Skip to main content

Plant–Microbe Association for Mutual Benefits for Plant Growth and Soil Health

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

The beneficial associations of plants and microbes exemplify a complex and multi-organ system composed of participatory organisms and the environmental forces acting on them. Current knowledge of plant-microbe symbiosis involves a series of associations with varying degrees of intimacy and mutual dependence. Generally, rhizosphere microbes can help the plant by maintaining nutrient recycling, hormones production, preventing microbial infections and improving tolerance towards potentially hazardous compounds. Symbiotic relationships are known to be extremely beneficial for the enhancement of overall plant growth, especially in those soils that are deprived of certain minerals like P or N. However, in case of well-fertilized arable soils, symbiotic microbial growth is found to reduce significantly due to the improved bioavailability of nutrients in the soil. In addition to the vast benefits of symbiotic microbial growth in the rhizosphere, it also offers an overall increase in crop productivity, therefore making it an essential area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON et al (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44

    Article  CAS  Google Scholar 

  • Abd-Alla M (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z et al (2019) Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 129:7–18

    Article  CAS  PubMed  Google Scholar 

  • Ahmad G, Nishat Y, Haris M, Danish M, Hussain T (2019) Efficiency of soil, plant and microbes for healthy plant immunity and sustainable agricultural system. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe interface. Springer International Publishing, Cham, pp 325–346. https://doi.org/10.1007/978-3-030-19831-2_15

    Chapter  Google Scholar 

  • Ahemad M, Khan M (2011) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58(3):169–187

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97. https://doi.org/10.1007/978-1-4020-8770-7_3

    Chapter  Google Scholar 

  • Annapurna K, Govindasamy V, Sharma M, Ghosh A, Chikara SK (2018) Whole genome shotgun sequence of Bacillus paralicheniformis strain KMS 80, a rhizobacterial endophyte isolated from rice (Oryza sativa L.). 3 Biotech 8(5):223

    Article  PubMed  PubMed Central  Google Scholar 

  • Aysan Y, Karatas A, Cinar O (2003) Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Prot 22:807–811

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40(11):983–995

    Article  CAS  Google Scholar 

  • Barea J (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44(10):980–988

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Bhale UN, Bansode SA, Singh S (2018) Multifactorial role of arbuscular mycorrhizae in agroecosystem. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer Singapore, Singapore, pp 205–220. https://doi.org/10.1007/978-981-13-0393-7_12

    Chapter  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ et al (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153(4):1808–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 8:e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadha N, Mishra M, Prasad R, Varma A (2014) Root endophytic fungi: research update. J Biol Life Sci USA 5(2):135–158

    Article  Google Scholar 

  • Chalam A, Sasikala C, Ramana CV, Uma N, Rao PR (1997) Effect of pesticides on the diazotrophic growth and nitrogenase activity of purple nonsulfur bacteria. Bulletin Environ Cont Toxicol 58(3):463–468

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury N, Bagchi A (2017) Structural insight into the gene expression profiling of the HCN operon in Pseudomonas aeruginosa. Appl Biochem Biotechnol 182(3):1144–1157

    Article  CAS  PubMed  Google Scholar 

  • Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. SpringerPlus 3(1):391

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper J (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Cumagun CJR (2014) Advances in formulation of Trichoderma for biocontrol. In: Biotechnology and biology of Trichoderma. Elsevier, Waltham, MA, pp 527–531

    Google Scholar 

  • Datta S, Singh S, Kumar V, Dhanjal DS, Sidhu GK, Amin DS et al (2020) Endophytic bacteria in xenobiotic degradation. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 125–156. https://doi.org/10.1016/B978-0-12-818734-0.00006-1

    Chapter  Google Scholar 

  • de Lima Favaro LC, de Souza Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826

    Article  CAS  Google Scholar 

  • De Mandal S, Singh SS, Kumar NS (2018) Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity Hotspot. Biocat Agric Biotechnol 15:370–376

    Article  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74

    Article  Google Scholar 

  • Din BU, Sarfraz S, Xia Y, Kamran MA, Javed MT, Sultan T et al (2019) Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Saf 183:109466

    Article  CAS  Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 27–45

    Google Scholar 

  • Elad Y, Kirshner B, Yehuda N, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl 43(2):241–251

    Google Scholar 

  • Estrada AER, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49(7):578–587

    Article  Google Scholar 

  • Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321(1–2):279–303

    Article  CAS  Google Scholar 

  • Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159(1):123–132

    Article  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, Von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Article  Google Scholar 

  • Gagne-Bourgue F, Aliferis K, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Tansley review no. 76 helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210

    Article  PubMed  Google Scholar 

  • Gond S, Torres M, Bergen M, Helsel Z, White J Jr (2015a) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60(4):392–399

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015b) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Snehi SK, Singh V (2017) Role of PGPR in biofilm formations and its importance in plant health. John Wiley & Sons Ltd, Hoboken, NJ, pp 27–42. https://doi.org/10.1002/9781119246329.ch2

    Book  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1(6):15051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Harman G, Nelson E (1994) Mechanisms of protection of seed and seedlings by biological seed treatments: implication for practical disease control. In: Maude R (ed) Seed treatment, progress and prospects. British Crop Protection Council, Hampshire, pp 383–392

    Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68(1):101–110

    Article  CAS  PubMed  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186:37–43

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10(4):273–290

    Article  Google Scholar 

  • Hussain T, Khan AA (2020) Bacillus subtilis Hussain T-AMU and its antifungal activity against Potato black scurf caused by Rhizoctonia solani. Biocatal Agric Biotechnol 23:101433

    Article  Google Scholar 

  • Hussain T, Akthar N, Aminedi R, Danish M, Nishat Y, Patel S (2020a) Role of the potent microbial based bioagents and their emerging strategies for the ecofriendly management of agricultural phytopathogens. In: Singh J, Yadav AN (eds) Natural bioactive products in sustainable agriculture. Springer Singapore, Singapore, pp 45–66. https://doi.org/10.1007/978-981-15-3024-1_4

    Chapter  Google Scholar 

  • Hussain T, Haris M, Shakeel A, Khan AA, Khan MA (2020c) Bio-nematicidal activities by culture filtrate of Bacillus subtilis Hussain T-AMU: new promising biosurfactant bioagent for the management of Root Galling caused by Meloidogyne incognita. Vegetos 33:229–238. https://doi.org/10.1007/s42535-020-00099-5

    Article  Google Scholar 

  • Hussain T, Singh S, Danish M, Pervez R, Hussain K, Husain R (2020b) Natural metabolites: an eco-friendly approach to manage plant diseases and for better agriculture farming. In: Singh J, Yadav AN (eds) Natural bioactive products in sustainable agriculture. Springer Singapore, Singapore, pp 1–13. https://doi.org/10.1007/978-981-15-3024-1_1

    Chapter  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40(1):97–106

    Article  Google Scholar 

  • Jambon I, Thijs S, Weyens N, Vangronsveld J (2018) Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact 13(1):119–130

    Article  CAS  Google Scholar 

  • Kalra A, Chandra M, Awasthi A, Singh AK, Khanuja SPS (2010) Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompost-based formulations. Biol Fertil Soils 46(5):521–524

    Article  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Karnwal A, Singh S, Kumar V, Sidhu GK, Dhanjal DS, Datta S et al (2019) Fungal enzymes for the textile industry. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in White biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer International Publishing, Cham, pp 459–482. https://doi.org/10.1007/978-3-030-10480-1_14

    Chapter  Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Kavoo-Mwangi A, Kahangi E, Ateka E, Onguso J, Mukhongo R, Mwangi E, Jefwa J (2013) Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl Soil Ecol 64:152–162

    Article  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A 111(38):13715–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Ind J Bot Soc 81:255–263

    Google Scholar 

  • Kloeppe J, Rodriguez-Kabana R, Zehnder A, Murphy J, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28(1):21–26

    Article  Google Scholar 

  • Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC et al (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    Article  CAS  Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53(4):667–683

    Google Scholar 

  • Koul B, Singh S, Dhanjal DS, Singh J (2019) Plant growth-promoting rhizobacteria (PGPRs): a fruitful resource. In: Singh DP, Prabha R (eds) Microbial interventions in agriculture and environment, Soil and crop health management, vol 3. Springer Singapore, Singapore, pp 83–127. https://doi.org/10.1007/978-981-32-9084-6_5

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–287. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020b) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Devi R, Yadav N, Halder SK et al (2020c) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization and biotechnological implication for alleviations of abiotic stress. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspective. Elsevier, Amsterdam, pp 177–202. https://doi.org/10.1016/B978-0-12-820526-6.00012-9

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020d) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kumar A, Devi S, Agrawal H, Singh S, Singh J (2020a) Rhizoremediation: a unique plant microbiome association of biodegradation. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer International Publishing, Cham, pp 203–220. https://doi.org/10.1007/978-3-030-36248-5_11

    Chapter  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A et al (2019a) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019b) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Kumar V, Shahi SK, Singh S (2018) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In: Singh J, Sharma D, Kumar G, Sharma NR (eds) Microbial bioprospecting for sustainable development. Springer Singapore, Singapore, pp 115–136. https://doi.org/10.1007/978-981-13-0053-0_6

    Chapter  Google Scholar 

  • Kumar V, Singh S, Upadhyay N (2019) Effects of organophosphate pesticides on siderophore producing soils microorganisms. Biocatal Agric Biotechnol 21:101359

    Article  Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94(6):807–814

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh S, Datta S, Dhanjal DS, Singh J (2020b) Methods and techniques for the chemical profiling and quality control of natural products and natural product-derived drugs. In: Singh J, Meshram V, Gupta M (eds) Bioactive natural products in drug discovery. Springer Singapore, Singapore, pp 585–598. https://doi.org/10.1007/978-981-15-1394-7_20

    Chapter  Google Scholar 

  • Kumari A, Sumer S, Jalan B, Nongbri PL, Laskar MA (2017) Impact of next-generation sequencing technology in plant–microbe interaction study. In: Microbial applications, vol 1. Springer, Cham, pp 269–294

    Chapter  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90(6):575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB (2018) Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 58(2):101–119

    Article  CAS  PubMed  Google Scholar 

  • Lery LM, Hemerly AS, Nogueira EM, von Krüger WM, Bisch PM (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact 24(5):562–576

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN

    Google Scholar 

  • Lindow SE (1987) Competitive exclusion of epiphytic bacteria by ice-Pseudomonas syringae mutants. Appl Environ Microbiol 53:2520–2527

    Google Scholar 

  • Liu ZL, Sinclair JB (1990) Enhanced soybean plant growth and nodulation by Bradyrhizobium in the presence of strains of Bacillus megaterium. Phytopathology 80:1024

    Google Scholar 

  • Liu K, McInroy JA, Hu CH, Kloepper JW (2018) Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis 102(1):67–72

    Article  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):fiw194

    Article  PubMed  CAS  Google Scholar 

  • Macia-Vicente J, Rosso L, Ciancio A, Jansson HB, Lopez-Llorca L (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155(3):391–401

    Google Scholar 

  • Madden LV, Nutter FW Jr (1995) Modeling crop losses at the field scale. Can J Plant Pathol 17(2):124–137

    Article  Google Scholar 

  • Maksimov I, Abizgil’Dina R, Pusenkova L (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS et al (2019) Role of fungi in climate change abatement through carbon sequestration. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 283–295. https://doi.org/10.1007/978-3-030-25506-0_11

    Chapter  Google Scholar 

  • Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J et al (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol 45(1):1

    PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J (2015) Life of microbes inside the plant. In: Principles of plant-microbe interactions. Springer, Cham, pp 25–32

    Chapter  Google Scholar 

  • Meyer KM, Leveau JH (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168(3):621–629

    Article  PubMed  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, volume 2: functional annotation and future challenges. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V et al (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Oku S, Komatsu A, Nakashimada Y, Tajima T, Kato J (2014) Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization. Microbes Environ, ME14128

    Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Perez-Montano F, Alías-Villegas C, Bellogín R, Del Cerro P, Espuny M, Jiménez-Guerrero I et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    Article  CAS  PubMed  Google Scholar 

  • Pirozynski K, Malloch D (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6(3):153–164

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. Cambridge University Press, Cambridge, pp 485–533

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81(1–4):537

    Article  CAS  PubMed  Google Scholar 

  • Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2017) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M et al (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48(6):500–508

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN et al (2020a) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan EK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

    Chapter  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020b) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01429-y

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020c) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-020-01168-0

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in Endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173(4):861–872

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, White J Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17(2):316–331

    Article  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvatore MM, Félix C, Lima F, Ferreira V, Naviglio D, Salvatore F et al (2020) Secondary metabolites produced by Macrophomina phaseolina isolated from Eucalyptus globulus. Agriculture 10(3):72

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Panaccione DG (2005) Biosynthesis of ergot and loline alkaloids. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell, Ames, IA, pp 73–92

    Chapter  Google Scholar 

  • Scherm H, Ngugi H, Savelle A, Edwards J (2004) Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biol Control 29:199–206

    Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root-microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://doi.org/10.1016/B978-0-12-820526-6.00005-1

    Chapter  Google Scholar 

  • Sharma K, Sharma S, Prasad SR (2019) PGPR: renewable tool for sustainable agriculture. Int J Curr Microbiol App Sci 8(1):525–530

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020c) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J (2019) Revealing on hydrogen sulfide and nitric oxide signals coordination for plant growth under stress conditions. Physiol Plant 168(2):13002

    Article  CAS  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh S, Kumar V, Singh S, Dhanjal DS, Datta S, Singh J (2020a) Global scenario of plant–microbiome for sustainable agriculture: current advancements and future challenges. In: Plant microbiomes for sustainable agriculture. Springer, Cham, pp 425–443

    Chapter  Google Scholar 

  • Singh S, Kumar V, Singla S, Sharma M, Singh DP, Prasad R, Thakur VK, Singh J (2020b) Kinetic study of the biodegradation of acephate by indigenous soil bacterial isolates in the presence of humic acid and metal ions. Biomol Ther 10(3):433

    CAS  Google Scholar 

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Article  CAS  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Sukhada M, Manjula R, Rawal R (2011) Evaluation of arbuscular mycorrhiza and other biocontrol agents against Phytophthora parasitica var. nicotianae infecting papaya (Carica papaya cv. Surya) and enumeration of pathogen population using immunotechniques. Biol Control 58(1):22–29

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathol J 12(4):154–161

    Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22(3):120–126

    Article  PubMed  Google Scholar 

  • Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Mycorrhiza. Springer, Berlin, pp 281–306

    Chapter  Google Scholar 

  • Trivedi P, Schenk PM, Wallenstein MD, Singh BK (2017) Tiny microbes, big yields: enhancing food crop production with biological solutions. Microbiol Biotech 10:999–1003

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CM et al (2009) Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytol 183(2):419–431

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heijden MG, De Bruin S, Luckerhoff L, Van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10(2):389–399

    Article  PubMed  CAS  Google Scholar 

  • Van LC (2006) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Vanitha SC, Niranjana SR, Mortensen CN, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54(5):685–695

    Article  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution, Microbes for sustainable crop production, vol 1. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vigani G, Rolli E, Marasco R, Dell'Orto M, Michoud G, Soussi A et al (2019) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol 21(9):3212–3228

    Article  CAS  Google Scholar 

  • Vitti A, La Monaca E, Sofo A, Scopa A, Cuypers A, Nuzzaci M (2015) Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 60(1):135–147

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    Article  CAS  PubMed  Google Scholar 

  • Walitang D, Samaddar S, Choudhury AR, Chatterjee P, Ahmed S, Sa T (2019) Diversity and plant growth-promoting potential of bacterial endophytes in rice in plant growth promoting rhizobacteria (PGPR): prospects for sustainable agriculture. Springer, Singapore, pp 3–17

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chang KF, Hwang SF, Turnbull GD, Howard RJ, Blade SF, Callan NW (2005) Fusarium root rot of coneflower seedlings and integrated control using Trichoderma and fungicides. BioControl 50(2):317–329

    Google Scholar 

  • Wang TT, Ding P, Chen P, Xing K, Bai JL, Wan W et al (2017) Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance. J Biotechnol 260:38–41

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Botany 52(suppl_1):487–511

    Article  CAS  Google Scholar 

  • Wintermans PC, Bakker PA, Pieterse CM (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634

    Google Scholar 

  • Xavier LJ, Boyetchko SM (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Fungal biotechnology in agricultural, food, and environmental applications. CRC Press, Boca Raton, FL, pp 183–194

    Google Scholar 

  • Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    CAS  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Gukeria G, Rana KL et al (2020a) Microbial biotechnology for sustainable agriculture: current research and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 331–343. https://doi.org/10.1016/B978-0-12-820526-6.00020-8

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020d) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020e) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020f) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP et al (2018) Actinobacteria from Rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Los Angeles, CA, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yuan J, Zhou JY, Li X, Dai CC (2016) The primary mechanism of endophytic fungus Gilmaniella sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in Atractylodes lancea. Plant Cell Tiss Organ Culture 125(3):571–584

    Google Scholar 

  • Zain M, Yasmin S, Hafeez FY (2019) Isolation and characterization of plant growth promoting antagonistic bacteria from cotton and sugarcane plants for suppression of Phytopathogenic Fusarium species. Iran J Biotechnol 17(2):61–70

    Google Scholar 

  • Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y et al (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB 72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84(2):309–322

    Google Scholar 

  • Ziedan ES, Elewa I, Mostafa M, Sahab A (2011) Application of mycorrhizae for controlling root diseases of sesame. J Plant Protect Res 51(4):355–361

    Article  CAS  Google Scholar 

  • Zolla G, Bakker MG, Badri DV, Chaparro JM, Sheflin AM, Manter DK et al (2013) Understanding root–microbiome interactions. Mol Microb Ecol Rhizosphere 1:743–754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Mandal, S., Sonali, Singh, S., Hussain, K., Hussain, T. (2021). Plant–Microbe Association for Mutual Benefits for Plant Growth and Soil Health. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_5

Download citation

Publish with us

Policies and ethics