Skip to main content

Soil Microbial Diversity: Calling Citizens for Sustainable Agricultural Development

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 1103 Accesses

Abstract

The significant use of land and climate leads to the projection of worldwide transformation and finally leads to an increased rate of extension for microbes. The equators of the earth and the countries residing on the same have threatened species, and their frequencies are too high on the same. It is reported that the pollution and fragmented lands coupled with previous are responsible for the loss of microbial diversity in the soil. This chapter describes the sustainable management of soil microbial diversity. A diverse group of microorganisms is found in plants that grow in metallic polluted soil effectively tolerating a high level of steel and providing various benefits to both soil and plant life. Rhizospheric bacteria are particularly well represented in the microorganisms involved in phytoremediation of heavy metal, as these can at the same time increase how to plant remediation takes place by changing soil bioavailability by modifying the pH of the soil, releasing the chelators and the reactions oxidation/reduction. In the same manner, in hyperaccumulators produced in metallic contaminated fields, steel-resistant fungus was frequently cited suggesting that this fungus progressed heavy metal resistance and could also be active in the phytoremediation. The microbe attached to the plant causes the metal to accumulate from the soil via the sorption mechanism. “The definition of biosorption is the microbial adsorption by metabolism dependent and active process of soluble/insoluble organic/inorganic metals”. Some authors focused on the mechanism for bacterial absorption that reduced plant metal absorption. Research shows that metal bioavailability can be minimized through metal binding and/or metal bioavailability restricts the plant’s root/shoot ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium serratia sp. MSMC 541. Intl J Phytoreme 14:261–274

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Amaraneni SR (2006) Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India. Environ Intl 32:294–302

    Article  CAS  Google Scholar 

  • Arwidsson Z, Johansson E, Von Kronhelm T, Allard B, Van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi production of organic acids. Water Air Soil Pollut 205:215–226

    Article  CAS  Google Scholar 

  • Azcón R, Perálvarez MDC, Roldán A, Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi-contaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677

    Article  PubMed  Google Scholar 

  • Babu AG, Reddy S (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contribute in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219:3–10

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Lewis Publisher, Boca Raton, FL

    Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barona A, Aranguiz I, Elias A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Poll 113:79–85

    Article  CAS  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meissner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix dasyclados). J Plant Nut Soil Sci 169:516–522

    Google Scholar 

  • Beolchini F, Dell’Anno A, Propris LD, Ubaldini S, Cerrone F, Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemo 74:1321–1326

    Article  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low phosphorus soil amended with zinc and phosphorus. Chemo 50:831–837

    Article  CAS  Google Scholar 

  • Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A et al (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386

    Article  CAS  Google Scholar 

  • Blaylock MJ (2000) Field demonstrations of phytoremediation of lead-contaminated soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Bossier P, Hofte M, Verstraete W (1988) Ecological significance of siderophores in soil. Adv Microbiol Ecol 10:385–414

    Article  CAS  Google Scholar 

  • Bouwman LA, Bloem J, Romkens PFAM, Japenga J (2005) EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes. Soil Biol Biochem 37:271–278

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemo 74:280–286

    Article  CAS  Google Scholar 

  • Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water, Air Soil Poll 6:261–279

    Article  CAS  Google Scholar 

  • Brussaad L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosystems Environ 121:233–244

    Article  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991) Distribution of heavy metals in the River Yare and its associated broads II. Copper and cadmium. Sci Tot Environ 102:169–188

    Article  CAS  Google Scholar 

  • Cao A, Carucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Europ J Soil Biol 43:200–206

    Article  CAS  Google Scholar 

  • Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  • Chakrabarti K (2010) Microbial diversity especially in agricultural soil. In Proceedings of national seminar on fertilizers and environment, Ghose K (ed), June 26, 2010, University of Calcutta, pp 36–37

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Chen BD, Li X, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemo 50:839–846

    Article  CAS  Google Scholar 

  • Chen SY, Lin JG (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. J Hazard Mater 82:77–89

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Intl 31:861–866

    Article  CAS  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemo 59:21–29

    Article  CAS  Google Scholar 

  • Claridge MF, Dawah HA, Wilson MR (1997) Practical approaches to species concepts for living organisms. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 3–15

    Google Scholar 

  • Coleman DC (2001) Soil biota, soil systems and processes. In: Levin S (ed) Encyclopedia of biodiversity, vol 5. Academic Press, San Diego, pp 305–314

    Chapter  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemo 63:293–299

    Article  CAS  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2011) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp isolated from the root system of Astragalus bisulcatus: a biotechnological and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409–1417

    CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short rotation coppice Salix: the evidence trail. Environ Intl 31:609–613

    Article  CAS  Google Scholar 

  • Diels L, De Smet M, Hooyberghs L, Corbisier P (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12:154–158

    Article  Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  • Dilly O, Blume HP (1998) Indicators to assess sustainable land use with reference to soil microbiology. Adv Geoecol 31:29–36

    Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Buchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009b) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dimkpa CO, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dubbin WE, Louise Ander E (2003) Influence of microbial hydroxamate siderophores on Pb(II) desorption from a-FeOOH. Appl Geochem 18:1751–1756

    Article  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1991) Influence of pseudobactin- 358 on the iron nutrition of plants. Sixth International Fe Symposium, In

    Google Scholar 

  • Dujiff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Google Scholar 

  • Duss F, Mozafar A, Oertli JJ, Jaeggi W (1986) Effect of bacteria on the iron uptake by axenically-cultured roots of Fe-efficient and Fe-inefficient tomatoes (Lycopersicon esculentum Mill.). J Plant Nutr 9:587–598

    Article  Google Scholar 

  • El-Kherbawy M, Angle JS, Heggo A, Chaney RL (1989) Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fert Soil 8:61–65

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6. Femsre.oxfordjournals.org

    Article  CAS  PubMed  Google Scholar 

  • Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279. https://doi.org/10.1016/S0958-1669(00)00095-1

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Kay JG, Jaber K, Stehmeier LG, Voordouw G (2000) Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl Environ Microbiol 66:5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    Article  CAS  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybean. Soil Biol Biochem 22:856–869

    Article  Google Scholar 

  • Herman D, Artiola J, Miller R (1995) Removal of cadmium, lead, and zinc from the soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  PubMed  Google Scholar 

  • Hoberg E, Marschner P, Lieberei R (2005) Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiol. Res 160:177–187

    CAS  Google Scholar 

  • Hoflich G, Wiehe W, Kuhn G (1994) Plant growth stimulation by inoculation with symbiotic and association rhizosphere microorganisms. Experientia 50:23–28

    Google Scholar 

  • Hofte M, Buysens S, Koedam N, Cornelis P (1993) Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein mt1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollut 223:957–968. http://en.wikipedia.org/wiki/Image.jpg

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci Soc Am J 52:1032–1037

    Article  CAS  Google Scholar 

  • Kayser G, Korckritz T, Markert B (2001) Bioleaching for the decontamination of heavy metals. Wasser Boden 53:54–58

    CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizremediation an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemo 41:197–207

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S et al (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–287. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production. John Wiley & Sons, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020c) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sec B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020d) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64:741–751

    Article  CAS  Google Scholar 

  • Kumar P, Dwivedi P (2011) Future habitat loss: greatest threat to the soil microbial biodiversity. J Funct Environ Bot 1(2):82–90

    Article  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  PubMed  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Poll 139:1–8

    Article  CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant. Sedum alfredii. Plant Soil 326:453–467

    Article  CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between Arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemo 50:847–853

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, Mcgrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1916–1926

    Article  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemo 61:595–598

    Article  CAS  Google Scholar 

  • Lopez-Garcia P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159:67–73

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper DU, Huston MA, Raffaeli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Sci 294:804–808

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228. https://doi.org/10.1016/j.chemosphere.2007.04.017

  • Magu SP (1998) Interaction of pesticides with soil microorganisms in relation to crop production. In: Kaushik BD (ed) Plant soil microbe interaction in relation to integrated nutrient management. Venus Printers & Publishers, New Delhi, pp 132–143

    Google Scholar 

  • Majewska M, Kurek E (2005) Effect of microbial activity on Cd sorption/desorption processes in soil polluted with various Cd sources. Geophys Res Abs 7:04332

    Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Article  Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS et al (2019) Role of fungi in climate change abatement through carbon sequestration. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 283–295. https://doi.org/10.1007/978-3-030-25506-0_11

    Chapter  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides, vol 75. Adv Agron, In, pp 1–56

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Miguel AA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosystems Environ 74:19–31

    Article  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF, James S, Bennett HPJ (1999) Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environ Sci Technol 33:3812–3820

    Article  CAS  Google Scholar 

  • Myers N, Mittermelar RA, Mittermelar CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Naeem S (2002) Functioning of biodiversity. In: Munn T (ed) Encyclopedia of global environmental change. Wiley, New York, pp 20–36

    Google Scholar 

  • Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Elskens M, De Ridder F, Doan TH, Baeyens W (2005) Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Sci. Total Environ 341:211–226

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Google Scholar 

  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotech Biochem 77:1474–1480

    Article  CAS  Google Scholar 

  • Phukan S (2007) Biodiversity information. In: Dwivedi P, Dwivedi SK, Kalita MC (eds) Biodiversity and environmental biotechnology. Scientific Publishers (India), Jodhpur, pp 251–269

    Google Scholar 

  • Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M et al (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  • Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Poll 116:109–121

    Article  CAS  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Article  Google Scholar 

  • Santschi PH, Lenhart JJ, Honeyman BD (1997) Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matter. Marine Chem 58:99–125

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemo 66:1794–1798

    Article  CAS  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Sharma A, Johri BN (2003a) Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol Res 158:77–81

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN (2003b) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma PD (2011) Microbiology, 3rd edn. Rastogi Publication, Meerut

    Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemo 64:1036–1042

    Article  CAS  Google Scholar 

  • Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza MLP, Andreoli CV, Amaral MB, Domaszak SC (1996) Preliminary survey of heavy metal content in some soils of Paraná. Sanare. Revista Técnica da Sanepar 5:68–75

    Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of Rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitrosubstituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides -nigra DN34). Appl Environ Microbiol 70:508–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saud J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vivas A, Voros I, Biro B, Barea JM, Ruiz-Lozano JM, Azcon R (2003) Beneficial effects of indigenous Cd tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Article  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens a field case. Environ Poll 147:248–255

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Wu QT, Deng JC, Long XX, Morel JL, Schwartz C (2006a) Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. J Environ Sci 18:1113–1118

    Article  CAS  Google Scholar 

  • Wu SC, Luo YM, Cheung KC, Wong MH (2006b) Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020a) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020b) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015d) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremed 14:89–99

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemo 64:991–997

    Google Scholar 

  • Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F (2008) Community structure of Arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Wubet T, Schäfer SH, Savaghebi GR, Salehi Jouzani G, Khayam Nekouei M, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.K. and S.R.D. gratefully acknowledge the support provided by Lovely Professional University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasann Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Dey, S.R. (2021). Soil Microbial Diversity: Calling Citizens for Sustainable Agricultural Development. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_2

Download citation

Publish with us

Policies and ethics