Skip to main content

Rhizoremediation: A Unique Plant Microbiome Association of Biodegradation

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

Microbes can be incorporated into a particular area where it can interact with selected pollutants and convert them into nontoxic or relatively less toxic compounds by excellent colonization in plant roots, thereby helping in the degradation of pollutants. This process is called ‘rhizoremediation’ which serves to emphasize the role of rhizosphere having competent microbes. These days majority of the process involving the degradation of environmental pollutants occurs through rhizospheric microbes. Root exudates can be taken as the best food source that is available in the soil for these microbes. The plants’ uptake of heavy metals from soils in high concentrations negatively influences the interaction of microbes with plants, its growth and consequently the crop’s production and yield. Heavy metals behave as genotoxic substances, and they disintegrate different cell organelles, rupture the cell membranes and disturb the physiological process like carbohydrate metabolism, protein synthesis and respiration photosynthesis. Some of the species of the pseudomonad family are root colonizer, having high efficiency for remediating pollutants via phytoremediators. In the previous two decades, various research articles on rhizodegradation of different toxicants utilizing diverse plants or potentially microbial inoculants have been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd EHE, Hafez EE, Hussain AA, Ali AG, Hanafy AA (2009) Isolation and identification of three rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. Am Eurasian J Agric Environ Sci 5:31–38

    Google Scholar 

  • Al-Yemni MN, Sher H, Sheikh MA, Eid EM (2011) Bioaccumulation of nutrient and heavy metals by Calotropis procera and Citrullus colocynthis and their potential use as contamination indicators. Sci Res Essays 6:966–976

    CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere, plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bais HT, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plum using poplar trees. Int J Phytoremediation 11:416–424

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon AC (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemotactically active rhizobacteria of Populus deltoides. Braz J Microbiol 41:922–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumer M (1976) Polycyclic aromatic compounds in nature. Sci Am 3(1976):35–45

    Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (2001) Canada wide standards for petroleum hydrocarbons (PHC) in soil. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Cao B, Nagarajan K, Kai CL (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 42–64

    Google Scholar 

  • Chadhain SMN, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial (phytoremediation) of soils. Plant Soil 321:385–408

    Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007) Pyrene mineralization by Mycobacterium sp. strain in a barley rhizosphere. J Environ Qual 36:1260–1265

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove L, McGeechan PL, Handley PS, Robson GD (2010) Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl Environ Microbiol 76:810–819

    Article  CAS  PubMed  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum. Chemosphere 68:864–870

    Article  CAS  PubMed  Google Scholar 

  • David ND, Sharon LD (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:1–3

    Article  CAS  Google Scholar 

  • de Carcer DA, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  PubMed  Google Scholar 

  • Dennis JJ, Zylstra GJ (2004) Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain. J Mol Biol 341:753–768

    Article  CAS  PubMed  Google Scholar 

  • Dodd I, Zinovkina N, Safronova V, Belimov A (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232

    Article  CAS  Google Scholar 

  • Eerd LLV, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Filonov AE, Puntus IF, Karpov AV, Kosheleva IA, Akhmetov LI, Yonge DR, Petersen JN, Boronin AM (2006) Assessment of naphthalene biodegradation efficiency of Pseudomonas and Burkholderia strains tested in soil model systems. J Chem Technol Biotechnol 18:216–224

    Article  CAS  Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K (2003) Preparation of plants containing bacterial enzyme for the degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313

    CAS  Google Scholar 

  • Freeman DJ, Cattell FCR (1990) Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585

    Article  CAS  Google Scholar 

  • Frerot H, Lefebvre C, Gruber W, Collin C, Dos SA, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–114

    Article  CAS  Google Scholar 

  • Guerin WF, Jones GE (1988) Mineralisation of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guijian L, Zhiyuan N, Daniel VN, Jian X, Liugen Z (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: Emissions, analysis, and toxicology. Rev Environ Contam Toxicol 192:1–28

    Article  Google Scholar 

  • Guoa H, Leea SC, Hoa KF, Wangb XM, Zou SC (2003) Particle associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Wick LY (2006) Dispersing pollutant degrading bacteria in contaminated soil without touching it. Eng Life Sci 6:252–260

    Article  CAS  Google Scholar 

  • Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability: concept for understanding or tool for predicting. Land Contam Reclamat 13:161–171

    Google Scholar 

  • Ho CH, Applegate B, Banks MK (2007) Impact of microbial plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytoremediation 9:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Johnsen AR, Wickb LY, Harmsb H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Jones KC, Stratford JA, Waterhouse KS, Furlong ET, Giger W, Hites RA, Schaffner C, Johbston AE (1989) Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environ Sci Technol 23:95–101

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kamaludeen PB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48:80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Kidd P, Prieto FA, Monterroso C, Acea M (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii. Appl Microbiol Biotechnol 67:275–285

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8(3):469–472

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014a) Environmental exposure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 5:111–120

    Google Scholar 

  • Kumar V, Singh S, Manhas A, Singh J, Singla S, Kaur P (2014b) Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Orient J Chem 30(4):1771–1776

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015a) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31(1):357–361

    Article  Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: chemical, biotechnical and computational study. 3 Biotech 6(1):1

    Article  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization of 2, 2-bis (2, 4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and biological active agent. J Chem Biol 10(4):179–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazaro M, Cayo R, Estrella D, Ronchel MC, Garcia JM, Lene W, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  Google Scholar 

  • Lee S, Ka JO, Gyu SH (2012) Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J Microbiol 50:45–49

    Article  CAS  PubMed  Google Scholar 

  • Lijinsky W (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat Res 259:251–262

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tindall JA, Friedel MJ (2007) Biodegradation of PAHs and PCBs in soils and Sludges. Water Air Soil Pollut 181(1–4):281–296

    Article  CAS  Google Scholar 

  • Louisa WP (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Ma B, He Y, Chen HH, Xu JM (2009) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through metal analysis. Environ Pollut 159:855–861

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18(7):697–703

    Article  CAS  PubMed  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374

    Article  CAS  Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1990) Action of a fluoranthene utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol 55:3085–3090

    Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant microbe interactions using a rhizosphere metabolomics driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natsch AC, Keel J, Troxler M, Zala N, Albertini V, Defago G (1996) Importance of preferential flow and soil management in vertical transport of a biocontrol strain of Pseudomonas fluorescens in structured field soil. Appl Environ Microbiol 62:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Chang HC, Lee V (1986) Structural characteristics of polycyclic aromatic hydrocarbon isomers in coal tars and combustion products. Environ Sci Technol 20:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon SEAH, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon contaminated soil. J Environ Qual 36:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Overah LC (2011) Biosorption of Cr (III) from aqueous solution by the leaf biomass of Calotropis procera-‘bombom’. J Appl Sci Environ Manag 15(1):87–95

    CAS  Google Scholar 

  • Oviasogie PO, Ukpebor EE, Omoti U (2006) Distribution of polycyclic aromatic hydrocarbons in rural agricultural wetland soils of the Niger Delta region. Afr J Biotechnol 5:1415–1421

    CAS  Google Scholar 

  • Parrish Z, White J, Isleyen M, Gent M, Iannucci BW, Eitzer B, Kelsey J, Mattina M (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    Article  CAS  PubMed  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture based and culture independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare pit soil. Soil Biol Biochem 38:2823–2833

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Richard EF, James JG (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  • Pilon SEAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Płociniczak MP, Płaza GA, Seget ZP, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Prasad MNV (2011) A state of the art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment and Forests, Government of India, 2011

    Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer, Cham. ISBN 978-3-030-02369-0. https://www.springer.com/gp/book/9783030023683

    Book  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Ramadah T, Alfheim I, Rustad S, Olsen T (1982) Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal. Chemosphere 11:601–611

    Article  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent pollutants in soils and sediments a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  PubMed  Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2004) Repression of Pseudomonas putida phenanthrene degrading activity by plant root extracts and exudates. Environ Microbiol 6:574–583

    Article  PubMed  Google Scholar 

  • Rugh C, Susilawati E, Kravchenko A, Thomas J (2005) Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation. Z Naturforsch 60:331–339

    Article  CAS  Google Scholar 

  • Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392

    Article  CAS  PubMed  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Sharma A, Talukdar G (1987) Effects of metals on chromosomes of higher organisms. Environ Mutagen 9:191–226

    Article  CAS  PubMed  Google Scholar 

  • Shiaris MP, Jambard SD (1986) Polycyclic aromatic hydrocarbons in surficial sediments of Boston Harbour, MA, USA. Mar Pollut Bull 17:469–472

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V (2012) Deciphering rhizosphere soil system for strains having plant growth promoting and bioremediation traits. Agric Res 1(3):251–257

    Article  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017a) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 7(4):262

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2017b) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:1–27

    Google Scholar 

  • Sorkhoh NA, Al-Mailem DM, Ali N, Al-Awadhi H, Salamah S, Eliyas M, Radwan SS (2011) Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. Int Biodeterior Biodegrad 65:797–802

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MR, de Carvalho CR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (1999) Use of monitored natural attenuation at superfund

    Google Scholar 

  • US Environmental Protection Agency (EPA) (2008) Integrated risk information. http://www.epa.gov/iris

  • Van Dillewijn P, Caballero A, Paz JA, Gonzales MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments II compound having anthropogenetic origins. Geochim Cosmochim Acta 44:403–413

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant assisted bioremediation. Plant Soil 321(1–2):385–408

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 88:229–249

    Article  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Devi, S., Agrawal, H., Singh, S., Singh, J. (2020). Rhizoremediation: A Unique Plant Microbiome Association of Biodegradation. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_11

Download citation

Publish with us

Policies and ethics