Skip to main content

An Integrated Approach for Drought Tolerance Improvement in Rice

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Drought is a major threat to agriculture globally and improving crop yield under drought conditions is a major challenge of plant breeding. Many QTLs have been identified for drought stress response, and researchers are striving hard to comprehend and dissect plant tolerance mechanisms related to drought stress. Unravelling the biochemical regulation of drought tolerance and molecular breeding and transgenic approaches can help us manage drought stress in plants. Recent advances achieved regarding genomic tools and genetic techniques in addition to precise phenotyping and advanced breeding methodologies will enable exhibiting metabolic pathways and candidate genes underlying drought tolerance in rice. Taken altogether, new horizons have been opened for the breeders to utilize markers for QTLs, signaling cascade, hormonal cross talk, or gene transformation in plants to develop a drought resistant genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Mian A, Maathuis FJM (2016) Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot 67(9):2689–2698. https://doi.org/10.1093/jxb/erw103

    Article  CAS  Google Scholar 

  • Ambavaram MM, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L et al (2014) Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 5:5302

    Article  CAS  Google Scholar 

  • Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191. https://doi.org/10.1126/science.aar7191

    Article  CAS  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F et al (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10(1):279. https://doi.org/10.1186/1471-2164-10-279

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Regulation of photosynthesis under salinity and drought stress. In: Singh VP, Singh S, Singh R, Prasad SM (eds) Environment and photosynthesis: a future prospect. Studium Press, India, pp 134–144

    Google Scholar 

  • Basu S, Roychoudhury A (2014) Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. BioMed Res Int 2014:706890

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010a) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60:51–59

    CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010b) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32:551–563

    CAS  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62(1):59–68. https://doi.org/10.1093/jxb/erq350

    Article  CAS  Google Scholar 

  • Bevan MW, Uauy C, Wulff BBH, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543(7645):346–354. https://doi.org/10.1038/nature22011

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159–1168

    Article  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KFX (2014) Plant genome sequencing—applications for crop improvement. Curr Opin Biotechnol 26:31–37. https://doi.org/10.1016/j.copbio.2013.08.019

    Article  CAS  Google Scholar 

  • Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q et al (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119(3):565–577. https://doi.org/10.1007/s11240-014-0556-7

    Article  CAS  Google Scholar 

  • Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G (2015) A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One 10(2):e0116646. https://doi.org/10.1371/journal.pone.0116646

    Article  CAS  Google Scholar 

  • Calzadilla PI, Gazquez A, Maiale SJ, Ruiz OA, Bernardina MA (2014) Polyamines as indicators and modulators of the abiotic stress in plants. In: Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI, Wallingford, UK, pp 109–128

    Chapter  Google Scholar 

  • Chakhchar A, Haworth M, El Modafar C, Lauteri M, Mattioni C, Wahbi S, Centritto M (2017) An assessment of genetic diversity and drought tolerance in argan tree (Argania spinosa) populations: potential for the development of improved drought tolerance. Front Plant Sci 8:276. https://doi.org/10.3389/fpls.2017.00276

    Article  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S et al (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619

    Article  CAS  Google Scholar 

  • Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L et al (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci 8:1885. https://doi.org/10.3389/fpls.2017.01885

    Article  Google Scholar 

  • Chen J, Qi T, Hu Z, Fan X, Zhu L, Iqbal MF et al (2019) OsNAR2.1 positively regulates drought tolerance and grain yield under drought stress conditions in rice. Front Plant Sci 10:197. https://doi.org/10.3389/fpls.2019.00197

    Article  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, and Hedden P (2014) The role of gibberellin signallingin plant responses to abiotic stress. J Exp Biol 217(1):67–75. https://doi.org/10.1242/jeb.089938

  • Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X et al (2016) OsSGL, a novel DUF1645 domain-containing protein, confers enhanced drought tolerance in transgenic rice and Arabidopsis. Front Plant Sci 7:2001. https://doi.org/10.3389/fpls.2016.02001

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10(5):579–586

    Article  CAS  Google Scholar 

  • Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140(6):1147–1151

    Article  CAS  Google Scholar 

  • Dixit S, Mallikarjuna Swamy BP, Vikram P, Bernier J, Sta Cruz MT, Amante M et al (2012) Increased drought tolerance and wider adaptability of qDTY 12.1 conferred by its interaction with qDTY 2.3 and qDTY 3.2. Mol Breed 30(4):1767–1779. https://doi.org/10.1007/s11032-012-9760-5

    Article  Google Scholar 

  • Dixit S, Singh A, Kumar A (2014) Rice breeding for high grain yield under drought: a strategic solution to a complex problem. Int J Agron 2014:863683

    Article  Google Scholar 

  • Dou M, Fan S, Yang S, Huang R, Yu H, Feng X (2016) Overexpression of AmRosea1 gene confers drought and salt tolerance in rice. Int J Mol Sci 18(1):2. https://doi.org/10.3390/ijms18010002

    Article  CAS  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154(3):1304–1318

    Article  CAS  Google Scholar 

  • Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L (2011) Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol Biol 77(6):547–563

    Article  CAS  Google Scholar 

  • Du H, Wu N, Cui F, You L, Li X, Xiong L (2014) A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J 78(5):834–849. https://doi.org/10.1111/tpj.12508

    Article  CAS  Google Scholar 

  • Du Q, Zhao M, Gao W, Sun S, Li W-X (2017) microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. Plant J 91(1):22–33. https://doi.org/10.1111/tpj.13540

    Article  CAS  Google Scholar 

  • El-Esawi M, Alayafi A (2019) Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes 10(1):56. https://doi.org/10.3390/genes10010056

    Article  CAS  Google Scholar 

  • Fahramand M, Mahmoody M, Keykha A, Noori M, Rigi K (2014) Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int Res J Appl Basic Sci 8(3):257–265

    Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G et al (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Lee D-J (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31(5):937–945

    Article  CAS  Google Scholar 

  • Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167(13):1066–1075. https://doi.org/10.1016/j.jplph.2010.03.003

    Article  CAS  Google Scholar 

  • Ferrero-Serrano Á, Assmann SM (2016) The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot 67(11):3433–3443. https://doi.org/10.1093/jxb/erw183

    Article  CAS  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88. https://doi.org/10.1016/j.tplants.2010.10.005

    Article  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222. https://doi.org/10.1093/jxb/erq152

    Article  CAS  Google Scholar 

  • Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L (2017) OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8:2108. https://doi.org/10.3389/fpls.2017.02108

    Article  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop Res 40(2):67–86. https://doi.org/10.1016/0378-4290(94)00096-u

    Article  Google Scholar 

  • Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16(2):196–204

    Article  CAS  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D et al (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76(1–2):145–156. https://doi.org/10.1007/s11103-011-9775-z

    Article  CAS  Google Scholar 

  • Gu J, Yin X, Stomph T-J, Wang H, Struik PC (2012) Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot 63(14):5137–5153

    Article  CAS  Google Scholar 

  • Gu J-F, Qiu M, Yang J-C (2013) Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes. Crop J 1(2):105–114. https://doi.org/10.1016/j.cj.2013.10.002

    Article  Google Scholar 

  • Guan Y, Serraj R, Liu S, Xu J, Ali J, Wang W et al (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61(15):4145–4156

    Article  CAS  Google Scholar 

  • Guo C, Ge X, Ma H (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol 82(3):239–253

    Article  CAS  Google Scholar 

  • Hà PTT (2014) Physiological responses of rice seedlings under drought stress. J Sci Dev 12(5):635–640

    Google Scholar 

  • Hadiarto T, Tran L-SP (2010) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30(3):297–310. https://doi.org/10.1007/s00299-010-0956-z

    Article  CAS  Google Scholar 

  • Hampton M, Xu WW, Kram BW, Chambers EM, Ehrnriter JS, Gralewski JH et al (2010) Identification of differential gene expression in Brassica rapa nectaries through expressed sequence tag analysis. PLoS One 5(1):e8782. https://doi.org/10.1371/journal.pone.0008782

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R et al (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9(8):922–931. https://doi.org/10.1111/j.1467-7652.2011.00625.x

    Article  CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4. https://doi.org/10.3389/fpls.2016.00004

    Article  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 106(15):6410–6415

    Article  CAS  Google Scholar 

  • Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77. https://doi.org/10.1016/j.envexpbot.2015.10.002

    Article  CAS  Google Scholar 

  • Huang L, Hong Y, Zhang H, Li D, Song F (2016) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16(1):203. https://doi.org/10.1186/s12870-016-0897-y

    Article  CAS  Google Scholar 

  • Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F et al (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9:94. https://doi.org/10.3389/fpls.2018.00094

    Article  Google Scholar 

  • Ishizaki T, Maruyama K, Obara M, Fukutani A, Yamaguchi-Shinozaki K, Ito Y, Kumashiro T (2013) Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breed 31(2):255–264

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197. https://doi.org/10.1104/pp.110.154773

    Article  CAS  Google Scholar 

  • Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW et al (2012) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114. https://doi.org/10.1111/pbi.12011

    Article  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T et al (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156(2):647–662

    Article  CAS  Google Scholar 

  • Jiang Y, Qiu Y, Hu Y, Yu D (2016) Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci 7:145. https://doi.org/10.3389/fpls.2016.00145

    Article  Google Scholar 

  • Joo J, Lee YH, Song SI (2014) Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol Rep 8(6):431–441. https://doi.org/10.1007/s11816-014-0335-2

    Article  Google Scholar 

  • Joo J, Oh N-I, Nguyen NH, Lee YH, Kim Y-K, Song SI, Cheong J-J (2017) Intergenic transformation of AtMYB44 confers drought stress tolerance in rice seedlings. Appl Biol Chem 60(4):447–455. https://doi.org/10.1007/s13765-017-0297-5

    Article  CAS  Google Scholar 

  • Jung H, Lee D-K, Choi YD, Kim J-K (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312. https://doi.org/10.1016/j.plantsci.2015.04.018

    Article  CAS  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Biol 47(1):627–654

    Article  CAS  Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res 109(1–3):1–23

    Article  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66(5):445–462

    Article  CAS  Google Scholar 

  • Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287(1–2):117–129. https://doi.org/10.1007/s11104-006-9008-4

    Article  CAS  Google Scholar 

  • Kemble A, Macpherson HT (1954) Liberation of amino acids in perennial rye grass during wilting. Biochem J 58(1):46

    Article  CAS  Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD et al (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169(4):2935–2949. https://doi.org/10.1104/pp.15.01192

    Article  CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822. https://doi.org/10.1038/35093585

    Article  CAS  Google Scholar 

  • Kim EH, Park S-H, Kim J-K (2009) Methyl jasmonate triggers loss of grain yield under drought stress. Plant Signal Behav 4(4):348–349

    Article  CAS  Google Scholar 

  • Kim H, Lee K, Hwang H, Bhatnagar N, Kim D-Y, Yoon IS et al (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65(2):453–464. https://doi.org/10.1093/jxb/ert397

    Article  CAS  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32(7):945–957

    Article  CAS  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162. https://doi.org/10.1016/j.plantsci.2015.02.012

    Article  CAS  Google Scholar 

  • Kulcheski FR, de Oliveira LFV, Molina LG, Almerão MP, Rodrigues FA, Marcolino J et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12(1):307. https://doi.org/10.1186/1471-2164-12-307

    Article  CAS  Google Scholar 

  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crop Res 107(3):221–231. https://doi.org/10.1016/j.fcr.2008.02.007

    Article  Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278. https://doi.org/10.1093/jxb/eru363

    Article  CAS  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G et al (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8(5):e64190

    Article  CAS  Google Scholar 

  • Lafitte HR, Price AH, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109(6):1237–1246. https://doi.org/10.1007/s00122-004-1731-8

    Article  CAS  Google Scholar 

  • Lauteri M, Haworth M, Serraj R, Monteverdi MC, Centritto M (2014) Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PLoS One 9(10):e109054

    Article  CAS  Google Scholar 

  • Lee D-K, Kim HI, Jang G, Chung PJ, Jeong JS, Kim YS et al (2015a) The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Sci 241:199–210. https://doi.org/10.1016/j.plantsci.2015.10.006

    Article  CAS  Google Scholar 

  • Lee SS, Park HJ, Yoon DH, Kim B-G, Ahn JC, Luan S, Cho HS (2015b) Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis. Plant Cell Environ 38(10):2071–2087. https://doi.org/10.1111/pce.12531

    Article  CAS  Google Scholar 

  • Lee D-K, Jung H, Jang G, Jeong JS, Kim YS, Ha S-H et al (2016) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172(1):575–588. https://doi.org/10.1104/pp.16.00379

    Article  CAS  Google Scholar 

  • Lee D-K, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H et al (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15(6):754–764. https://doi.org/10.1111/pbi.12673

    Article  CAS  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji H-S, Park SR et al (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11(1):5. https://doi.org/10.1186/s12284-018-0199-0

    Article  Google Scholar 

  • Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X et al (2016) OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J 15(2):183–196. https://doi.org/10.1111/pbi.12601

    Article  CAS  Google Scholar 

  • Li M, Wang W-S, Pang Y-L, Domingo JR, Ali J, Xu J-L et al (2017) Characterization of salt-induced epigenetic segregation by genome-wide loss of heterozygosity and its association with salt tolerance in rice (Oryza sativa L.). Front Plant Sci 8:977. https://doi.org/10.3389/fpls.2017.00977

    Article  CAS  Google Scholar 

  • Liang P, Pardee A (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971. https://doi.org/10.1126/science.1354393

    Article  CAS  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L et al (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 111(27):10013–10018

    Article  CAS  Google Scholar 

  • Lisei-de-Sá ME, Monteiro Arraes FB, Brito GG, Beneventi MA, Lourenço-Tessutti IT, Basso AMM et al (2017) AtDREB2A-CA influences root architecture and increases drought tolerance in transgenic cotton. Agric Sci 08(10):1195–1225. https://doi.org/10.4236/as.2017.810087

    Article  CAS  Google Scholar 

  • Liu W, Reif JC, Ranc N, Porta GD, Würschum T (2012) Comparison of biometrical approaches for QTL detection in multiple segregating families. Theor Appl Genet 125(5):987–998. https://doi.org/10.1007/s00122-012-1889-4

    Article  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y et al (2013) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1–2):19–36. https://doi.org/10.1007/s11103-013-0115-3

    Article  CAS  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y et al (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1–2):19–36

    Article  CAS  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993. https://doi.org/10.3389/fpls.2017.00993

    Article  Google Scholar 

  • Lum M, Hanafi M, Rafii Y, Akmar A (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24(5):1487–1493

    Google Scholar 

  • Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. In: Plant nutrition for sustainable food production and environment. Springer, Netherlands, pp 51–60

    Chapter  Google Scholar 

  • Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9(1):34. https://doi.org/10.1186/1741-7007-9-34

    Article  CAS  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2011) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63(1):163–175

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34(1):135–148

    Article  CAS  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S et al (2011) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49

    Article  CAS  Google Scholar 

  • Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H et al (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164(4):1759–1771

    Article  CAS  Google Scholar 

  • Matsumura H, Yoshida K, Luo S, Kimura E, Fujibe T, Albertyn Z et al (2010) High-throughput superSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS One 5(8):e12010. https://doi.org/10.1371/journal.pone.0012010

    Article  CAS  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Moore MJ (2015) Twenty years of technology. RNA 21(4):697–698. https://doi.org/10.1261/rna.051052.115

    Article  CAS  Google Scholar 

  • Muhammad A (2012) Breeding potential of the basmati rice germplasm under water stress condition. Afr J Biotechnol 11(25). https://doi.org/10.5897/ajb11.3698

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349. https://doi.org/10.1126/science.1158441

    Article  CAS  Google Scholar 

  • Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM et al (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics 272(1):35–46. https://doi.org/10.1007/s00438-004-1025-5

    Article  CAS  Google Scholar 

  • Nielsen KL, Høgh AL, Emmersen J (2006) DeepSAGE—digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34(19):e133–e133. https://doi.org/10.1093/nar/gkl714

    Article  CAS  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152(2):876–890

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    Article  CAS  Google Scholar 

  • Oh S-J, Kim YS, Kwon C-W, Park HK, Jeong JS, Kim J-K (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  CAS  Google Scholar 

  • Pan S, Rasul F, Li W, Tian H, Mo Z, Duan M, Tang X (2013) Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice 6(1):9

    Article  Google Scholar 

  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK et al (2015) Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 169(1):780–792

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758

    Article  CAS  Google Scholar 

  • Perata P, Voesenek LA (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12(2):43–46

    Article  CAS  Google Scholar 

  • Pieters AJ, El Souki S (2005) Effects of drought during grain filling on PS II activity in rice. J Plant Physiol 162(8):903–911. https://doi.org/10.1016/j.jplph.2004.11.001

    Article  CAS  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53(1):90–101. https://doi.org/10.1111/j.1365-313x.2007.03315.x

    Article  CAS  Google Scholar 

  • Price AH, Steele KA, Moore BJ, Jones RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. Field Crop Res 76(1):25–43. https://doi.org/10.1016/s0378-4290(02)00010-2

    Article  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8(4):476–488. https://doi.org/10.1111/j.1467-7652.2009.00492.x

    Article  CAS  Google Scholar 

  • Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL (2015) The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol 88(4–5):401–413

    Article  CAS  Google Scholar 

  • Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ et al (2010) The first set of EST resource for gene discovery and marker development in pigeon pea (Cajanus cajan L.). BMC Plant Biol 10(1):45. https://doi.org/10.1186/1471-2229-10-45

    Article  CAS  Google Scholar 

  • Raman A, Verulkar SB, Mandal NP, Variar M, Shukla VD, Dwivedi JL et al (2012) Drought yield index to select high yielding rice lines under different drought stress severities. Rice 5(1):31. https://doi.org/10.1186/1939-8433-5-31

    Article  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645

    Article  CAS  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti S, Subrahmanyam D, Sundaram R, Bansal K et al (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23(3):421–439

    Article  CAS  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10(7):792–805

    Article  CAS  Google Scholar 

  • Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, FL, p 416

    Google Scholar 

  • Ridout CJ, Donini P (1999) Use of AFLP in cereals research. Trends Plant Sci 4(2):76–79. https://doi.org/10.1016/s1360-1385(98)01363-6

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishers, New Delhi, pp 177–258

    Google Scholar 

  • Roychoudhury A, Das K (2014) Functional role of polyamines and polyamine-metabolizing enzymes during salinity, drought and cold stresses. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CAB International Publishers, Wallingford, UK, pp 141–156

    Google Scholar 

  • Roychoudhury A, Paul A (2012) Abscisic acid-inducible genes during salinity and drought stress. In: Berhardt LV (ed) Advances in medicine and biology, vol 51. Nova Science Publishers, New York, pp 1–78

    Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    Article  CAS  Google Scholar 

  • Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH (2018) Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice 11(1):34. https://doi.org/10.1186/s12284-018-0226-1

    Article  Google Scholar 

  • Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R (2015) Suppression subtractive hybridization versus next-generation sequencing in plant genetic engineering: challenges and perspectives. Mol Biotechnol 57(10):880–903. https://doi.org/10.1007/s12033-015-9884-z

    Article  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Biol 52(1):627–658

    Article  CAS  Google Scholar 

  • Sharp R (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25(2):211–222

    Article  CAS  Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):139–148

    CAS  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim J-K (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310. https://doi.org/10.3389/fpls.2018.00310

    Article  Google Scholar 

  • Singh S, Pradhan S, Singh A, Singh O (2012) Marker validation in recombinant inbred lines and random varieties of rice for drought tolerance. Aust J Crop Sci 6(4):606

    Google Scholar 

  • Singha DL, Tuteja N, Boro D, Hazarika GN, Singh S (2017) Heterologous expression of PDH47 confers drought tolerance in indica rice. Plant Cell Tissue Organ Cult 130(3):577–589. https://doi.org/10.1007/s11240-017-1248-x

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6(2):196–203

    Article  CAS  Google Scholar 

  • Sokoto MB, Muhammad A (2014) Response of rice varieties to water stress in Sokoto, Sudan Savannah, Nigeria. J Biosci Med 02(01):68–74. https://doi.org/10.4236/jbm.2014.21008

    Article  Google Scholar 

  • Sreenivasulu N, Sunkar R, Wobus U, Strickert M (2010) Array platforms and bioinformatics tools for the analysis of plant transcriptome in response to abiotic stress, Methods in molecular biology. Humana, New York, pp 71–93

    Google Scholar 

  • Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A (2017) Rice SUMO protease Overly Tolerant to salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J 92(6):1031–1043. https://doi.org/10.1111/tpj.13739

    Article  CAS  Google Scholar 

  • Srividhya A, Vemireddy LR, Sridhar S, Jayaprada M, Ramanarao PV, Hariprasad AS et al (2011) Molecular mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). J Crop Sci Biotechnol 14(1):45–56. https://doi.org/10.1007/s12892-010-0023-x

    Article  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625

    Article  CAS  Google Scholar 

  • Swain P, Anumalla M, Prusty S, Marndi BC, Rao GJN (2014) Characterization of some Indian native land race rice accessions for drought tolerance at seedling stage. Aust J Crop Sci 8(3):324

    Google Scholar 

  • Takahashi T, Kakehi J-I (2009) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105(1):1–6

    Article  CAS  Google Scholar 

  • Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K et al (2016) Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell Tissue Organ Cult 127(1):35–46. https://doi.org/10.1007/s11240-016-1027-0

    Article  CAS  Google Scholar 

  • Tamaki H, Reguera M, Abdel-Tawab YM, Takebayashi Y, Kasahara H, Blumwald E (2015) Targeting hormone-related pathways to improve grain yield in rice: a chemical approach. PLoS One 10(6):e0131213

    Article  CAS  Google Scholar 

  • Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C et al (2016) MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28(9):2161–2177. https://doi.org/10.1105/tpc.16.00171

    Article  CAS  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33(4):636–647

    Article  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84. https://doi.org/10.3389/fpls.2015.00084

    Article  Google Scholar 

  • Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown wheat with moderate water restriction. J Plant Growth Regul 29(3):366–374

    Article  CAS  Google Scholar 

  • Trijatmiko KR, Prasetiyono J, Thomson MJ, Cruz CMV, Moeljopawiro S, Pereira A (2014) Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Mol Breed 34(2):283–295

    Article  CAS  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347. https://doi.org/10.3389/fphys.2012.00347

    Article  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(suppl 1):S153–S164

    Article  CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097

    Article  CAS  Google Scholar 

  • Usman M, Raheem Z, Ahsan T, Iqbal A, Sarfaraz ZN, Haq Z (2013) Morphological, physiological and biochemical attributes as indicators for drought tolerance in rice (Oryza sativa L.). Eur J Biol Sci 5(1):23–28

    Google Scholar 

  • Varshney R, Graner A, Sorrells M (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630. https://doi.org/10.1016/j.tplants.2005.10.004

    Article  CAS  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16(7):363–371. https://doi.org/10.1016/j.tplants.2011.03.004

    Article  CAS  Google Scholar 

  • Venuprasad R, Sta Cruz MT, Amante M, Magbanua R, Kumar A, Atlin GN (2008) Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations. Field Crop Res 107(3):232–244. https://doi.org/10.1016/j.fcr.2008.02.004

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Singh R, Singh BP, Miro B et al (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799

    Article  CAS  Google Scholar 

  • Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR (2008) Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319(5860):198–202. https://doi.org/10.1126/science.1151869

    Article  CAS  Google Scholar 

  • Wang F-Z, Wang Q-B, Kwon S-Y, Kwak S-S, Su W-A (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162(4):465–472

    Article  CAS  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25(3):279–301. https://doi.org/10.1080/07352680600709917

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Q, Zheng T, Cui Y, Zhang W, Xu J, Li Z (2014) Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. Crop Pasture Sci 65(2):171. https://doi.org/10.1071/cp13344

    Article  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509

    Article  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  Google Scholar 

  • Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J (2018) Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep 37(11):1585–1595. https://doi.org/10.1007/s00299-018-2331-4

    Article  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    Article  CAS  Google Scholar 

  • Xiao B-Z, Chen X, Xiang C-B, Tang N, Zhang Q-F, Xiong L-Z (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2(1):73–83. https://doi.org/10.1093/mp/ssn068

    Article  CAS  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X et al (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913. https://doi.org/10.1371/journal.pone.0092913

    Article  CAS  Google Scholar 

  • Xiong H, Yu J, Miao J, Li J, Zhang H, Wang X et al (2018) Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiol 178(1):451–467. https://doi.org/10.1104/pp.17.01492

    Article  CAS  Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X et al (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15(1). https://doi.org/10.1186/s12870-015-0532-3

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57(1):781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    Article  CAS  Google Scholar 

  • Yang J, Zhang J (2010) Crop management techniques to enhance harvest index in rice. J Exp Bot 61(12):3177–3189

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2001) Water deficit–induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J 93(1):196–206

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Xu G, Zhu Q (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135(3):1621–1629

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58(6):1545–1555

    Article  CAS  Google Scholar 

  • Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35(9):531–S532

    Article  CAS  Google Scholar 

  • Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG (2014) Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 52(2):193–202. https://doi.org/10.1007/s11099-014-0020-2

    Article  CAS  Google Scholar 

  • Yin XM, Huang LF, Zhang X, Wang ML, Xu GY, Xia XJ (2015) OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice. J Plant Biol 58(1):68–73. https://doi.org/10.1007/s12374-014-0349-x

    Article  CAS  Google Scholar 

  • Yoon S, Lee D-K, Yu IJ, Kim YS, Choi YD, Kim J-K (2017) Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnol Rep 11(1):53–62. https://doi.org/10.1007/s11816-017-0430-2

    Article  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Li X et al (2012) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64(2):569–583

    Article  CAS  Google Scholar 

  • You J, Zong W, Hu H, Li X, Xiao J, Xiong L (2014) A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant Physiol 166(4):2100–2114. https://doi.org/10.1104/pp.114.251116

    Article  CAS  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q et al (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162(3):1378–1391

    Article  CAS  Google Scholar 

  • Yu J, Lai Y, Wu X, Wu G, Guo C (2016a) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478(2):703–709. https://doi.org/10.1016/j.bbrc.2016.08.010

    Article  CAS  Google Scholar 

  • Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R (2016b) The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254(1):401–408. https://doi.org/10.1007/s00709-016-0960-4

    Article  CAS  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J et al (2012) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72(5):805–816

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X et al (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8(2):e57472

    Article  CAS  Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5(5):e10780. https://doi.org/10.1371/journal.pone.0010780

    Article  CAS  Google Scholar 

  • Zhou Y, Lam HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58(5):1207–1217. https://doi.org/10.1093/jxb/erl291

    Article  CAS  Google Scholar 

  • Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S et al (2016) A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep 6(1):30264. https://doi.org/10.1038/srep30264

    Article  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song C-P, Damsz B, Inan G et al (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14(12):3009–3028. https://doi.org/10.1105/tpc.006981

    Article  CAS  Google Scholar 

  • Zhu G, Ye N, Yang J, Peng X, Zhang J (2011) Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot 62(11):3907–3916

    Article  CAS  Google Scholar 

  • Zou G, Mei H, Liu H, Liu G, Hu S, Yu X et al (2005) Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet 112(1):106–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehman, A., Almas, H.I., Akbar, F., Ali, Q., Du, X. (2020). An Integrated Approach for Drought Tolerance Improvement in Rice. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_12

Download citation

Publish with us

Policies and ethics