Skip to main content
Log in

Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress

  • Review Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Group II late embryogenesis abundant (LEA) proteins are crucial phytomolecules which accumulate mainly in the late phases of seed development and also in the vegetative tissues in response to exogenous stress. In spite of considerable research, their mechanism of action to generate plant tolerance against abiotic stresses still remains obscure. The present review focuses on the varied structural aspects which ultimately dictate the multifarious functions of the Group II LEA proteins when the plants are exposed to intense desiccation. Currently, several reports have been documented regarding newer in silico approaches in predicting LEA protein structure and the corresponding cis-elements. Coupled to recent transgenic approaches, these reports need to be properly structured to further characterize the physico-chemical and functional importance of LEA proteins in regulating tolerance against multiple abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LEA:

Late embryogenesis abundant

IDP:

Intrinsically disordered protein

PDB:

Protein database

DHN:

Dehydrin

Rab:

Responsive to abscisic acid

ERD:

Early response to dehydration

COR:

Cold responsive

LTi:

Low temperature inducible

ABA:

Abscisic acid

References

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 78:40882–40889

    Article  CAS  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Amara I, Zaidi I, Masmoudi K, Ludevid D, Pages M et al (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am J Plant Sci 5:3440–3455

    Article  CAS  Google Scholar 

  • Asghar R, Fenton RD, DeMason DA, Close TJ (1994) Nuclear and cytoplasmic localization of maize embry and aleurone dehydrin. Protoplasma 177:87–94

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015. Articel ID 807560

  • Bartels B (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Roychoudhury A (2014) Computational analysis of abiotic stress inducible genes and proteins from rice (Oryza sativa L.). Int J Pharma Bio Sci 5(B):718–735

    CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60:51–59

    Article  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Alejandra A (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E et al (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A et al (2007) Overexpression of wheat dehydrin DHN5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Saibi W, Amara I, Gargouri A, Masmoudi K, Hanin M (2010) The wheat dehydrin DHN-5 exerts a heat-protective effect on β-glucosidase and glucose oxidase activities. Biosci Biotechnol Biochem 74:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  PubMed  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N et al (2013) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12:286–299

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Qu YQ, Jia X (2003) The characters and gene expression of rice seed proteins. Hereditas 25:367–372

    CAS  PubMed  Google Scholar 

  • Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C et al (2013) Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genom 14:687

    Article  CAS  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  • Ciccarelli FD, Bork P (2005) The WHy domain mediates the response to desiccation in plants and bacteria. Bioinformatics 21:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Cozzetto D, Jones DT (2013) The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol 23:467–472

    Article  CAS  PubMed  Google Scholar 

  • Cuevas-Velazquez CL, Rendón-Luna DF, Covarrubias AA (2014) Dissecting the cryoprotection mechanisms for dehydrins. Front Plant Sci 5:583

    Article  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  PubMed  Google Scholar 

  • Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J Exp Bot 64:4559–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F et al (2008) Phylogeny. fr:robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M (2013) The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol Biotechnol 54:643–650

    Article  CAS  PubMed  Google Scholar 

  • Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Dure III L, Crouch M, Harada J, Ho T-HJ, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson SK, Kutzer M, Procek J, Grobner G, Harryson P (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Caballero C, Rosales R, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT (2012) Unraveling the roles of CBF1, CBF4 and dehydrin1 genes in the response of table grapes to high CO2 levels and low temperature. J Plant Physiol 169:744–748

    Article  CAS  PubMed  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Save R, Pages M, Goday A (2004) Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251–257

    Article  CAS  Google Scholar 

  • Findlater EE, Graether SP (2009) NMR assignments of the intrinsically disordered K2 and YSK2 dehydrins. Biomol NMR Assign 3:273–275

    Article  CAS  PubMed  Google Scholar 

  • Forman-Kay JD, Mittag T (2013) From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21:1492–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furini A (2008) CDT retroelement. The stratagem to survive extreme vegetative dehydration. Plant Signal Behav 3:1129–1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–543

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69:3175–3186

    Article  CAS  PubMed  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths CA, Gaff DF, Neale AD (2014) Drying without senescence in resurrection plants. Front Plant Sci 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogeny: assessing the performance of PhyML3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) AKS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 64:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Zhan Y, Zeng F, Zhao X, Wang X (2015) Drought physiology and gene expression characteristics of Fraxinus interspecific hybrids. Plant Growth Regul. doi:10.1007/s10725-015-0084-4

    Google Scholar 

  • Hernandez-Sanchez IE, Martynowicz DM, Rodriguez-Hernandez AA, Perez-Morales MB, Graether SP, Jimenez-Bremont JF (2014) A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Front Plant Sci 5:520

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 45:131–135

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Wang Z, Du H, Huang B (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–109

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, TralmanBaker E et al (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol 163:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunault G, Jaspard E (2010) LEAPdb: a database for the late embryogenesis abundant proteins. BMC Genom 11:221

    Article  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118–139

    Article  CAS  Google Scholar 

  • Imamura T, Higuchi A, Takahashi H (2013) Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Plant Sci 213:55–66

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Wang Y (2004) Elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43:15567–15576

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31:857–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim T-M, Lin Q, Loh C-S, Kumar PP (2014) Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biol 14:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalemba EM, Pukacka S (2007) Possible roles of LEA proteins and sHSPs in seed protection: a short review. Biol Lett 44:3–16

    CAS  Google Scholar 

  • Kaye C, Neven L, Hofig A, Li QB, Haskell D, Guy C (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116:1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazuoka T, Oeda K (1994) Purification and characterization of COR85-oligomeric complex from cold acclimated spinach. Plant Cell Physiol 35:601–611

    CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  Google Scholar 

  • Kim EC, Lee HS, Choi D-W (2012) Sequence variability and expression pattern of the dehydrin gene family in “Populus tremula” x “Populus albavar. glandulosa”. Plant OMICS 5:122

    CAS  Google Scholar 

  • Koag M-C, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koag M-C, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-Segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosava K, Vitamvas P, Prasil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity—what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343

    Google Scholar 

  • Kovacs D, Agoston B, Tompa P (2008a) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008b) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-C, Lu C-A, Casaretto J, Yu S-M (2003) An ABA-responsive bZIP protein, OsBZ8, mediates sugar repression of α-amylase gene expression. Physiol Plant 119:78–86

    Article  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ et al (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9:e86402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta PA, Rebala KC, Venkataraman G, Parida A (2009) A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol Biochem 47:701–709

    Article  CAS  PubMed  Google Scholar 

  • Mizianty MJ, Uversky V, Kurgan L (2014) Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol 1137:147–162

    Article  CAS  PubMed  Google Scholar 

  • Moradi M, Babin V, Roland C, Darden TA, Sagui C (2009) Conformations and free energy landscapes of polyproline peptides. Proc Natl Acad Sci USA 106:20746–20751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillon J-M, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior underwater stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148:1925–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Roychoudhury A, Gupta B, Gupta S, Sengupta DN (2006) An ABRE binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P et al (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  CAS  Google Scholar 

  • Panza V, Distefano AJ, Carjuzaa P, Lainez V, Del Vas M, Maldonado S (2007) Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds. Protoplasma 231:1–5

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG et al (2006) Rapid up regulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA et al (2008) RcDhn5, a cold acclimation responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, Collada C, Soto A (2014) Novel dehydrins lacking complete K-segments in Pinaceae. The exception rather than the rule. Front Plant Sci 5:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen J, Eriksson SK, Harryson P, Pierog S, Colby T, Bartels D et al (2012) The lysine rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation. J Exp Bot 63:4919–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess M, Makela P, Svensson J, Heino P, Palva E (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Zhang L, Liu C, He L, Wang A, Liu HL, Zhu JB (2014) Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrate Kar. Et Kir. Plant Mol Biol 84:707–718

    Article  CAS  PubMed  Google Scholar 

  • Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA et al (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88:791–807

    Article  CAS  PubMed  Google Scholar 

  • Rahman LN, Bamm VV, Voyer JAM, Smith GST, Chen L, Yaish MW et al (2011) Zinc induces disorder-to-order transitions in free and membrane-associated Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2:a solution CD and solid-state ATR-FTIR study. Amino Acids 40:1485–1502

    Article  CAS  PubMed  Google Scholar 

  • Rahman LN, McKay F, Giuliani M, Quirk A, Moffatt BA, Harauz G et al (2013) Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures- Surface morphology and single molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochim Biophys Acta 1828:967–980

    Article  CAS  PubMed  Google Scholar 

  • Ramlov H (2011) Measuring antifreeze activity. In: Graether SP (ed) Biochemistry and function of antifreeze proteins. Nova Biomedical Books, New York, pp 7–42

    Google Scholar 

  • Receveur-Bréchot V, Bourhis J-M, Uversky VN, Canard B, Longhi S (2005) Assessing protein disorder and induced folding. Proteins 62:24–45

    Article  CAS  Google Scholar 

  • Rinne P, Kaikuranta P, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apice sofbirch (Betula pubescens ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  CAS  PubMed  Google Scholar 

  • Rosales R, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT (2014) The crucial role of Φ- and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a. Phytochemistry 108:17–25

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Nayek S (2014) Structural aspects and functional regulation of late embryogenesis abundant (LEA) genes and proteins conferring abiotic stress tolerance in plants. In: Ferro Annabella (ed) Abiotic stress: role in sustainable agriculture, detrimental effects and management strategies. Nova Publishers, New York, pp 43–109

    Google Scholar 

  • Roychoudhury A, Paul A (2012) Abscisic acid-inducible genes during salinity and drought stress. In: Berhardt LV (ed) Advances in medicine and biology, vol 51. Nova Publishers, New York, pp 1–78

    Google Scholar 

  • Roychoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Gupta B, Sengupta DN (2008) Trans-acting factor designated OSBZ8 interacts with both typical abscisic acid responsive elements as well as abscisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars. Plant Cell Rep 27:779–794

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S (2012) Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Sci 190:89–102

    Article  CAS  PubMed  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  CAS  PubMed  Google Scholar 

  • Sanchez A, Shin J, Davis SJ (2011) Abiotic stress and the plant circadian clock. Plant Signal Behav 6:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Christov NK, Tsuda S, Imail R (2014) Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol 55:136–147

    Article  CAS  PubMed  Google Scholar 

  • Scippa GS, Maiuro L, Onelli E, Patrignani G (2002) Modification of chromatin organisation at low water potential in cultured cells of Solanum tuberosum: possible involvement of dehydrins. Plant Biosyst 136:35–47

    Article  Google Scholar 

  • Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    Article  CAS  PubMed  Google Scholar 

  • Shimuzu K (2014) POODLE: tools predicting intrinsically disordered regions of amino acid sequence. Methods Mol Biol 1137:131–145

    Article  CAS  Google Scholar 

  • Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (l-proline) type II structure. Plant Physiol 131:963–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XL, Rikkerink EHA, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25:38–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  CAS  PubMed  Google Scholar 

  • Szabala BM, Fudali S, Rorat T (2014) Accumulation of acidic SK3 dehydrins in phloem cells of cold and drought-stressed plants of the Solanaceae. Planta 239:847–863

    Article  CAS  PubMed  Google Scholar 

  • Szalainé Ágoston B, Kovacs D, Tompa P, Perczel A (2011) Full backbone assignment and dynamics of the intrinsically disordered dehydrin ERD14. Biomol NMR Assign 5:189–193

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Joshee N, Kitagawa Y (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol Biol 26:339–352

    Article  CAS  PubMed  Google Scholar 

  • Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  CAS  PubMed  Google Scholar 

  • Tompa P, Bánki P, Bokor M, Kamasa P, Kovacs D, Lasanda G et al (2006) Protein- water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117

    Article  CAS  PubMed  Google Scholar 

  • Wang GT, Hu ZH, Chen JQ (2003) CBF transcriptional activators and their roles in enhancing stress tolerance. Plant Physiol Commun 39:402–410

    Google Scholar 

  • Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G, Schmitz G et al (2010) Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol Cell 39:507–520

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ, Tunnaclife A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J (2012) Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol 195:124–135

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z et al (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Yang QH, Ye WH, Song SQ, Yin SH (2002) Seed desiccation tolerance and its relationship to seed types and developmental stages. Acta Bot Boreal Occident Sin 22:1518–1525

    Google Scholar 

  • Yang Y, Hel M, Zhu Z, Li S, Xu Y et al (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sun X, Yang S, Li X, Yang Y (2014) Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipapur purea. Biochem Biophys Res Commun 448:145–150

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziołkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    Article  CAS  PubMed  Google Scholar 

  • Yu JN (2003) Cloning and characterization of tolerant stress genes from Triticum aestivum. Dissertation for Doctor’s degree of Northwestern Sci-tech University of Agriculture and Forestry, Yangling, China

  • Zhang JF, Deng XP, Mu XQ (2002) Plant aquaporin. Plant Physiol Commun 38:88–91

    CAS  Google Scholar 

  • Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G et al (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–218

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H et al (2014) A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol 55:1142–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India through the research Grant (SR/FT/LS-65/2010) and from Council of Scientific and Industrial Research (CSIR), Government of India, through the research Grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Roychoudhury, A. Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79, 1–17 (2016). https://doi.org/10.1007/s10725-015-0113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0113-3

Keywords

Navigation