Skip to main content
Log in

New Insights in Trichoderma harzianum Antagonism of Fungal Plant Pathogens by Secreted Protein Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ait-Lahsen H et al (2001) An antifungal exo-α-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 67:5833–5839

    Article  CAS  PubMed  Google Scholar 

  2. Almeida FB et al (2007) Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29(8):1189–1193

    Article  CAS  PubMed  Google Scholar 

  3. Altomare C et al (1999) Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  Google Scholar 

  4. Benítez T et al (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 07:249–260

    Google Scholar 

  5. Bhadauria V et al (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  CAS  PubMed  Google Scholar 

  6. Bouws H et al (2008) Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80(3):381–388

    Article  CAS  PubMed  Google Scholar 

  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  8. Carsolio C et al (1999) Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism. Appl Environ Microbiol 91:929–935

    Google Scholar 

  9. Charney MS, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    CAS  PubMed  Google Scholar 

  10. Eneyskaya EV et al (1998) α-Mannosidase from Trichoderma reesei participates in the postsecertory deglycosylation of glicoproteins. Biochem Biophys Res Commun 245:43–49

    Article  CAS  PubMed  Google Scholar 

  11. Flores A et al (1997) A Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  CAS  PubMed  Google Scholar 

  12. Gaikwad SM et al (1995) Purification and characterization of α-D-mannosidase from Aspergillus sp. Biochim Biophys Acta 1250:144–148

    PubMed  Google Scholar 

  13. Grinyer J et al (2004) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  CAS  PubMed  Google Scholar 

  14. Grinyer J et al (2004) Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45:170–175

    Article  CAS  PubMed  Google Scholar 

  15. Grinyer J et al (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  CAS  PubMed  Google Scholar 

  16. Haran S et al (2000) Characterization of arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol 124:625–626

    Article  Google Scholar 

  17. Harman GE et al (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 02:43–56

    Article  CAS  Google Scholar 

  18. Hermosa MR et al (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66(5):1890–1898

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y et al (2007) Proteomics of filamentous fungi. Trends Biotechnol 25(9):395–400

    Article  CAS  PubMed  Google Scholar 

  20. Kubicek CP et al (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83(2):11–23

    CAS  Google Scholar 

  21. Lim D et al (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  CAS  PubMed  Google Scholar 

  22. Marra R et al (2007) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  Google Scholar 

  23. Martin K et al (2007) Biochemistry and molecular biology of exocellular fungal β-(1–3)—and β-(1–6)-glucanases. FEMS Microbiol Rev 31:168–192

    Article  CAS  PubMed  Google Scholar 

  24. Medina ML et al (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41(3):327–335

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell AD, Taylor IE (1969) Cell-wall proteins o f Aspergillus niger and Chaetomium globosum. J Gen Microbiol 59:103–109

    CAS  PubMed  Google Scholar 

  26. Monteiro VN, Ulhoa CJ (2006) Biochemical characterization of a β-1,3glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Curr Microbiol 52:92–96

    Article  CAS  PubMed  Google Scholar 

  27. Mucha J et al (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Arch Microbiol 185:69–77

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis, and assembly Ed. CRC Press, Boca Raton, p 248

    Google Scholar 

  29. Sanz L et al (2004) Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499

    Article  Google Scholar 

  30. Schirmböck M et al (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60(2):4364–4370

    PubMed  Google Scholar 

  31. Seidl V et al (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  PubMed  Google Scholar 

  32. Shevchenko A et al (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci 93:14440–14445

    Article  CAS  PubMed  Google Scholar 

  33. Suárez MB et al (2006) Proteomic analysis of secreted proteins from Trichoderma harzianum identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Article  Google Scholar 

  34. Viterbo A et al (2002) Significance of lytic enzymes from Trichoderma ssp. in the biocontrol of fungal plant pathogens. Antonie von Leewenhoek 81:549–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a biotechnology research grant to C.J.U. (CNPq and FUNAPE/UFG) and FINEP/CT-AGRO/Ação Transversal - 01.07.0551.00. V.N.M was supported by CAPES. The authors thank Nuno M.F.M.S. Domingues (UnB/Cel) for her support with MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cirano José Ulhoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, V.N., do Nascimento Silva, R., Steindorff, A.S. et al. New Insights in Trichoderma harzianum Antagonism of Fungal Plant Pathogens by Secreted Protein Analysis. Curr Microbiol 61, 298–305 (2010). https://doi.org/10.1007/s00284-010-9611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9611-8

Keywords

Navigation