Skip to main content

Deciphering and Harnessing Plant Microbiomes: Detangling the Patterns and Process—A Clean, Green Road to Sustainable Agriculture

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

Plant microbiome refers to the diverse microbial counterparts that are associated with plants and plays a crucial role in host biology, ecology, and evolution. Though plant microbiomes have history of co-evolution with the host plants, certain members other than the core-microbiomes are shaped by various factors including plant genotype, plant age, associated host plant tissue or organ, other interacting microbial associates, arthropods, various environmental factors such as soil physio-chemistry, and human inference such as crop domestication, intensive and extensive cultivation, and use of agrochemicals especially in case of agro-ecosystems. Classical knowledge based on microbial culturing techniques and biochemical analysis prejudiced that when a plant interacts with a microbial partner the relationship could be detrimental as with pathogen interaction or promote plant growth in case of symbiotic associations. Advances in molecular techniques such as culture-independent approaches, next-generation sequencing, and high-throughput screening methods helped us to understand the robust nature of plant-associated microbiomes and their crucial role in plant fitness, environmental protection, and human health. This chapter gives a glimpse of patterns of plant microbiome associations and their importance in plant health and emphasise the importance of both basic and applied research which will enlighten us with deeper insights on the plant microbiomes. This will help us identify economical, eco-friendly, and effective strategies of manipulating the plant-associated microbiomes which can open up new avenues in maintaining plant health and ecological fitness and sustain crop production in a clean green way preserving the nature’s serenity and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanda-Nkpwatt D, Tschiersch MM, Boettner JM et al (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Abdelfattah A, Wisniewski M, Droby S et al (2016) Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hortic Res 3:16047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahn TS, Ka JO, Lee GH et al (2007) Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J Microbiol Biotechnol 17:52–57

    PubMed  Google Scholar 

  • Aleklett K, Hart M, Shade A et al (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266

    Article  Google Scholar 

  • Alvarez-Loayza P, White JFJ, Torres MS et al (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 6:e16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Perez S, Herrera CM (2013) Composition, richness and non-random assembly of culturable bacterial–microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 83:685–699

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Perez S, Lievens B, Fukami T (2019) Yeast–bacterium interactions: the next frontier in nectar research. Trends Plant Sci 24(5):393–401. https://doi.org/10.1016/j.tplants.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    Article  CAS  Google Scholar 

  • Ardanov P, Sessitsch A, Haggman H (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:e46802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armanhi JSL, de Souza RSC, Damasceno NB et al (2018) A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front Plant Sci 8:2191. https://doi.org/10.3389/fpls.2017.02191

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma S (2020) Microbe-based inoculants: role in next green revolution: environmental concerns and sustainable development. Springer, Singapore, pp 191–246

    Google Scholar 

  • Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behaviour. New Phytol 198:264–273

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Muller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Google Scholar 

  • Baldotto LEB, Olivares FL, Bressan-Smith R (2011) Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets “Vitoria”. Braz J Microbiol 42:114–125

    Article  Google Scholar 

  • Barret M, Briand M, Bonneau S et al (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barret M, Guimbaud J-F, Darrasse A, Jacques M-A (2016) Plant microbiota affects seed transmission of phytopathogenic micro-organisms. Mol Plant Pathol 17:791–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Beattie GA (2015) Microbiomes: curating communities from plants. Nature 528:340–341

    Article  CAS  PubMed  Google Scholar 

  • Beck JJ, Vannette RL (2017) Harnessing insect–microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Raaijmakers JM (2018) Saving seed microbiomes. ISME J 12:1167–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlanas C, Berbegal M, Elena G (2019) The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol 10:1142. https://doi.org/10.3389/fmicb.2019.01142

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard F, Sache I, Suffert F et al (2013) The development of a foliar fungal pathogen does react to leaf temperature. New Phytol 198:232–240

    Article  PubMed  Google Scholar 

  • Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Systemat 46:305–325

    Article  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Munch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403. https://doi.org/10.1016/j.chom.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Zeisler V, Yokota K et al (2014) The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ Microbiol 16:2086–2098

    Article  CAS  PubMed  Google Scholar 

  • Chen QL, Cui HL, Su JQ et al (2019) Antibiotic resistomes in plant microbiomes. Trends Plant Sci 24:530–541. https://doi.org/10.1016/j.tplants.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai C, Balachandar D, Sundaram SP (2009) Characterization of 1-aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. World J Microbiol Biotechnol 25:1403–1411

    Article  CAS  Google Scholar 

  • Coince A, Cordier T, Lengelle J et al (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A et al (2008) Endophytic colonization of Vitisvinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Cooper RM, Tsimring L, Hasty J (2017) Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. elife 6:e25950

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordier T, Robin C, Capdevielle X et al (2012) The composition of phyllosphere fungal assemblages of European beech (Fagussyl vatica) varies significantly along an elevation gradient. New Phytol 196:510–519

    Article  PubMed  Google Scholar 

  • Cosme M, Lu J, Erb M et al (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211:1065–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darlison J, Mogren L, Rosberg AK et al (2019) Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia) Alsanius. Sci Total Environ 675:501–512

    Article  CAS  PubMed  Google Scholar 

  • De Costa DM, Samarasinghe SST, Dias HRD et al (2008) Control of rice sheath blight by phyllosphere epiphytic microbial antagonists. Phytoparasitica 36:52–65

    Article  Google Scholar 

  • de Souza RSC, Okura VK, Armanhi JSL et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vega C, Herrera CM, Johnson SD (2009) Yeasts in floral nectar of some South African plants: quantification and associations with pollinator type and sugar concentration. S Afr J Bot 75:798–806

    Article  Google Scholar 

  • Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan HK, Leveau JHJ (2015) Artificial surfaces in phyllosphere microbiology. Phytopathology 105:1036–1042

    Article  PubMed  Google Scholar 

  • Droby S, Wisniewski M (2018) The fruit microbiome: a new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol Technol 140:107–112

    Article  CAS  Google Scholar 

  • Duffy B, Voglesanger J, Schoch B et al (2006) Biocontrol of Erwinia amylovora using a commercial yeast strain mixture. Acta Hortic 704:363–366

    Article  Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32:9–15

    Google Scholar 

  • Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48

    Article  CAS  PubMed  Google Scholar 

  • Faure D, Simon JC, Heulin T (2018) Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. New Phytol 132:1–4

    Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL et al (2018) Trichoderma- based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank AC, Guzman JPS, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5:70

    Article  PubMed Central  CAS  Google Scholar 

  • Fridman S, Gerchman Y, Halpern M et al (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4:97–104

    Article  PubMed  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS et al (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft Genome Sequence of Halolamina pelagica CDK2 isolated from natural Salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2

    Google Scholar 

  • Geisen S, Kostenko O, Cnossen MC et al (2017) Seed and root endophytic fungi in a range expanding and a related plant species. Front Microbiol 8:1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AP, Gauthier M-PL, Vannette RL et al (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS One 9:e86494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groenewald M, Robert V, Smith MT (2011) Five novel Wickerhamomyces and Metschnikowia related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int J Syst Evol Microbiol 61:2015–2022

    Article  CAS  PubMed  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R et al (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek S, Berge G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Doni F, Khadka RB et al (2019) Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J Appl Microbiol. https://doi.org/10.1111/jam.14368

  • Herrera CM, de Vega C, Canto A et al (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Google Scholar 

  • Hume DE, Ryan GD, Gibert A et al (2016) Epichloe fungal endophytes for grassland ecosystems. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 19. Springer International Publishing, Cham, pp 233–305

    Chapter  Google Scholar 

  • Humphrey PT, Nguyen TT, Villalobos MM et al (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol 23:1497–1515

    Article  CAS  PubMed  Google Scholar 

  • Hunter PJ, Pink DAC, Bending GD (2015) Cultivar-level genotype differences influence diversity and com-position of lettuce (Lactuca sp.) phyllosphere fungal communities. Fungal Ecol 17:183–186

    Article  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilori MO, Amund OO, Ezeani CK et al (2006) Occurrence and growth potentials of hydrocarbon degrading bacteria on the phylloplane of some tropical plants. Afr J Biotechnol 5:542–545

    CAS  Google Scholar 

  • Inacio J, Ludwig W, Spencer-Martins I et al (2010) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71:61–72

    Article  CAS  PubMed  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Google Scholar 

  • Jimenez-Martınez ES, Bosque-Perez NA, Berger PH et al (2004) Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 33:1207–1216

    Article  Google Scholar 

  • Jindamorakot S, Limtong S, Yongmanitchai W et al (2008) Candida ratchasimensis sp. nov. and Candida khaoyaiensis sp. nov., two anamorphic yeast species isolated from flowers in Thailand. FEMS Yeast Res 8:955–960

    Article  CAS  PubMed  Google Scholar 

  • Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE (1993) Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms. Phytopathology 83:479–484

    Article  Google Scholar 

  • Johnston-Monje D, Lundberg DS, Lazarovits G et al (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355

    Article  CAS  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Google Scholar 

  • Johnston-Monje D, Raizada MN (2013) Surveying diverse Zea seed for populations of bacterial endophytes. In: Molecular microbial ecology of the rhizosphere. John Wiley & Sons Inc, Hoboken, NJ, pp 445–455

    Google Scholar 

  • Jones K (1970) Nitrogen fixation in the phyllosphere of the douglas fir, Pseudotsuga douglasii. Ann Bot 34:239–244

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyper diverse fungal communities in temperate Quercusma crocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Junker RR, Loewel C, Gross R et al (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918–924

    Article  CAS  PubMed  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Kumar V et al (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

    Chapter  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F et al (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric 33:173–179

    CAS  Google Scholar 

  • Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311

    Article  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A 111:13715–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy RK, Nagarajaprakash R, Pathma J (2020) Therapeutic potency of bioactive compounds from fungal endophytes. In: Gelhot P, Panwar JS (eds) New and future developments in microbial bioetechnology and bioengineering—recent advances in application of Fungi and fungal metabolites: applications in healthcare. Elsevier, Amsterdam

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Klaedtke S, Jacques MA, Raggi L et al (2016) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Koskella B (2013) Phage-mediated selection on microbiota of a long-lived host. Curr Biol 23:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020a) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Devi R, Yadav N, Halder SK et al (2020b) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization and biotechnological implication for alleviations of abiotic stress. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspective. Elsevier, Amsterdam, pp 177–202. https://doi.org/10.1016/B978-0-12-820526-6.00012-9

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020c) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolor L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020d) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sec B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020e) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020f) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Krimm U, Abanda-Nkpwatt D, Schwab W et al (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol Ecol 53:483–492

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A et al (2019a) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar M, Saxena R, Rai PK, Tomar RS, Yadav N, Rana KL et al (2019b) Genetic diversity of methylotrophic yeast and their impact on environments. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through Fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 53–71. https://doi.org/10.1007/978-3-030-25506-0_3

    Chapter  Google Scholar 

  • Kwak M-J, Kong HG, Choi K (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36(11):1100–1116

    Article  CAS  Google Scholar 

  • Last FT, Deighton FC (1965) The non-parasitic microflora on the surfaces of living leaves. Trans Br Mycol Soc 48:83–99

    Article  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS et al (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratiamarcescens NBRI1213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Leben C (1965) Epiphytic microorganisms in relation to plant disease. Annu Rev Phytopathol 3:209–230

    Article  Google Scholar 

  • Leck MA, Parker VT, Simpson R (2008) Seedling ecology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lenaerts M, Goelen T, Paulussen C et al (2017) Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 31:2061–2069

    Article  Google Scholar 

  • Leveau JHJ (2006) Microbial communities in the phyllosphere. In: Riederer M, Mueller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 334–367

    Chapter  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Links MG, Demeke T, Grafenhan T et al (2014) Simultaneous profiling of seed associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol 202:542–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zuo S, Xu L et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Zou YY et al (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda 108) at different growth stages. Ann Microbiol 63:71–79

    Article  Google Scholar 

  • Maccagnani B, Giacomello F, Fanti M et al (2009) Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers. BioControl 54:123–133

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M et al (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Maliti CM, Basile DV, Corpe WA (2005) Effects of Methylobacterium spp. strains on rice Oryza sativa L. callus induction, plantlet regeneration, and seedlings growth in vitro. J Torrey Bot Soc 132:355–367

    Article  Google Scholar 

  • Malyan SK, Singh S, Bachheti A, Chahar M, Sah MK, Narender et al. (2020) Cyanobacteria: a perspective paradigm for agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam pp 215–224. https://doi.org/10.1016/B978-0-12-820526-6.00014-2

  • Mann RS, Ali JG, Hermann SL et al (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8:e1002610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulis L, Fester R (eds) (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  • Mason CJ, Pfammatter JA, Holeski LM et al (2015) Foliar bacterial communities of trembling aspen in a common garden. Can J Microbiol 61:143–149

    Article  CAS  PubMed  Google Scholar 

  • McCartney HA, Fitt BDL (1998) Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns. In: Jones DG (ed) The epidemiology of plant diseases. Springer, Dordrecht, pp 138–160

    Chapter  Google Scholar 

  • Mechaber WL, Marshall DB, Mechabers RA et al (1996) Mapping leaf surface landscapes. Proc Natl Acad Sci U S A 93:4600–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R et al (2017) New approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:1–11

    Article  Google Scholar 

  • Mohanram S, Kumar P (2019) Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann Microbiol 69:307–320

    Article  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Functional annotation and future challenges, vol 2. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Morris CE (2002) Phyllosphere. eLS. https://doi.org/10.1038/npg.els.0000400

  • Morris CE, Conen F, Huffman JA et al (2014) Bio precipitation: a feed back cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Change Biol 20:341–351

    Article  Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104

    Article  CAS  PubMed  Google Scholar 

  • Mwajita M, Murage H, Tani A et al (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2:606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngugi HK, Scherm H (2006) Biology of flower-infecting fungi. Annu Rev Phytopathol 44:261–282

    Article  CAS  PubMed  Google Scholar 

  • Oosten V, Bodenhausen VR, Reymond N et al (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant-Microbe Interact 21:919–930

    Google Scholar 

  • Ostman O, Drakare S, Kritzberg ES et al (2010) Regional invariance among microbial communities. Ecol Lett 13:118–127

    Article  PubMed  Google Scholar 

  • Ottesen AR, Gonzalez Pena A, White JR et al (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK et al (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  PubMed  Google Scholar 

  • Parret AH, De Mot R (2002) Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends Microbiol 10:107–112

    Google Scholar 

  • Pathma J, Ayyadurai N, Sakthivel N (2010a) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. J Microbiol 48:715–727

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Kamaraj Kennedy R, Sakthivel N (2010b) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agro-biology: plant growth. Springer-Verlag, Berlin Heidelberg, pp 77–105

    Google Scholar 

  • Pathma J, Rahul GR, Kamaraj Kennedy R, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Control 25:165–181

    Google Scholar 

  • Pathma J, Raman G, Kennedy RK et al (2019a) Recent advances in plant-microbe interaction. In: Sharma SG, Sharma M, Sharma NR (eds) Microcosm: microbial diversity, interventions and scope. Springer, Singapore

    Google Scholar 

  • Pathma J, Raman G, Sakthivel N (2019b) Microbiome of rhizospheric soil and vermicompost and their applications in soil fertility, pest and pathogen management for sustainable agriculture. In: Panpatte DG, Jhala YK (eds) Soil fertility management for sustainable development. Springer, Singapore, pp 189–210

    Chapter  Google Scholar 

  • Patz S, Witzel K, Ann-Christin S et al (2019) Culture dependent and independent analysis of potential probiotic bacterial genera and species present in the phyllosphere of raw eaten produce. Int J Mol Sci 20:3661

    Article  CAS  PubMed Central  Google Scholar 

  • Penuelas J, Rico L, Ogaya R et al (2012) Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercusilexin a mixed Mediterranean forest. Plant Biol 14:565–575

    Article  CAS  PubMed  Google Scholar 

  • Perez LI, Gundel PE, Omacini M (2016) Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant Soil 405:289–298

    Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778

    Article  CAS  PubMed  Google Scholar 

  • Pirlak L, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Pusey PL, Stockwell VO, Mazzola M (2009) Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology 99:571–581

    Article  PubMed  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to their phytoremediation potential for oily desert areas. Int J Phytoremediation 7:19–32

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01429-y

  • Rana KL, Kour D, Kaur T, Devi R, Yadav N, Rastegari AA et al (2020b) Biodiversity, phylogenetic profiling and mechanisms of colonization of seed microbiomes. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 99–125. https://doi.org/10.1016/B978-0-12-820526-6.00007-5

    Chapter  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav N, Subrahmanyam G et al (2020c) Biotechnological applications of seed microbiomes for sustainable agriculture and environments. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 127–143. https://doi.org/10.1016/B978-0-12-820526-6.00008-7

    Chapter  Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020d) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-020-01168-0

  • Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Recep K, Fikrettin S, Erkol D et al (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198

    Google Scholar 

  • Reinhold-Hurek B, Bunger W, Burbano CS et al (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403

    Article  CAS  PubMed  Google Scholar 

  • Rering CC, Beck JJ, Hall GW et al (2018) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220:750–759

    Article  CAS  PubMed  Google Scholar 

  • Rezki S, Campion C, Preveaux A et al (2016) Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms. Peer J 4:e1923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson LL, Bowers MD, Irwin RE et al (2016) Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology 97:325–337

    Article  PubMed  Google Scholar 

  • Rico L, Ogaya R, Terradas J et al (2014) Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol 16:586–593

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM et al (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rosa CA, Pagnocca FC, Lachance M-A et al (2007) Candida flosculorum sp. nov. and Candida floris sp. nov., two yeast species associated with tropical flowers. Int J Syst Evol Microbiol 57:2970–2974

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ruinen J (1965) The phyllosphere. III. Nitrogen fixation in the phyllosphere. Plant Soil 22:375–394

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rybakova D, Mancinelli R, Wikstrom M et al (2017) The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Hu CH, Locy RD et al (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Samuni-Blank M, Izhaki I, Laviad S et al (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS One 9:e99107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandhu DK, Waraich MK (1985) Yeasts associated with pollinating bees and flower nectar. Microb Ecol 11:51–58

    Article  CAS  PubMed  Google Scholar 

  • Senga RA, Terrazas SA, Balbirnie K et al (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094

    Article  Google Scholar 

  • Sergaki C, Lagunas B, Lidbury I et al (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci 9:1205

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Brader G, Pfaffenbichler N et al (2018) The contribution of plant microbiota to economy growth. Microb Biotechnol 11:1–5

    Article  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Setati ME, Jacobson D, Andong U-C et al (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS One 7:e52609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade MM, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. MBio 4. https://doi.org/10.1128/mBio.00602-12

  • Shaharoona B, Bibi R, Arshad M et al (2006) 1-Aminocylopropane-1-carboxylate (ACC) deaminase rhizobacteria extenuates ACC-induced classical triple response in etiolated pea seedlings. Pak J Bot 38:1491–1499

    Google Scholar 

  • Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root-microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://doi.org/10.1016/B978-0-12-820526-6.00005-1

    Chapter  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in White biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer International Publishing, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020b) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Awasthi AK, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh B, Boukhris I, Pragya, Kumar V, Yadav AN, Farhat-Khemakhem A et al. (2020c) Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere 30:295–313. https://doi.org/10.1016/S1002-0160(20)60010-8

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK et al (2014) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. IJAEB 9:361–365

    Article  Google Scholar 

  • Sobhy IS, Baets D, Goelen D et al (2018) Sweet scents: nectar specialist yeasts enhance nectar attraction of a generalist aphid parasitoid without affecting survival. Front Plant Sic 9:1009

    Article  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Sugio A, Dubreuil G, Giron D et al (2015) Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66:467–478

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tetard-Jones C, Kertesz MA, Preziosi RF (2012) Identification of plant quantitative trait loci modulating a rhizobacteria-aphid indirect effect. PLoS One 7:e41524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thompson IP, Bailey MJ, Fenlon JS et al (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177–191

    Article  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_8

    Chapter  Google Scholar 

  • Toju H, Vannette RL, Dhami MK et al (2018) Priority effects can persist across floral generations in nectar microbial metacommunities. Oikos 127:345–352

    Article  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A et al (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Tsuji K, Fukami T (2018) Community-wide consequences of sexual dimorphism: evidence from nectar microbes in dioecious plants. Ecology 99:2476–2484

    Article  PubMed  Google Scholar 

  • Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci 281:20132637

    PubMed  PubMed Central  Google Scholar 

  • Vacher C, Hampe A, Porte A et al (2016) The phyllosphere: microbial jungle at the plant-climate interface. Ann Rev Ecol Evol Systemat 47:1–24

    Article  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-triazine, an octahydro-1,3,5,7- tetranitro-1,3,5-tetrazocine by a photosymbiotic Methylobacterium sp associated with poplar tissues (Populus deltoids x nigra DN34). Appl Environ Microb 70:508–517

    Article  CAS  Google Scholar 

  • Van Peer R, Schippers B (1988) Plant growth responses to bacterization with selected pseudomonas Spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Article  Google Scholar 

  • Van Wees SC, van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vannette RL, Fukami T (2018) Contrasting effects of yeasts and bacteria on floral nectar traits. Ann Bot 121:1343–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Walitang DI, Kim CG, Jeon S et al (2019) Conservation and transmission of seed bacterial endophytes across generations following crossbreeding and repeated inbreeding of rice at different geographic locations. MicrobiologyOpen 8:e00662

    Article  PubMed  CAS  Google Scholar 

  • Walterson AM, Stavrinides J (2015) Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39:968–984

    Article  CAS  PubMed  Google Scholar 

  • Wassermann B, Muller H, Berg G (2019) An apple a day: which bacteria do we eat with organic and conventional apples? Front Microbiol 10:1629

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Lyu S, Yu Y et al (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318

    Article  PubMed  PubMed Central  Google Scholar 

  • White JF, Torres MS, Sullivan RF et al (2014) Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids: B. amyloliquefaciens as a systemic endophyte of Vanilla orchids. Microsc Res Tech 7:874–885

    Article  CAS  Google Scholar 

  • Yadav AN (2020) Plant microbiomes for sustainable agriculture: current research and future challenges. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 475–482. https://doi.org/10.1007/978-3-030-38453-1_16

    Chapter  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Gukeria G, Rana KL et al (2020b) Microbial biotechnology for sustainable agriculture: current research and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 331–343. https://doi.org/10.1016/B978-0-12-820526-6.00020-8

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020c) Agriculturally important fungi for crop productivity: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_12

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Cambridge, MA, pp 305–332

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020d) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020e) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020f) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020g) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N et al (2018b) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017b) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Crowley DE, Borneman J et al (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragariax ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Organ Cult 50:179–183

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the support and guidance provided by Dr. R. Nagarajaprakash, Group leader, Chemical Sciences Research Group, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India, for improving the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathma, J., Debnath, A., Patil, J.B., Bhushan, L.S. (2021). Deciphering and Harnessing Plant Microbiomes: Detangling the Patterns and Process—A Clean, Green Road to Sustainable Agriculture. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_6

Download citation

Publish with us

Policies and ethics