Skip to main content
Log in

Changes in Extractability of Cr and Pb in a Polycontaminated Soil After Bioaugmentation With Microbial Producers of Biosurfactants, Organic Acids and Siderophores

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

Partly because of the low bioavailability of metals, the soil cleaning-up using phytoremediation is usually time-consuming. In order to enhance the amount of metals at the plant's disposal, the soil bioaugmentation coupled together with phytoextraction is an emerging technology. In this preliminary work, two agricultural soils which mainly differed in their Cr, Hg and Pb contents (LC, low-contaminated soil; HC, high-contaminated soil) were bioaugmented in laboratory conditions by either bacterial (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans) or fungal inocula (Aspergillus niger or Penicillium simplicissimum) and incubated during three weeks. The LC soil pots bioaugmented with A. niger and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg.kg−1 dw soil) and Pb (0.25 and 0.3 mg.kg−1 dw soil) in the exchangeable fraction F1 (extraction with MgCl2) by comparison with the non-bioaugmented soil where neither Cr nor Pb was detected. Conversely, immobilization of Cr and Pb in the soil were observed with the other microorganisms. The soil bioaugmentation not only modified the metal speciation for the most easily extractable fractions but also modified the distribution of metals in the other fractions, to a lesser extent nevertheless. The difference in microbial concentrations between the bioaugmented or not HC soils reached up to 1.8 log units. Thus the microorganisms that we chose for the soil bioaugmentation were competitive towards the indigenous microflora. The PCA analysis showed close positive relationships between the microorganisms which potentially produced siderophores in the soil and the amount of Cr and Pb in the fraction F1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFNOR Standard NFX31-102 French procedure: 1981, ‘Détermination de l'humidité résiduelle d' échantillons de sols préparés pour analyse.’, In: AFNOR (Ed.), Paris.

  • FNOR Standard NFX31-117 French procedure: 1994, ‘Qualité du sol, Détermination du pH.’, In: AFNOR (Ed.), Paris.

  • AFNOR Standard NFX31-412 French procedure: 1994, ‘Qualité du sol, prétraitement des échantillons pour analyses physico-chimiques.’, In: AFNOR (Ed.), Paris.

  • Baakza, A., Vala, A. K., Dave, B. P. and Dube, H. C.: 2004, ‘A comparative study of siderophore production by fungi from marine and terrestrial habitats’, J.Exp. Mar. Biol. Ecol. 311, 1–9.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S. and Glick, B. R.: 2005, ‘Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)’, Soil Biol. Biochem. 37, 241–250.

    Article  CAS  Google Scholar 

  • Bodour, A. A. and Miller-Maier, R. M.: 1998, ‘Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms’, J. Microb. Meth. 32, 273–280.

    Article  CAS  Google Scholar 

  • Bosshard, P. P., Bachofen, R. and Brandl, H.: 1996, ‘Metal leaching of fly ash from municipal water incineration by Aspergillus niger’, Environ. Sci. Technol. 30, 3066–3070.

    Article  CAS  Google Scholar 

  • Brandl, H., Bosshard, R. and Wegmann, M.: 2001, ‘Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi’, Hydrometallurgy 59, 319–326.

    Article  CAS  Google Scholar 

  • Chen, H. and Cutright, T.: 2001, ‘EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus’, Chemosphere 45, 21–28.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Lin, Q., Luo, Y. M., He, Y. F., Zhen, S. J., Yu, Y. L., Tian, G. M. and Wong, M. H.: 2003, ‘The role of citric acid on the phytoremediation of heavy metal contaminated soil’, Chemosphere 50, 807–811.

    Article  CAS  Google Scholar 

  • Collins, R. N., Merrington, G., McLaughlin, M. J. and Morel, J. L.: 2003, ‘Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils’, Soil Sci. Soc. Am. J. 67, 112–121.

    Article  CAS  Google Scholar 

  • Cunningham, J. E. and Kuiack, C.: 1992, ‘Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii’, Appl. Environ. Microb. 58, 1451–1458.

    CAS  Google Scholar 

  • Deneux-mustin, S., Roussel-Debet, S., Mustin, C., Henner, P., Munier-Lamy, C., Colle, C., Berthelin, J., Garnier-Laplace, J. and Leyval, C. : 2003, Mobilité et transfert racinaire des éléments en traces: influence des micro-organismes du sol, Tec et Doc, Paris, 282 pp.

    Google Scholar 

  • Di Simine, C. D., Sayer, J. A. and Gadd, G. M.: 1998, ‘Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soils’, Biol. Fertil. Soils 28, 87–94.

    Google Scholar 

  • Diels, L., De Smet, M., Hooyberghs, L. and Corbisier, P.: 1999, ‘Heavy metal bioremediation of soil’, Molecular Biotechnol. 12, 149–158.

    Article  CAS  Google Scholar 

  • Drazic, G. and Mihailovic, N.: 2005, ‘Modification of cadmium toxicity in soybean seedlings by salicylic acid’, Plant Sci. 168, 511–517 (doi:10.1016/j.plantsci.2004.09.019).

    Google Scholar 

  • Dubbin, W. E. and Ander, E. L.: 2003, ‘Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH’, Appl. Geochem. 18, 1751–1756.

    Article  CAS  Google Scholar 

  • Duffy, B. K. and Defago, G.: 1999, ‘Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains’, Appl. Environ. Microbiol. 65, 2429–2438.

    CAS  Google Scholar 

  • Garbisu, C. and Alkorta, I.: 2001, ‘Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment’, Bioresour. Technol. 77, 229–236.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E. and McGrath, S. P.: 1998, ‘toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review’, Soil Biol. Biochem. 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Glick, B. R.: 2003, ‘Phytoremediation: synergistic use of plants and bacteria to clean up the environment’, Biotechnol. Adv. 21, 383–393.

    Article  CAS  Google Scholar 

  • Herman, D. C., Artiola, J. F. and Miller, R. M.: 1995, ‘Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant’, Environ. Sci. Technol. 29, 2280–2285.

    Article  CAS  Google Scholar 

  • Jung, M. C. and Thornton, I.: 1997, ‘Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea’, Sci. Total Environ. 198, 105–121.

    Article  CAS  Google Scholar 

  • Lee, M. K. and Saunders, J. A.: 2003, ‘Effects of pH on metals precipitation and sorption’, Vadose Zone J. 2, 177–185.

    Article  CAS  Google Scholar 

  • Liang, Y., Wong, J. W. C. and Wei, L.: 2005, ‘Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmiium contaminated soil’, Chemosphere 58, 475–483.

    Google Scholar 

  • Liao, J. P., Lin, X. G., Cao, Z. H., Shi, Y. Q. and Wong, M. H.: 2003, ‘Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment’, Chemosphere 50, 847–853.

    Article  CAS  Google Scholar 

  • López, A., Lázaro, N., Priego, J. M. and Marqués, A. M.: 2000, ‘Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39’, J. of Ind. Microbial.& Biotechnol. 24, 146–151.

    Article  Google Scholar 

  • Malcová, R., Vosátka, M. and Gryndler, M.: 2003, ‘Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L.’, Appl. Soil Ecol. 23, 55–67.

    Article  Google Scholar 

  • Malik, A.: 2004, ‘Metal bioremediation through growing cells’, Environ. Int. 30, 261–278.

    Article  CAS  Google Scholar 

  • Martínez, C.E., Jacobson, A. R. and McBride, M. B.: 2003, ‘Aging and temperature effects on DOC and elemental release from a metal contaminated soil’, Environ. Poll. 122, 135–143.

    Article  Google Scholar 

  • McCrady, M. H.: 1915, ‘The numerical interpretation of fermentation-tube results’, J. Infect. Dis. 17, 183–212.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N. and Gibbs, B. F.: 2001, ‘Heavy metal removal from sediments by biosurfactants’, J. Hazardous Mat. 85, 111–125.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S. and Bennett, H. P. J.: 1999, ‘Metal Removal from contaminated soils and sediments by biosurfactants surfactin’, Environ. Sci. Technol. 33, 3812–3820.

    Article  CAS  Google Scholar 

  • Mulligan, C. N.: 2005, ‘Environmental applications for biosurfactants’, Environ. Poll. 133, 183–198.

    Article  CAS  Google Scholar 

  • Nan, Z., Li J., Zhang, J. and Cheng, G.: 2002, ‘Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions’, Sci. Total Environ. 285, 187–195.

    Article  CAS  Google Scholar 

  • Phillips, I. and Chapple, L.: 1995, ‘Assessment of a heavy metals-contaminated site using sequential extraction, TCLP, and risk assessment techniques’, J. Soil Contam. 4, 311–325.

    CAS  Google Scholar 

  • Pilon-Smits, E. and Pilon, M.: 2002, ‘Phytoremediation of metals using transgenic plants’, Cr. Rev. Plant Sci. 21, 439–456.

    Article  CAS  Google Scholar 

  • Rai, U. N., Pandey, K., Sinha, S., Singh, A., Saxena, R. and Gupta, D. K.: 2004, ‘Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation’, Environ. Inter. 30, 293–300.

    Article  CAS  Google Scholar 

  • Schwyn, B. and Neilands, J. B.: 1987, ‘Universal chemical assay for the detection and the determination of siderophores’, Anal. Biochem. 160, 47–56.

    Article  CAS  Google Scholar 

  • Shuman, L. M.: 1985, ‘ Fractionation method for soil microelements’, Soil Sci. 140, 11–22.

    Article  CAS  Google Scholar 

  • Simpson, S. L., Angel, B. M. and Jolley, D. F.: 2004, ‘Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests’, Chemosphere 54, 597–609.

    Article  CAS  Google Scholar 

  • Singh, P. and Cameotra, S. S.: 2004, ‘Enhancement of metal bioremediation by use of microbial surfactants’, Biochem. Biophys. Res. Commun. 319, 291–297.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C. and Bisson, M.: 1979, ‘Sequential extraction procedure for the speciation of particulate trace metals’, Anal. Chem. 51, 844–851.

    Article  CAS  Google Scholar 

  • Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M. and Azcón, R.: 2003, ‘Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. Isolated from cadmium polluted soil under increasing cadmium levels’, Environ. Poll. 126, 179–189.

    Article  CAS  Google Scholar 

  • Wendenbaum, S., Demange, P., Dell, A., Meyer, J. M. and Abdallah M. A.: 1983, ‘The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa’, Tetrahedron Lett. 44, 4877–4880.

    Article  Google Scholar 

  • White, P. J.: 2001, ‘Phytoremediation assisted by microorganisms’, Trends Plant Sci. 6, 502.

    Article  CAS  Google Scholar 

  • Whiting, S. N., De Souza, M. P. and Terry, N.: 2001 ‘Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens’, Environ. Sci. Technol. 35, 3144–3150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lebeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braud, A., Jézéquel, K., Vieille, E. et al. Changes in Extractability of Cr and Pb in a Polycontaminated Soil After Bioaugmentation With Microbial Producers of Biosurfactants, Organic Acids and Siderophores. Water Air Soil Pollut: Focus 6, 261–279 (2006). https://doi.org/10.1007/s11267-005-9022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-005-9022-1

Keywords

Navigation