Skip to main content

Deciphering the Role of Phytoanticipins, Phytoalexins, and Polyphenols in Plant-Insect Defense

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Knowledge of plant-insect interaction is continuously evolving with the coevolution of both interacting partners. In addition, the dynamic environmental factors are playing crucially into the interface chemistry of both the host plant and the attacking herbivorous insect. The present study has made efforts to shed light on the current knowledge of insect behavior during herbivory. Behavioral pattern of insects feeding on various plant hosts revolves around modifying host surveillance and overwhelming their defense mechanisms. On the contrary, hosts pay full attention on strengthening its defense arsenal with adequate and appropriate armors that can mount a timely resistance against the attacking insect. In this context, the molecular role of most important class of phyto-biomolecules referred to as phytoanticipins, phytoalexins, and phenolics that were widely investigated as potential insecticides since early days are elaborated under the light of recent day understanding. Thus, the chapter schematizes the general understanding of plant-insect interaction with an aim at adding to the knowledge of the development of better insect management strategies in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2001) Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect? Am Nat 157(5):555–569

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (2002) Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83(12):3408–3415

    Article  Google Scholar 

  • Ahn S-J, Badenes-Pérez FR, Heckel DG (2011a) A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J Insect Physiol 57(9):1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Ahn SJ, Badenes-Pérez FR, Reichelt M, Svatoš A, Schneider B, Gershenzon J, Heckel DG (2011b) Metabolic detoxification of capsaicin by UDP-glycosyltransferase in three Helicoverpa species. Arch Insect Biochem Physiol 78(2):104–118

    Article  CAS  PubMed  Google Scholar 

  • Ahn S-J, Vogel H, Heckel DG (2012) Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem Mol Biol 42(2):133–147

    Article  CAS  PubMed  Google Scholar 

  • Alborn H, Turlings T, Jones TH, Stenhagen G, Loughrin J, Tumlinson J (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276(5314):945–949

    Article  CAS  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PE (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci 104(32):12976–12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P et al (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6(9):e1001119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anilakumar K, Khanum F, Bawa A (2006) Dietary role of glucosinolate derivatives: a review. J Food Sci Technol Mysore 43(1):8–17

    CAS  Google Scholar 

  • Appel HM, Cocroft R (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175(4):1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I (2013) In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol Plant-Microbe Interact 26(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides× P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72(13):1551–1565

    CAS  PubMed  Google Scholar 

  • Bass C, Zimmer CT, Riveron JM, Wilding CS, Wondji CS, Kaussmann M et al (2013) Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc Natl Acad Sci 110(48):19460–19465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta Gen Subj 1820(8):1283–1293

    Article  CAS  Google Scholar 

  • Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60(4):519–531

    Article  CAS  PubMed  Google Scholar 

  • Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H et al (2014) Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc Natl Acad Sci 111(20):7349–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berenbaum MR, Johnson RM (2015) Xenobiotic detoxification pathways in honey bees. Curr Opin Insect Sci 10:51–58

    Article  PubMed  Google Scholar 

  • Bernays EA (1991) Evolution of insect morphology in relation to plants. Philos Trans R Soc Lond B 333(1267):257–264

    Article  Google Scholar 

  • Bernays E (1997) Feeding by lepidopteran larvae is dangerous. Ecol Entomol 22(1):121–123

    Article  Google Scholar 

  • Bernays EA (1998) Evolution of feeding behavior in insect herbivores. Bioscience 48(1):35–44

    Article  Google Scholar 

  • Bernays E, Barbehenn R (1987) Nutritional ecology of grass foliage-chewing insects. In: Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, pp 147–175

    Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35(1):28–38

    Article  CAS  PubMed  Google Scholar 

  • Birke A, Aluja M (2017) Do mothers really know best? Complexities in testing the preference-performance hypothesis in polyphagous frugivorous fruit flies. Bull Entomol Res 108:1–11

    Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Bravo HR, Copaja SV, Argandoña VH (2004) Chemical basis for the antifeedant activity of natural hydroxamic acids and related compounds. J Agric Food Chem 52(9):2598–2601

    Article  CAS  PubMed  Google Scholar 

  • Bridges M, Jones AM, Bones AM, Hodgson C, Cole R, Bartlet E et al (2002) Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B Biol Sci 269(1487):187–191

    Article  CAS  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJ, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60(9):2575–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bues R, Bouvier J, Boudinhon L (2005) Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot 24(9):814–820

    Article  CAS  Google Scholar 

  • Bukovinszky T, van Veen FF, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319(5864):804–807

    Article  CAS  PubMed  Google Scholar 

  • Burow M, Markert J, Gershenzon J, Wittstock U (2006) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273(11):2432–2446

    Article  CAS  PubMed  Google Scholar 

  • Celorio-Mancera MDP, Heckel DG, Vogel H (2012) Transcriptional analysis of physiological pathways in a generalist herbivore: responses to different host plants and plant structures by the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 144(1):123–133

    Article  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18(4):529–544

    Article  CAS  PubMed  Google Scholar 

  • Chapman R (2003) Contact chemoreception in feeding by phytophagous insects. Annu Rev Entomol 48(1):455–484

    Article  CAS  PubMed  Google Scholar 

  • Coyle DR, Clark KE, Raffa KF, Johnson SN (2011) Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomol Exp Appl 138(2):137–145

    Article  Google Scholar 

  • Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H et al (2013) Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1. 2 is activated by CIPK–CBL complexes and induced in ripening berry flesh cells. Plant J 73(6):1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Dafoe NJ, Huffaker A, Vaughan MM, Duehl AJ, Teal PE, Schmelz EA (2011) Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. J Chem Ecol 37(9):984

    Article  CAS  PubMed  Google Scholar 

  • Daimon T, Taguchi T, Meng Y, Katsuma S, Mita K, Shimada T (2008) β-Fructofuranosidase genes of the silkworm, Bombyx mori INSIGHTS INTO ENZYMATIC ADAPTATION OF B. MORI TO TOXIC ALKALOIDS IN MULBERRY LATEX. J Biol Chem 283(22):15271–15279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30(11):2215–2230

    Article  PubMed  Google Scholar 

  • Despland E, Simpson SJ (2005) Food choices of solitarious and gregarious locusts reflect cryptic and aposematic antipredator strategies. Anim Behav 69(2):471–479

    Article  Google Scholar 

  • Despres L, David J-P, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22(6):298–307

    Article  PubMed  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123(2):161–172

    Article  CAS  Google Scholar 

  • Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15(3):167–175

    CAS  PubMed  Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154(2):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. Proc Natl Acad Sci 109(32):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Yang T, Puthanveettil S, Poovaiah B, Luan S (2011) Calmodulin-binding proteins in plants: decoding of calcium signal through calmodulin. Coding and Decoding of Calcium Signals in Plants. Springer-Verlag, Berlin, pp 177–233

    Book  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    Article  CAS  Google Scholar 

  • Dussourd DE (2003) Chemical stimulants of leaf-trenching by cabbage loopers: natural products, neurotransmitters, insecticides, and drugs. J Chem Ecol 29(9):2023–2047

    Article  CAS  PubMed  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3(6):601–611

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1967) Butterflies and plants. Sci Am 216(6):104–114

    Article  Google Scholar 

  • Eisner T, Meinwald J, Wyatt TD (1996) Chemical ecology: the chemistry of biotic interaction. Nature 381(6580):289–289

    Article  Google Scholar 

  • Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant-Microbe Interact 27(7):747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Espinas NA, Saze H, Saijo Y (2016) Epigenetic control of defense signaling and priming in plants. Front Plant Sci 7:1201

    PubMed  PubMed Central  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    Article  CAS  PubMed  Google Scholar 

  • Fox C, Stillwell R, Amarillo-S A, Czesak M, Messina FJ (2004) Genetic architecture of population differences in oviposition behaviour of the seed beetle Callosobruchus maculatus. J Evol Biol 17(5):1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Lognay G, Wathelet J-P, Haubruge E (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J Chem Ecol 27(2):243–256

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58(3):166–174

    Article  CAS  PubMed  Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70(15–16):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156(2):145–169

    Article  CAS  PubMed  Google Scholar 

  • Giraudo M, Hilliou F, Fricaux T, Audant P, Feyereisen R, Le Goff G (2015) Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol Biol 24(1):115–128

    Article  CAS  PubMed  Google Scholar 

  • Glendinning JI, Davis A, Ramaswamy S (2002) Contribution of different taste cells and signaling pathways to the discrimination of “bitter” taste stimuli by an insect. J Neurosci 22(16):7281–7287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci 98(24):13745–13750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee D (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod Plant Interact 4(1):45–55

    Article  Google Scholar 

  • Handley R, Ekbom B, Ågren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30(3):284–292

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8(4):157–178

    Article  Google Scholar 

  • Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18(4):361–379

    Article  CAS  PubMed  Google Scholar 

  • Hegnauer R (1988) Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 27(8):2423–2427

    Article  CAS  Google Scholar 

  • Heidel-Fischer HM, Vogel H (2015) Molecular mechanisms of insect adaptation to plant secondary compounds. Curr Opin Insect Sci 8:8–14

    Article  PubMed  Google Scholar 

  • Helmus MR, Dussourd DE (2005) Glues or poisons: which triggers vein cutting by monarch caterpillars? Chemoecology 15(1):45–49

    Article  CAS  Google Scholar 

  • Holzinger F, Frick C, Wink M (1992) Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314(3):477–480

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi J-I, Arimura G-I, Ozawa R, Shimoda T, Dicke M, Takabayashi J, Nishioka T (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool 38(3):365–368

    Article  Google Scholar 

  • Howe GA, Herde M (2015) Interaction of plant defense compounds with the insect gut: new insights from genomic and molecular analyses. Curr Opin Insect Sci 9:62–68

    Article  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C et al (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10(1):97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J-H, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid–isoleucine–mediated defenses against Manduca sexta. Plant Cell 18(11):3303–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karban R, Agrawal AA, Mangel M (1997) The benefits of induced defenses against herbivores. Ecology 78(5):1351–1355

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53(1):299–328

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148(2):280–292

    Article  PubMed  Google Scholar 

  • Kettles GJ, Kaloshian I (2016) The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation. Front Plant Sci 7:1142

    PubMed  PubMed Central  Google Scholar 

  • Kirsch R, Gramzow L, Theißen G, Siegfried BD, Heckel DG, Pauchet Y (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 52:33–50

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126(2):811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labandeira CC, Phillips T (1996) A carboniferous insect gall: insight into early ecologic history of the Holometabola. Proc Natl Acad Sci 93(16):8470–8474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane G, Sutherland O, Skipp R (1987) Isoflavonoids as insect feeding deterrents and antifungal components from root ofLupinus angustifolius. J Chem Ecol 13(4):771–783

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Arpaia S, Cardinali A, Di Venere D, Linsalata V (2000) Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J Agric Food Chem 48(11):5316–5320

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Terzano R, Cicco N, Cardinali A, Venere DD, Linsalata V (2005) Seed coat tannins and bruchid resistance in stored cowpea seeds. J Sci Food Agric 85(5):839–846

    Article  CAS  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661(2):23–67

    Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):5–6

    Article  Google Scholar 

  • Li W, Berenbaum M, Schuler M (2001) Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem Mol Biol 31(10):999–1011

    Article  CAS  PubMed  Google Scholar 

  • Li W, Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc Natl Acad Sci 100(suppl 2):14593–14598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC, Vassão DG et al (2014) 3-β-D-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1, 4-benzoxazin-3-ones. Phytochemistry 102:97–105

    Article  CAS  PubMed  Google Scholar 

  • Macel M (2011) Attract and deter: a dual role for pyrrolizidine alkaloids in plant–insect interactions. Phytochem Rev 10(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PG (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31(7):1493–1508

    Article  CAS  PubMed  Google Scholar 

  • Maffei M (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76(4):612–631

    Article  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007a) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12(7):310–316

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007b) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68(22–24):2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y, Wang L-J et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307

    Article  CAS  PubMed  Google Scholar 

  • Matsuura HN, Fett-Neto AG (2017) Plant alkaloids: main features, toxicity, and mechanisms of action. In: Plant toxins. Springer, Dordrecht, pp 243–261

    Chapter  Google Scholar 

  • Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54(6):2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Mello MO, Silva-Filho MC (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol 14(2):71–81

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 1203980

    Google Scholar 

  • Merzendorfer H (2014) ABC transporters and their role in protecting insects from pesticides and their metabolites. In: Advances in insect physiology, vol 46. Elsevier, Oxford, pp 1–72

    Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  PubMed  Google Scholar 

  • Mitter C, Farrell B, Futuyma DJ (1991) Phylogenetic studies of insect-plant interactions: insights into the genesis of diversity. Trends Ecol Evol 6(9):290–293

    Article  CAS  PubMed  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69(9):1795–1813

    Article  CAS  PubMed  Google Scholar 

  • Mordue A, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39(11):903–924

    Article  CAS  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416(6881):599

    Article  CAS  PubMed  Google Scholar 

  • Nealis VG, Nault JR (2005) Seasonal changes in foliar terpenes indicate suitability of Douglas-fir buds for western spruce budworm. J Chem Ecol 31(4):683–696

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem 57(5):1677–1696

    Article  CAS  PubMed  Google Scholar 

  • Olson D, Nechols J (1995) Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera: Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Environ Entomol 24(2):454–458

    Article  Google Scholar 

  • Park I-K, Shin S-C, Kim C-S, Lee H-J, Choi W-S, Ahn Y-J (2005) Larvicidal activity of lignans identified in Phryma leptostachya var. asiatica roots against three mosquito species. J Agric Food Chem 53(4):969–972

    Article  CAS  PubMed  Google Scholar 

  • Pauchet Y, Heckel DG (2013) The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc R Soc Lond B Biol Sci 280(1763):20131021

    Google Scholar 

  • Peng J, Deng X, Jia S, Huang J, Miao X, Huang Y (2004) Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C 59(11–12):856–862

    Article  CAS  PubMed  Google Scholar 

  • Pentzold S, Zagrobelny M, Rook F, Bak S (2014) How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev 89(3):531–551

    Article  PubMed  Google Scholar 

  • Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32(5):701–712

    Article  CAS  PubMed  Google Scholar 

  • Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14(3):255–281

    Article  CAS  Google Scholar 

  • Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7(4):456–464

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Rane RV, Walsh TK, Pearce SL, Jermiin LS, Gordon KH, Richards S, Oakeshott JG (2016) Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr Opin Insect Sci 13:70–76

    Article  PubMed  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42(1):93–114

    Article  CAS  PubMed  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci 99(17):11223–11228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS (2010) Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol 36(10):1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Walker W III, Vogel H, Chattington S, Larsson M, Anderson P et al (2016) Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem Mol Biol 71:91–105

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy S, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223(6):1329

    Article  CAS  PubMed  Google Scholar 

  • Scboonhoven L, Jermy T, Van Loon J (1998) Insect-plant biology: from physiology to evolution. Stanley Thornes, Cheltenham, UK

    Book  Google Scholar 

  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT (2011) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis thaliana. Plant Physiol 156:1520–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS et al (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci 103(23):8894–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394

    Article  CAS  PubMed  Google Scholar 

  • Sharma H, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3(3):151–161

    Article  Google Scholar 

  • Shirley BW (1998) Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci Res 8(4):415–422

    Article  CAS  Google Scholar 

  • Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MS, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. J Chem Ecol 27(5):965–977

    Article  CAS  PubMed  Google Scholar 

  • Slama K (1980) Animal hormones and antihormones in plants. Biochem Physiol Pflanz 175(3):177–193

    Article  CAS  Google Scholar 

  • Sonoda S, Tsumuki H (2005) Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L.(Lepidoptera: Yponomeutidae). Pestic Biochem Physiol 82(1):94–101

    Article  CAS  Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151(6):1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. elife 2

    Google Scholar 

  • Torrie LS, Radford JC, Southall TD, Kean L, Dinsmore AJ, Davies SA, Dow JA (2004) Resolution of the insect ouabain paradox. Proc Natl Acad Sci U S A 101(37):13689–13693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147

    Article  CAS  Google Scholar 

  • Turlings T, Loughrin JH, Mccall PJ, Röse U, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci 92(10):4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa RM, Raíces M, MacIntosh GC, Maldonado S, Téllez-Iñón MT (2002) Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant 115(3):417–427

    Article  CAS  PubMed  Google Scholar 

  • Van Dam NM, Tytgat TO, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8(1):171–186

    Article  CAS  Google Scholar 

  • Van Der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23(12):454–456

    Article  PubMed  Google Scholar 

  • van Leur H, Vet LE, Van der Putten WH, van Dam NM (2008) Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J Chem Ecol 34(2):121–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72(13):1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Vilfranc CL, Murphy VA, Mitchell CM, Volkova MI, O’Neal L, Markin VS (2013) Electrotonic and action potentials in the Venus flytrap. J Plant Physiol 170(9):838–846

    Article  CAS  PubMed  Google Scholar 

  • Walter A, Mazars C, Maitrejean M, Hopke J, Ranjeva R, Boland W, Mithöfer A (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angew Chem Int Ed 46(25):4783–4785

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7(7):510

    Article  CAS  PubMed  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci 104(25):10536–10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Chapter five glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Recent advances in phytochemistry, vol 37. Elsevier, New York, pp 101–125

    Google Scholar 

  • Wouters FC, Reichelt M, Glauser G, Bauer E, Erb M, Gershenzon J, Vassão DG (2014) Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in lepidopteran herbivores. Angew Chem 126(42):11502–11506

    Article  Google Scholar 

  • Wouters FC, Gershenzon J, Vassão DG (2016) Benzoxazinoids: reactivity and modes of action of a versatile class of plant chemical defenses. J Braz Chem Soc 27(8):1379–1397

    CAS  Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62(13):4605–4616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wybouw N, Dermauw W, Tirry L, Stevens C, Grbić M, Feyereisen R, Van Leeuwen T (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. Elife:3, e02365

    Google Scholar 

  • Yoshida T, Chen H, Toda M, Kimura M, Davis A (2000) New host plants and host plant use for Drosophila elegans Bock and Wheeler 1972. Drosoph Inf Serv 83:18–21

    Google Scholar 

  • Yu Q, An L, Li W (2014) The CBL–CIPK network mediates different signaling pathways in plants. Plant Cell Rep 33(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55(3):491–503

    Article  CAS  PubMed  Google Scholar 

  • Zebelo SA, Maffei ME (2014) Role of early signalling events in plant–insect interactions. J Exp Bot 66(2):435–448

    Article  PubMed  CAS  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-Z, Hua B-Z, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact 2(4):209–213

    Article  Google Scholar 

  • Zhao C, Doucet D, Mittapalli O (2014) Characterization of horizontally transferred β-fructofuranosidase (ScrB) genes in Agrilus planipennis. Insect Mol Biol 23(6):821–832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AR would like to acknowledge the EU project “EXTEMIT – K,” No. CZ.02.1.01/0.0/0.0/15_003/0000433, financed by OP RDE and IGA, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, for their financial support during the preparation of the book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Roy, A. (2021). Deciphering the Role of Phytoanticipins, Phytoalexins, and Polyphenols in Plant-Insect Defense. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_13

Download citation

Publish with us

Policies and ethics