

  • Wong CY (2011) Comparing the growth, fatty acid profiles and superoxide dismutase activity of Antarctic, tropical and temperate microalgae subjected to ultraviolet radiation (UVR) stress. PhD thesis, University of Malaya, Kuala Lumpur

  • Wong CY, Chu WL, Marchant H, Phang SM (2007) Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress. J Appl Phycol 19:689–699

    Article  Google Scholar 

  • Wong CY, Teoh ML, Phang SM, Lim PE, Beardall J (2015) Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair. PLoS One 10:e0139469

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jeannette Wai-Shan Lai for her help with the physiological data. This study was supported by a Higher Institution Centre of Excellence (HICoE) grant (IOES-2014H) from the Ministry of Higher Education, Malaysia; a University of Malaya Research Grant (RP002C-13SUS); the Antarctic Flagship Project (FP0712E012, PV002-2015) by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia; and the Ministry of Science and Technology, Taiwan, R.O.C. (MOST 104-2627-B-019-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phaik-Eem Lim or Tun-Wen Pai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poong, SW., Lim, PE., Phang, SM. et al. Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress. J Appl Phycol 30, 87–99 (2018). https://doi.org/10.1007/s10811-017-1124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1124-4

Keywords

Navigation