Skip to main content

Trichoderma: A Multifaceted Fungus for Sustainable Agriculture

  • Chapter
  • First Online:
Ecological and Practical Applications for Sustainable Agriculture

Abstract

Sustainable agricultural practices are keys for food security of the world’s burgeoning population. Trichoderma is a ubiquitous fungus that offers several avenues for sustainable agriculture. The panoply of mechanisms displayed by several species of Trichoderma makes them a better solution for conventional agricultural problems. Plant protection from unfavorable biotic and abiotic conditions under circumstances of changing global climatic scenario and promoting their growth in soil with limited or poor nutrient conditions are marvelous attributes of Trichoderma. Understanding the mechanisms such as the function of secondary metabolites and cell wall degrading enzymes in mycoparasitism and antibiosis, pathways triggered for induced systemic resistance and enhanced nutrient use efficiency displayed by different strains of Trichoderma at the physiological, biochemical, and molecular level are essential for harnessing their potential efficiently. Gathering information on performances of Trichoderma spp. under variable environmental conditions and their vigilant amalgamation for selection of strains with multiple activity and/or development of consortia for formulation of successful product is the need for current agriculture scenario. The current chapter made an effort to compile information on the beneficial role and mechanisms involved by strains of Trichoderma at different levels to enhance knowledge for exploring future research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Jiang D, Fu Y (2017) Trichoderma spp. as antagonist of Rhizoctonia solani. J Plant Pathol Microbiol 8:402. https://doi.org/10.4172/2157-7471.1000402

    Article  CAS  Google Scholar 

  • Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito SI, Tran LSP (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138

    CAS  PubMed  Google Scholar 

  • Adams P, De-Leji FA, Lynch JM (2007) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54(2):306–313

    CAS  PubMed  Google Scholar 

  • Affokpon A, Coyne DL, Htay CC, Agbede RD, Lawouin L, Coosemans J (2011) Biocontrol potential of native Trichoderma isolates against root-knot nematodes in west African vegetable production systems. Soil Biol Biochem 43:600–608

    CAS  Google Scholar 

  • Afzal I, Basra SMA, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agri Biol 8:23–28

    CAS  Google Scholar 

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21. https://doi.org/10.1080/07352680500365232

    Article  CAS  Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77(2):182–189

    Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  PubMed  PubMed Central  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Google Scholar 

  • Almeida FB, Cerqueira FM, Silva RN, Ulhoa CJ, Lima AL (2007) Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29:1189–1193. https://doi.org/10.1007/s10529-007-9372-z

    Article  CAS  PubMed  Google Scholar 

  • Alwhibi MS, Hashem A, Abd Allah EF, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16(8):1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2

    Article  Google Scholar 

  • Anam GB, Reddy MS, Ahn YH (2019) Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci Total Environ 662:462–469

    CAS  PubMed  Google Scholar 

  • Anle H, Jianan S, Xinhua W, Liwen Z, Bo F, Jie C (2019) Reprogrammed endophytic microbial community in maize stalk induced by Trichoderma asperellum biocontrol agent against Fusarium diseases and mycotoxin accumulation. Fungal Biol 123:448–455

    Google Scholar 

  • Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N (2013) A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 70:403–410

    CAS  PubMed  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295. https://doi.org/10.1093/jxb/erp165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351

    CAS  PubMed  Google Scholar 

  • Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138

    CAS  Google Scholar 

  • Bailey D, Lumsden R (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London, pp 185–204

    Google Scholar 

  • Battaglia D, Bossi S, Cascone P, Digilio MC, Duran Prieto J, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V (2013) Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant-Microbe Interact 26:1249–1256

    CAS  PubMed  Google Scholar 

  • Belanger RR, Dufour N, Caron J, Benhamou N (1995) Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Sci Tech 5(1):41–54

    Google Scholar 

  • Benitez T, Rincon AM, LimĂłn MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Bernal-Vicente A, Pascual JA, Tittarelli F, Hernandezc JA, Diaz-Vivancos P (2015) Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants. J Sci Food Agric 95(11):2208–2214. https://doi.org/10.1002/jsfa.6936

    Article  CAS  PubMed  Google Scholar 

  • Bernat P, Nykiel-SzymaĹ„ska J, Gajewska E, Różalska S, Stolarek P, Dackowa J, SĹ‚aba M (2018) Trichoderma harzianum diminished oxidative stress caused by 2,4- dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. J Plant Physiol 229:158–163. https://doi.org/10.1016/j.jplph.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):66

    Google Scholar 

  • BĹ‚aszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jedryczka M (2014) Trichoderma spp. – application and prospects for use in organic farming and industry. J Plant Prot Res 54(4):309–317. https://doi.org/10.2478/jppr-2014-0047

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Braun H, Woitsch L, Hetzer B, Geisen R, Zange B, Schmidt-Heydt M (2018) Trichoderma harzianum: inhibition of mycotoxin producing fungi and toxin biosynthesis. Int J Food Microbiol 280:10–16

    CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. https://doi.org/10.1371/journal.ppat.1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brozová J (2004) Mycoparasitic fungi Trichoderma spp. in plant protection. A review. Plant Protect Sci 40:63–74

    Google Scholar 

  • Bunbury-Blanchette AL, Walker AK (2019) Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol Control 130:127–135

    Google Scholar 

  • Buragohain P, Sreedeep S, Lin P, Ni J, Garg A (2019) Influence of soil variability on single and competitive interaction of ammonium and potassium: experimental study on seven different soils. J Soils Sediments 19(1):186–197

    CAS  Google Scholar 

  • Caporale AG, Sommella A, Lorito M, Lombardi N, Azam SMGG, Pigna M, Ruocco M (2014) Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. J Plant Physiol 171:1378–1384

    CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. https://doi.org/10.1093/jxb/erh269

    Article  CAS  PubMed  Google Scholar 

  • Chaves M, Manuela P, Pereira JSM (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  PubMed  Google Scholar 

  • Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89(5):1653–1663

    CAS  PubMed  Google Scholar 

  • Chen T, Yuan F, Song J, Wang B (2016) Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa. Funct Plant Biol 43(3):244–253

    CAS  PubMed  Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7(1):29–38

    CAS  PubMed  Google Scholar 

  • Chowdappa P, Kumar SPM, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009

    Article  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88(4):503–513

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiol 149:1579–1592. https://doi.org/10.1104/pp.108.130369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, MacĂ­as-RodrĂ­guez L, Alfaro-Cuevas R, Lopez-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27(6):503–514. https://doi.org/10.1094/MPMI-09-13-0265-R

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, MacĂ­as-RodrĂ­guez L, Vergara AG, LĂłpez-Bucio J (2015) Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J Plant Growth Regul 34(2):425–432

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036. https://doi.org/10.1093/femsec/fiw036

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, del-Val E, MacĂ­as-RodrĂ­guez L, AlarcĂłn A, González-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202

    CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  • De la Cruz-Quiroz R, Ascacio-ValdĂ©s JA, RodrĂ­guez-Herrera R, Roussos S, Aguilar CN (2019) Phytopathogen biomass as inducer of antifungal compounds by Trichoderma asperellum under solid-state fermentation. In: Singh H, Keswani C, Reddy M, Sansinenea E, GarcĂ­a-Estrada C (eds) Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer, Singapore, pp 113–124

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Google Scholar 

  • Degenkolb T, Dieckmann R, Nielsen KF, Grafenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Bruckner H, Von Dohren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–219. https://doi.org/10.1007/s11557-008-0563-3

    Article  Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40(1-4):25–36

    CAS  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853

    CAS  PubMed  Google Scholar 

  • Djonovic S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1, 3-and β-1, 6-glucanase genes. Mol Plant Pathol 8(4):469–480

    CAS  PubMed  Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4(1):45

    PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    CAS  PubMed  Google Scholar 

  • Ehrlich PR, Ehrlich AH (2016) Population, resources, and the faith-based economy: the situation in 2016. Biophys Econ Resour Qual 1:3. https://doi.org/10.1007/s41247-016-0003-y

    Article  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Euk Cell 3:561–563

    CAS  Google Scholar 

  • Elamathi E, Malathi P, Viswanathan R, Ramesh Sundar A (2018) Expression analysis on mycoparasitism related genes during antagonism of Trichoderma with Colletotrichum falcatum causing red rot in sugarcane. J Plant Biochem Biot 27(3):351–361. https://doi.org/10.1007/s13562-018-0444-z

    Article  CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58(6):61–97

    CAS  PubMed  Google Scholar 

  • Fu J, Liu Z, Li Z, Wang Y, Yang K (2017) Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum. PLoS One 12(6):e0179617

    PubMed  PubMed Central  Google Scholar 

  • Fu J, Wang YF, Liu ZH, Li ZT, Yang KJ (2018) Trichoderma asperellum alleviates the effects of saline–alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. Plant Growth Regul 85(3):363–374

    CAS  Google Scholar 

  • Gajera HP, Bambharolia RP, Patel SV, Khatrani TJ, Goalkiya BA (2012) Antagonism of Trichoderma spp. against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. J Plant Pathol Microb 3:149. https://doi.org/10.4172/2157-7471.1000149

    Article  CAS  Google Scholar 

  • Gallo M, Esposito G, Ferracane R, Vinale F, Naviglio D (2013) Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. Var. esculenta Hort. Eur Food Res Technol 236:1063–1071

    CAS  Google Scholar 

  • Ghisalberti EL, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23(11):1011–1020

    CAS  Google Scholar 

  • Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hort 230:134–141

    Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1 a major constitutive QTL affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38(6):132

    Google Scholar 

  • Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2018) Trichoderma species: versatile plant symbionts. Phytopathology 109(1):6–16

    PubMed  Google Scholar 

  • Halperin SJ, Gilroy S, Lynch JP (2003) Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. J Exp Bot 54:1269–1280

    CAS  PubMed  Google Scholar 

  • Harman GE (2011) Trichoderma—not just for biocontrol anymore. Phytoparasitica 39:103–108. https://doi.org/10.1007/s12600-011-0151-y

    Article  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004a) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004b) Trichoderma species –opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M (2012) Trichoderma – from basic biology to biotechnology. Microbiology 158:1–2. (Special issue: 498)

    CAS  PubMed  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact 9(1):857–868

    CAS  Google Scholar 

  • Hermosa MR, Keck E, Chamorro I, Rubio B, Sanz L, Vizcaino JA, Grondona I, Monte E (2004) Genetic diversity shown in Trichoderma biocontrol isolates. Mycol Res 108:897–906

    CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Rubio MB, Cardoza RE, Nicolas C, Monte E, Gutierrez S (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  PubMed  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387. https://doi.org/10.1093/jxb/erm097

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3(4):435–441

    Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyakumachi M, Kubota M (2003) Fungi as plant growth promoter and disease suppressor. In: Arora DK (ed) Fungal biotechnology in agricultural, Food and environmental application. Marcel Dekker, New York, pp 101–110

    Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33(8):155. https://doi.org/10.1007/s11274-017-2319-1

    Article  PubMed  Google Scholar 

  • Katori T, Ikeda A, Iuchi S, Kobayashi M, Shinozaki K, Maehashi K, Sakata Y, Tanaka S, Taji T (2010) Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions. J Exp Bot 61:1125–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    CAS  PubMed  Google Scholar 

  • Khomari S, Golshan-Doust S, Seyed-Sharifi R, Davari M (2018) Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zeal J Crop Hort 46(2):117–132

    CAS  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683. https://doi.org/10.1007/s10526-007-9103-3

    Article  CAS  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727. https://doi.org/10.1007/s00203-015-1104-5

    Article  CAS  PubMed  Google Scholar 

  • Li R-X, Cai F, Pang G, Shen Q-R, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6):e0130081. https://doi.org/10.1371/journal.pone.0130081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016) Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56(3):318–327. https://doi.org/10.1007/s12088-016-0581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang X, Wang X, Yang X, Cui Z (2019) Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 224:716–725

    CAS  PubMed  Google Scholar 

  • Linkies A, Muller K, Morris K, Tureckova V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SY, Liao CK, Lo CT, Yang HH, Lin KC, Peng KC (2016) Chrysophanol is involved in the biofertilization and biocontrol activities of Trichoderma. Physiol Mol Plant Pathol 96:1–7

    CAS  Google Scholar 

  • Lopez-Mondejar R, Bernal-Vicente A, Ros M, Tittarelli F, Canali S, Intrigiolo F, Pascual JA (2010) Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresour Technol 101:3718–3723

    CAS  PubMed  Google Scholar 

  • Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711. https://doi.org/10.1111/j.1472-765X.2009.02599.x

    Article  CAS  PubMed  Google Scholar 

  • MacĂ­as-RodrĂ­guez L, Guzmán-GĂłmez A, GarcĂ­a-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94(9):fiy137. https://doi.org/10.1093/femsec/fiy137

    Article  CAS  Google Scholar 

  • Malinich EA, Wang K, Mukherjee PK, Kolomiets M, Kenerley CM (2019) Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics 20(1):280. https://doi.org/10.1186/s12864-019-5651-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C 57(5-6):465–470

    CAS  PubMed  Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turra D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50(5):307–321

    CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Fernandez I, Sanchez-Guzman MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206. https://doi.org/10.3389/fpls.2013.00206

    Article  PubMed  PubMed Central  Google Scholar 

  • MartĂ­nez-Medina A, Alguacil MDM, Pascual JA, Van Wees SC (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. https://doi.org/10.1007/s10886-014-0478-1

    Article  CAS  PubMed  Google Scholar 

  • MartĂ­nez-Medina A, Van Wees SC, Pieterse CMJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40(11):2691–2705. https://doi.org/10.1111/pce.13016

    Article  CAS  PubMed  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    PubMed  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact 25:1264–1271

    CAS  PubMed  Google Scholar 

  • Mathews JR, Sivparsad BJ, Laing MD (2019) Greenhouse evaluation of Trichoderma harzianum for the control of Sclerotinia wilt (Sclerotinia sclerotiorum) of sunflower. S Afr J Plant Soil 36(1):69–72

    Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:1–25

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Mittra B (2017) Alleviation of Fusarium oxysporum induced oxidative stress in wheat by Trichoderma viride. Arch Phytopathol Plant Protect 50(1–2):4–96. https://doi.org/10.1080/03235408.2016.1263052

    Article  CAS  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    CAS  PubMed  Google Scholar 

  • Monteiro VN, do Nascimento Silva R, Steindorff AS, Costa FT, Noronha EF, Ricart CA, de Sousa MV, Vainstein MH, Ulhoa CJ (2010) New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol 61:298–305. https://doi.org/10.1007/s00284-010-9611-8

    Article  CAS  PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicola C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    CAS  PubMed  Google Scholar 

  • Moran-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutierrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant-Microbe Interact 22:1021–1031

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Horwitz BA, Charles MK (2012) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45. https://doi.org/10.1099/mic.0.053629-0

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun 505(2):606–611

    CAS  PubMed  Google Scholar 

  • Muvea AM, Meyhofer R, Subramanian S, Poehling HM, Ekesi S, Maniania NK (2014) Colonization of onion roots by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS One 9(9):e108242. https://doi.org/10.1371/journal.pone.0108242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52(2):195–204

    CAS  PubMed  Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88(1):161–169

    CAS  PubMed  Google Scholar 

  • Nawrocka J, Malolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156. https://doi.org/10.1016/j.biocontrol.2013.07.005

    Article  Google Scholar 

  • Newbery F, Qi A, Fitt BDL (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109

    PubMed  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91(6):727–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KF, Gräfenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    CAS  PubMed  Google Scholar 

  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostas M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102. https://doi.org/10.3389/fpls.2017.00102

    Article  PubMed  PubMed Central  Google Scholar 

  • Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9:409

    PubMed  PubMed Central  Google Scholar 

  • Omero C, Inbar J, Rocha-Ramirez V, Herrera-Estrela A, Chet I, Horwitz BA (1999) G proteins activators and cAMP promote mycoparasitic behavior in Trichoderma harzianum. Mycol Res 103(12):1637–1642

    CAS  Google Scholar 

  • Omomowo IO, Fadiji AE, Omomowo OI (2018) Assessment of bio-efficacy of Glomus versiforme and Trichoderma harzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea. Ann Agric Sci 63(1):9–17

    Google Scholar 

  • Oros G, Naar Z (2017) Mycofungicide: Trichoderma based preparation for foliar applications. Am J Plant Sci 8(2):113–125

    CAS  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712. https://doi.org/10.4161/psb.4.8.9047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortuno N, Castillo A, Miranda C, Magnus MIC, Soto X (2017) The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Renewable Agric Food Syst 32(4):366–375. https://doi.org/10.1017/S1742170516000302

    Article  Google Scholar 

  • Palyzová A, Svobodová K, Sokolová L, Novák J, NovotnĂ˝ ÄŚ (2019) Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum. Folia Microbiol 64:779–787. https://doi.org/10.1007/s12223-019-00690-7

    Article  CAS  Google Scholar 

  • Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Bains G, Badal S, Chandra S, Gaur AK, Kumar A, Shukla A, Kumar J, Tuteja N (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264. https://doi.org/10.1007/s00425-016-2482-x

    Article  CAS  PubMed  Google Scholar 

  • Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Marra R, Lombardi N, Woo SL, Lorito M (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181

    CAS  Google Scholar 

  • Pehlivan N, Yesilyurt AM, Durmus N, Karaglu SA (2017) Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol Plant 39:79. https://doi.org/10.1007/s11738-017-2375-z

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    CAS  PubMed  Google Scholar 

  • Qi W, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 53(4):355–364

    CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    CAS  PubMed  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387–400. https://doi.org/10.1007/s11104-011-0858-z

    Article  CAS  Google Scholar 

  • Rawat L, Bisht TS, Kukreti A, Prasad M (2016) Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum L.). Mol Soil Biol 7(4):1–15. https://doi.org/10.5376/msb.2016.07.0004

    Article  Google Scholar 

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123. https://doi.org/10.1007/s11101-006-9032-2

    Article  CAS  Google Scholar 

  • Rockstrom J, Williams J, Daily G, Noble A, Matthewa N, Gordon L, Wetterstand H, DeClerck F, Shah M, Steduto P, De Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17

    PubMed  Google Scholar 

  • Rubio MB, Quijada NM, PĂ©rez E, DomĂ­nguez S, Monte E, Hermosa R (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80(6):1864–1873. https://doi.org/10.1128/AEM.03375-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio MB, de Medeiros HA, Morán-Diez ME, Castillo P, Hermosa R, Monte E (2019) A split-root method to study systemic and heritable traits induced by Trichoderma in tomato plants. In: Reinhardt D, Sharma AK (eds) Methods in rhizosphere biology research. Springer, Singapore, pp 151–166

    Google Scholar 

  • Saber WI, Ghoneem KM, Rashad YM, Al-Askar AA (2017) Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci Tech 27(5):654–676

    Google Scholar 

  • Sachdev S, Singh RP (2016a) Studies on trends in use of pesticides and fertilizers for tomato cultivation in the vicinity of Lucknow, India. Int J Sci Technol Soc 2(1-2):49–54. https://doi.org/10.18091/ijsts.v2i1-2.7542

    Article  Google Scholar 

  • Sachdev S, Singh RP (2016b) Current challenges, constraints and future strategies for development of successful market for biopesticides. Clim Change Environ Sustain 4(2):129–136. https://doi.org/10.5958/2320-642X.2016.00014.4

    Article  Google Scholar 

  • Sachdev S, Singh RP (2018a) Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Eco Environ Sci 3(4):240–242

    Google Scholar 

  • Sachdev S, Singh RP (2018b) Isolation, characterisation and screening of native microbial isolates for biocontrol of fungal pathogens of tomato. Clim Change Environ Sustain 6(1):46–58

    Google Scholar 

  • Sachdev S, Singh A, Singh RP (2018) Optimization of culture conditions for mass production and bio-formulation of Trichoderma using response surface methodology. 3 Biotech 8(8):360

    PubMed  PubMed Central  Google Scholar 

  • Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    CAS  PubMed  Google Scholar 

  • Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control 94:37–46

    CAS  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2014) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 54:1–12. https://doi.org/10.1002/jobm.201400317

    Article  CAS  Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, ArisanAtac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60(12):4364–4370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7(21):3943–3952

    CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96. https://doi.org/10.1111/j.1438-8677.2008.00162.x

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Gothalwal R (2017) Trichoderma: a potent fungus as biological control agent. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: managing crop health, vol 1. Springer, Cham, pp 113–125

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248

    CAS  PubMed  Google Scholar 

  • Sharma R, Joshi A, Dhaker RC (2012) A brief review on mechanism of Trichoderma fungus use as biological control agents. Int J Innovovat Bio Sci 2(4):200–210

    Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-a review. J Appl Nat Sci 7(1):521–539

    Google Scholar 

  • Shentu X, Zhan X, Ma Z, Yu X, Zhang C (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45(1):248–254. https://doi.org/10.1590/S1517-83822014005000036

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiva V (2016) The violence of the green revolution: third world agriculture, ecology, and politics. University Press of Kentucky, Lexington, KY

    Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95(1):76–84. https://doi.org/10.1094/PHYTO-95-0076

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Silva RN, Silva SP, Brandao RL, Ulhoa CJ (2004) Regulation of N-acetyl-b-D-glucosaminidase produced by Trichoderma harzianum: evidence that cAMP controls its expression. Res Microbiol 155:667–671

    CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Sarma BK, Singh HB (2009) Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact 181(1):20–28

    CAS  PubMed  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168(1):33–40

    CAS  PubMed  Google Scholar 

  • Singh JS, Abhilash PC, Gupta VK (2016) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34:773–775. https://doi.org/10.1016/j.tibtech.2016.06.002

    Article  CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium: basic biology taxonomy and genetics, vol 1. Taylor & Francis, London, pp 139–191

    Google Scholar 

  • Sriram S, Manasa SB, Savitha MJ (2009) Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. J Biol Control 23:449–456

    Google Scholar 

  • Srivastava P, Singh R, Tripathi S, Raghubanshi AS (2016) An urgent need for sustainable thinking in agriculture—an Indian scenario. Ecol Indic 67:611–622

    Google Scholar 

  • Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture—insights from genomics. Front Plant Sci 4:258. https://doi.org/10.3389/fpls.2013.00258

    Article  PubMed  PubMed Central  Google Scholar 

  • Tartoura KAH, Youssef SA (2011) Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. Sci Hort 130:862–868

    CAS  Google Scholar 

  • Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, Collado IG, Monte E, Gutierrez S (2011a) Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 3(9):1220–1232. https://doi.org/10.3390/toxins3091220

    Article  CAS  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, GutiĂ©rrez S, Monte E, Hermosa R (2011b) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296

    CAS  PubMed  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A, Tripathi RD, Nautiyal CS (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145. https://doi.org/10.1016/j.envpol.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  • Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ (2014) Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett 36(10):2095–2101

    CAS  PubMed  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    PubMed  PubMed Central  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas JT, Rodriguez-Monroy M, Meyer ML, Montes-Belmont R, Sepulveda-Jimenez G (2017) Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 136:85–93. https://doi.org/10.1016/j.envexpbot.2017.01.009

    Article  CAS  Google Scholar 

  • Verbruggen E, Kiers ET, Bakelaar PN, Röling WF, van der Heijden MG (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant Soil 350(1-2):43–55

    CAS  Google Scholar 

  • Vieira PM, Zeilinger S, Brandao RS, Vianna GR, Georg RC, Gruber S, Aragao FJL, Ulhoa CJ (2018) Overexpression of an aquaglyceroporin gene in the fungal biocontrol agent Trichoderma harzianum affects stress tolerance, pathogen antagonism and Phaseolus vulgaris development. Biol Control 126:185–191. https://doi.org/10.1016/j.biocontrol.2018.08.012

    Article  CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    CAS  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009a) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48(6):705–711

    CAS  PubMed  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009b) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035. https://doi.org/10.1021/np900548p

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Arjona GI, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Rosa DR, Herrera CL, Lorito M (2012) Cerinolactone, a hydroxylactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106

    CAS  PubMed  Google Scholar 

  • Vinale F, Nigroa M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347(2):123–129. https://doi.org/10.1111/1574-6968.12231

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014a) Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8(Suppl-1, M5):127–139

    Google Scholar 

  • Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R, Cavallo P, Lorito M, Woo SL (2014b) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19:9760–9772. https://doi.org/10.3390/molecules19079760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R, Lombardi N, Manganiello G, Pascale A, Woo SL, Lorito M (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res 30(22):2575–2581. https://doi.org/10.1080/14786419.2015.1131985

    Article  CAS  PubMed  Google Scholar 

  • Vinci G, Cozzolino V, Mazzei P, Monda H, Spaccini R, Piccolo A (2018) An alternative to mineral phosphorus fertilizers: the combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1 H NMR and GC-MS metabolomics. PLoS One 13(12):e0209664. https://doi.org/10.1371/journal.pone.0209664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    CAS  PubMed  Google Scholar 

  • Vitti A, Pellegrini E, Nali C, Lovelli S, Sofo A, Valerio M, Scopa A, Nuzzaci M (2016) Trichoderma harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus. Front Plant Sci 7:1520. https://doi.org/10.3389/fpls.2016.01520

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Hashimoto M, Hashidoko Y (2013) Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by Carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS One 8(11):e78024. https://doi.org/10.1371/journal.pone.0078024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu S, Wu S, Feng S, Bai Z, Zhuang G, Zhuang X (2018) Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in northern China. J Environ Sci 66:199–207

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176. https://doi.org/10.1016/j.cj.2016.01.010

    Article  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8(1):71–126

    Google Scholar 

  • Wu CY, Chen CL, Lee YH, Cheng YC, Wu YC, Shu HY, Gotz F, Liu ST (2007) Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. J Biol Chem 282:5608–5616. https://doi.org/10.1074/jbc.M609726200

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Ni M, Dou K, Tang J, Ren J, Yu C, Chen J (2018) Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microb Cell Factories 17(1):155

    Google Scholar 

  • Yasmeen R, Siddiqui ZS (2018) Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta Physiol Plant 40(1):4

    Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65(3):1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yesilyurt AM, Pehlivan N, Durmus N, Karaoglu SA (2018) Trichoderma citrinoviride: a potent biopriming agent for the alleviation of salt stress in maize. Hacettepe J Biol Chem 46(1):101–111

    Google Scholar 

  • Youssef SA, Kamel A, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control 100:79–86

    CAS  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xu B, Zhang J, Gan Y (2018) Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathogens. Pest Biochem Physiol 147:59–66

    CAS  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68(10):4863–4870

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge University Grant Commission, New Delhi, India, for providing UGC-Senior Research Fellowship grant as financial support to Swati Sachdev.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Singh, R.P. (2020). Trichoderma: A Multifaceted Fungus for Sustainable Agriculture. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_13

Download citation

Publish with us

Policies and ethics