Skip to main content
Log in

Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Sedum alfredii, a cadmium (Cd) and zinc (Zn) hyperaccumulator at a mine located in Qu Zhou City, Zhejiang Province, China, can accumulate Cd and Zn exceeding 1,000 and 10,000 mg kg−1, respectively in its shoot (dry weight) when growing under metal-contaminated habitats. Several strains of bacteria were isolated from the rhizosphere of S. alfredii thriving in different Pb/Zn mines in Hunan Province and Zhejiang Province, China, which can resist high levels of heavy metals. Among the different strains isolated, Burkholderia cepacia showed the highest ability in mobilizing Cd and Zn as well as resisting high concentrations of soluble Zn (500 mg L−1). The soluble Zn concentration in the medium increased from 13 to 72 and 99% (p < 0.001) after bacterial inoculation in the medium supplemented with insoluble zinc oxide and zinc carbonate, respectively, while pH dropped from 7 to 2.93. The soluble Cd concentration was also increased from 8 to 96% (p < 0.001), and pH decreased from 7 to 2.65. Short-chain organic acids were also analyzed and the results indicated that oxalic acid, tartaric acid, formic acid and acetic acid had a significant correlation (p < 0.001) with the concentrations of Cd and Zn being mobilized during the assay. The present results implicated that certain bacteria associated with metal hyperaccumulators could contribute significantly in mobilizing heavy metals, which would enhance the phytoextraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycling 11:19–41. doi:10.1016/0921-3449(94) 90077-9

    Article  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865. doi:10.1021/es960552a

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil. J Environ Qual 56:1151–1157

    Article  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pepin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302. doi:10.1016/S0269-7491(00)00067-1

    Article  CAS  PubMed  Google Scholar 

  • Byrnes ME (1994) Field Sampling Methods for Remedial Investigations. CRC, Boca Raton

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JE (ed) Land Treatment of Hazardous Waste. Noyes Data Corp, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–866. doi:10.1016/j.envint.2005.05.044

    Article  CAS  PubMed  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60(10):1365–137. doi:10.1016/j.chemosphere.2005.02.035

    Article  CAS  PubMed  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198. doi:10.1007/BF00011873

    Article  CAS  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573. doi:10.1104/pp. 119.2.565

    Article  PubMed  Google Scholar 

  • Devevre O, Garbaye J, Botton B (1996) Release of complexing organic acids by rhizosphere fungi as a factor in Norway Spruce yellowing in acidic soils. Mycol Res 100:1367–1374. doi:10.1016/S0953-7562(96)80065-7

    Article  CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from forest soil. Biol Fertil Soils 28:87–4. doi:10.1007/s003740050467

    Article  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167. doi:10.1016/0883-2927(95)00040-2

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6. doi:10.1111/j.1574-6968.2002.tb11277.x

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–356. doi:10.1080/01490450490462066

    Article  CAS  Google Scholar 

  • Forstner U (1995) Land contamination by heavy metals: Global scope and magnitude of problem. In: Allen HE (ed) Metal speciation and contamination of soils. Lewis Publishers, Boca Raton

    Google Scholar 

  • Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissium: influence on metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57:769–4

    CAS  PubMed  Google Scholar 

  • Franz A, Burgstaller W, Muller B, Schinner F (1993) Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum. J Gen Microbiol 139:2101–2107

    CAS  PubMed  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92. doi:10.1016/S0065-2911(08)60165-4

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoremediation. Environ Sci Technol 31:800–805. doi:10.1021/es9604828

    Article  CAS  Google Scholar 

  • Institute of Botany (1972) The Chinese academy of sciences, Eds. Iconographia cormophytorum sinicorum. Science: Beijing, China

  • Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78. doi:10.1023/A:1004255323909

    Article  CAS  Google Scholar 

  • Kos B, Lestan D (2003) Induced phytoextraction/Soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37(3):624–629. doi:10.1021/es0200793

    Article  CAS  PubMed  Google Scholar 

  • Little TM, Hills JJ (1978) Agricultural Experimentation: Design and Analysis. Wiley, Chichester

    Google Scholar 

  • Long XX, Yang XE, Ye ZQ, Ni WZ, Shi WY (2002) Differences of uptake and accumulation of zinc in four species of Sedum. Acta Bot Sin 44:152–157

    CAS  Google Scholar 

  • Marin AR, Pezeshki SR, Masscheleyn PH, Choi HS (1993) Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J Plant Nutr 16:865–880. doi:10.1080/01904169309364580

    Article  CAS  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141. doi:10.1016/S0038-0717(02)00247-X

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhances phytoextraction of heavy metals. Chemosphere 58:1011–1022. doi:10.1016/j.chemosphere.2004.09.047

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Housing Netherlands (1994) Dutch intervention values of heavy metals and organic pollutants in soils, sediments, and ground water. Physical Planning and Environmental Conservation Report HSE 94.021

  • Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123. doi:10.1016/j.envpol.2005.06.017

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296. doi:10.1111/j.1574-6968.2000.tb08910.x

    Article  CAS  PubMed  Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of Soil Analysis. Part 2 – Chemical and Microbiological Properties, 2nd edn. Agronomy, no.9, ASA, SSSA Publishing, Madison, p 1159

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–475. doi:10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  • Sayer JA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99:987–993. doi:10.1016/S0953-7562(09)80762-4

    Article  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35. doi:10.1023/A:1022584220411

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2001) Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Wang A, Angle J, Chaney R, Delorme T, Reeves R (2006) Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337. doi:10.1007/s11104-005-4642-9

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150. doi:10.1021/es001938v

    Article  CAS  PubMed  Google Scholar 

  • Wu LH, Luo YM, Zing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318. doi:10.1016/j.agee.2003.09.002

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135. doi:10.1016/j.envpol.2005.06.023

    Article  CAS  PubMed  Google Scholar 

  • Ye HB, Yang XE, He B, Long XX, Shi WY (2003) Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Bot Sin 9:1030–1036

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Norman Terry (University of California, Berkeley) for the provision of bacterial strains, Prof. P.Y. Qian (Hong Kong University of Science & Technology) for the bacteria identification and Ms. Ursula Absalom for improving the manuscript. Financial support from the Research Grants Council of the University Grants Committee of Hong Kong and Area of Excellence (CityU/AoE/03-04/02) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Wong.

Additional information

Responsible Editor: Petra Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.C., Ye, Z.H. & Wong, M.H. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii . Plant Soil 326, 453–467 (2010). https://doi.org/10.1007/s11104-009-0025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0025-y

Keywords

Navigation