Skip to main content
Log in

Heterologous expression of PDH47 confers drought tolerance in indica rice

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In response to challenge of producing rice plants tolerant to drought stress, Pea DNA Helicase 47 (PDH47) from Pisum sativum under the control of constitutive 35S CaMV promotor was introduced into indica rice cultivar ASD16 mediated through Agrobacterium tumefaciens using immature embryos as explant. PCR positive transgenic rice lines showed varied levels of PDH47 transcripts as evident by semi-quantitative reverse transcription PCR (RT-PCR). Copy number of the transgene was determined through quantitative PCR (qPCR) analysis. T2 transgenic lines showed upregulation of PDH47 transcripts both in leaf and root tissues after 30 days of drought stress treatment in pots as evident by quantitative reverse transcription PCR (qRT-PCR). The upregulation of PDH47 transcripts during drought stress correlated with increased accumulation of osmolytes like proline, increased relative water content and decreased accumulation of hydrogen peroxide (H2O2). T2 transgenic lines also showed enhanced tolerance to drought compared to wild type rice after withdrawal of water for 30 days. Further, the heterologous expression of PDH47 regulated several endogenous stress-responsive genes in transgenic rice during drought stress. To the best of our knowledge, we are reporting for the first time the involvement of PDH47 transgene imparting drought tolerance in transgenic rice, demonstrating its potential role in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldemita PR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    Article  CAS  Google Scholar 

  • Amin M, Elias SM, Hossain A, Ferdousi A, Rahman Md S, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354. doi:10.1007/s11032-011-9625-3

    Article  CAS  Google Scholar 

  • Asghar A, Rashid H, Ashraf M, Khan MH, Chaudhary Z (2007) Improvement of basmati rice against fungal infection through gene transfer technology. Pak J Bot 39(4):1277–1283

    Google Scholar 

  • Aubourg S, Kreis M, Lecharny A (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 27:628–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteom 10(10):4349–4364. doi:10.1021/pr200333f

    Article  CAS  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology towards genetically superior transgenic rice. Plant Biotech J 3:275–307

    Article  CAS  Google Scholar 

  • Basu A, Ray S, Sarkar S, Chaudhury TR, Chndu S (2014) Agrobacterium mediated genetic transformation of popular indica rice Ratna (IET1411). Afr J Biotech 13(31):3187–3197

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Begg JE (1980) Adaptation of plants to water and high temperature stress. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley, New York, pp 33–42

    Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253

    Article  Google Scholar 

  • Björkman O, Demming-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47

    Google Scholar 

  • Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119:565–577. doi:10.1007/s11240-014-0556-7

    Article  CAS  Google Scholar 

  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagirib A, Hu YG, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Narir S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E (2011) An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. PNAS 108(30):12354–12359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dansana PK, Kothari KS, Vij S, Tyagi AK (2014) OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33(9):1425–1440. doi:10.1007/s00299-014-1626-3

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Ganguly M, Krishnan S, Shinozaki KY, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotech J 10:579–586

    Article  CAS  Google Scholar 

  • De La Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  Google Scholar 

  • Ding J, Jia J, Yang L, Wen H, Liu W, Zhang D (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative detection of PCR transgenes. J Agric Food Chem 52(11):3372–3377

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Minhas D (2000) Towards production of abiotic stress tolerance transgenic rice plants: issues, Progress and future research needs. Proc Indian Natl Sci Acad (PINSA) B66(1):13–32

    Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3(5):824–834. doi:10.1038/nprot.2008.46

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75:338–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, San SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009) Increased tolerance of rice cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Progr 27(2):297–306. doi:10.1002/btpr.514

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of drought tolerance in AtLOS5 transgenic cotton. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jeon Y, Park YJ, Cho HK, Jung HJ, Ahn TK, Kang H, Pai HS (2015) The nuclear GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis. J Exp Bot. doi:10.1093/jxb/erv337

    PubMed  PubMed Central  Google Scholar 

  • Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP (2015) Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol 88:369–385. doi:10.1007/s11103-015-0327-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP Ribosylation Factor1 (SaARF1) from smooth cordgrass (Spartina alterniflora) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tissue Organ Cult 117:17–30. doi:10.1007/s11240-013-0416-x

    Article  CAS  Google Scholar 

  • Khan MA, Iqbal M, Akram M, Ahmed M, Hassan MW, Jamil M (2013) Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review. Zemdirbyste-Agriculture. 100(3):325–334

    Article  Google Scholar 

  • Kotchoni SO, Gachomo EW (2009) A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. Mol Biol Rep 36:1633–1636. doi:10.1007/s11033-008-9362-9

    Article  CAS  PubMed  Google Scholar 

  • Kumar SP, Varman PAM, Kumari R (2011) Identification of differentially expressed proteins in response to Pb stress in Catharanthus roseus. Afr J Environ Sci Tech 5(9):689–699

  • Kumari A, Bhat RS, Kuruvinashetti MS (2007) Agrobacterium-mediated genetic transformation of BPT-5204, a commercially grown indica rice variety. Karnataka J Agric Sci 20(4):845–847.

    Google Scholar 

  • Li H, Liu H, Zhang X, Wang, F. Song (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59:2133–2146. doi:10.1093/jxb/ern072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang C, Jia F, An Y, Liu C, Xia X, Yin W (2016) Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 125:419–431. doi:10.1007/s11240-016-0957-x

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loresto GC, Chang TT (1981) Decimal scoring systems for drought reaction and recovery ability in rice screening nurseries. Int Rice Res Newsletter 6(2):9–10

    Google Scholar 

  • Loresto GC, Chang TT, Tagumpay O (1976) Field evaluation and breeding for drought resistance. Phil J Crop Sci 1:36–39

    Google Scholar 

  • Macovei A, Vaid N, Tula S, Tuteja N (2012) A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal Behav 79:1138–1143

    Article  Google Scholar 

  • Miah K, Hossen B, Haque MS, Begum SN, Hasan SMM (2015) Agrobacterium mediated genetic transformation of rice for salinity tolerance for combating climate change. J Agric Vet Sci 8(3):28–35. doi:10.9790/2380-08312835

    Google Scholar 

  • Montero-Lomeli M, Morais BL, Figueiredo DL, Neto DC, Martins JR, Masuda CA (2002) The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J Biol Chem 277(24):21542–21548

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:659–681

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Experiment Bot 58:106–113

  • O’Toole JC, Chang TT (1978) Drought and rice improvement in perspective. IRRI research paper series, No. 14

  • Ozawa K (2012) A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Method Mol Biol 847:51–57

    Article  CAS  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

  • Parry G (2014) Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J Exp Bot 65(20):6057–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad BD, Kumar P, Sahni S, Kumar V, Kumari S, Kumar P, Pal AK (2016) An improved protocol for Agrobacterium-mediated genetic transformation and regeneration of indica rice (Oryza sativa L. var. Rajendra kasturi). J Cell Tissue Res 16(2):5597–5606

    CAS  Google Scholar 

  • Qin XQ, Zeevaart JAD (2002) Overexpression of a 9-cisepoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rafique MZ, Zia M, Rashid H, Chaudhary MF, Chaudhary Z (2010) Comparison of transgenic plant production for bacterial blight resistance in Pakistani local rice (Oryza sativa L.) cultivars. Afr J Biotech 9(13):1892–1904

    Article  CAS  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5(3):232–241. doi:10.1038/nrm1335

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig J, Chopra AK (2013) The exo ribonuclease polynucleotide phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol 3(81):1–8. doi:10.3389/fcimb.2013.00081

    Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Method 7(49):1–11

    Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS ONE 1–25. doi:10.1371/journal.pone.0110507

  • Sato Y, Namiki N, Takehisa H, Kamatsuki K, Minami H, Ikawa H, Ohyanagi H, Sugimoto K, Itoh J, Antonio B, Nagamura Y (2013) RiceFREND: a platform for retrieving coexpressed gene networks in rice. Nucleic Acids Res 41:D1214–D1221. doi:10.1093/nar/gks1122

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF (1988) Water relations in winter wheat as drought resistance indicator. Crop Sci 28:526–531

    Article  Google Scholar 

  • Singh S (2011) Genetic engineering rice for enhanced grain iron content. Ph.D thesis submitted to Tamil Nadu Agricultural University. TNAU, Coimbatore, Tamil Nadu

    Google Scholar 

  • Sivachandran R, Kalarani MK (2010) Transformation of elite rice cultivars ASD16 and IR64 with cry2Ac gene for resistance to rice lepidopteran pests. Asian J Bio Sci 5(1):19–28

    Google Scholar 

  • Thompson AJ, Jackson AC, Mulholland BJ, Dadswell AR, Blake PS, Symonds RC, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (1996) DNA helicases: the long unwinding road. Nature Genet 13:11–12

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Gill SS, Tuteja R (2012) Helicases in improving abiotic stress tolerance in crop plants. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-VCH Verlag GmbH and Co, KGaA. 433–445. Wiley, Germany

    Chapter  Google Scholar 

  • Vashisht AA, Tuteja N (2005) Cold stress-induced pea DNA helicase 47 is homologous to eIF4A and inhibited by DNA-interacting ligands. Arch Biochem Biophys 440(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. The Plant J 44:76–87

    Article  CAS  PubMed  Google Scholar 

  • Visarda KBRS, Sarma NP (2004) Transformation of indica rice through particle bombardment: factors influencing transient expression and selection. Biol Plant 48(1):25–31

    Article  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinfo 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  • Yi CX, Zhang J, Chan KM, Liu XK, Hong Y (2008) Quantitative real-time PCR assay to detect transgene copy number in cotton (Gossypium hirsutum). Anal Biochem 375:150–152.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Zhang HZ, Du MW, Li W, Luo HH, Chow WS, Zhang WF (2010) Leaf wilting movement can protect water-stressed cotton (Gossypium hirsutum L.) plants against photoinhibition of photosynthesis and maintain carbon assimilation in the field. J Plant Biol 55(1):52–60

    Article  Google Scholar 

  • Zhou W, Li Y, Zhao BC, Ge RC, Shen YZ, Wang G, Huang ZJ (2009) Overexpression of TaSTRG gene improves salt and drought tolerance in rice. J Plant Physiol 166:1660–1671

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Dong T, Wang L, Zhang J, Zhao Z, Hu Z (2015) SlDEAD31, a putative DEAD-Box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS ONE. doi:10.1371/journal.pone.0133849

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Biotechnology, Government of India. We gratefully acknowledge the Distributed Information Centre, Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat for providing necessary facilities to undertake this research work.

Author information

Authors and Affiliations

Authors

Contributions

DLS designed and performed the experiments and analyzed the data; DB collected the data; SS supervised the research; DLS wrote the manuscript with critical inputs from SS, GNH and NT.

Corresponding author

Correspondence to Salvinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

11240_2017_1248_MOESM2_ESM.tif

Fig. S1 Agrobacterium tumefaciens-mediated genetic transformation of indica rice cv. ASD16 using immature embryos. A Co-cultivation of immature embryos with Agrobacterium strain AGL1 harbouring p1301-PDH47 for 7 days; B, C and D Immature embryos in first, second and third resting medium, respectively containing 250mg/L cefotaxime and 150mg/L timentin after 14 days of culture; E, F and G Immature embryos in first, second and third selection medium, respectively containing 30mg/L hygromycin B at 14 days interval; H Induction of green embryoids on CC regeneration medium after 7 days of culture; I Rooting of the in vitro regenerated shoots after 15 days of culture; J Putative transgenic lines maintained in the transgenic green house. (TIF 16983 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, D.L., Tuteja, N., Boro, D. et al. Heterologous expression of PDH47 confers drought tolerance in indica rice. Plant Cell Tiss Organ Cult 130, 577–589 (2017). https://doi.org/10.1007/s11240-017-1248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1248-x

Keywords

Navigation